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the directed system we obtained is nice. But this follows from Lemma 12
and Corollary 11.

We only prove (c) since the proof of (d) is similar. We are given an
elementary embedding j: V44—V, Where g= j(a) and « i the first
ordinal moved. It suffices to show that j preserves well-orderings.
Suppose, on the contrary, that B’ is a well-ordering of V,, but that j(R’)
is not a well-ordering of V. Then there is a j(R')-descending sequence
s: 0—>V,. Since p > w is inaccessible, s ¢ V,. Hence, V., satisfies

Hs: -V View {s(n1), 8(n)) ¢ j(R') .
Then since j: V. —Vpyy i8 elementary, V,,, satisfies
Hs: 0V, Vnew (s(n+t1),s(n)> R

But then R’ is not a well-ordering.
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Two conjectures regarding the stability
of w-categorical theories
by
A. H. Lachlan (Burnaby, British Columbia)

Abstract. Tt has been conjectured (1) that any w-categorical first order theory
has finite Morley rank, and (2) that any stable w-categorical theory is totally trans-
cendental. In this paper it is shown that any structure, whose theory is a counter-
example to either of these two conjectures, contains a pseudoplane. Here a psendo-
plané consists of a universe of “points” and “lines” together with an incidence
relation; the axioms are that each line containg infinitely many points, and that
two distinet lines meet in at most a finite number of points, together with the
duals of these. Thus hoth conjectures would follow if it could be shown that
w-categorical pseudoplanes do not exist.

The greater part of thiz paper is motivated by the conjecture:

OL. If T is stable and o-categorical then T' is totally transcendental.

Tn § 1 we prove a conjecture weaker than C1 namely:

O1'. If T is superstable and w- categorical then T' is totally transcendental.

The truth of O1’ was first known by Shelah. Allthrough it has not
appeared explicity it. follows immediately from two lemmas of [6],
Lemma 38, p. 106 and Lemma 40, p. 108. The main tool we use namely
that of normalizing ranked was also invented by Shelah.

In § 2 we show that if M is a structure which refutes C1 then M
contains a pseudoplane. Let “\/z” be read “for at most a finite number

of &”. A pseudoplane is 2 moc({el for the axioms
Val(l(e,y)vIy,a),
Veal(z,))A\yIl(@,y).~2#Y,
@y # mw\ﬂ/y(I(wo, YAL(@1,Y)) 5
Yo # .«/1—>\w/w(1(m, ywVI(@, ),

/oL (@,y)— 1Vl (@,9). A\ yl@, y)-> " VoI(@,9) -
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The “lines are elements of the universe satisfying \/mI (2, y) and the
“points” are those satisfying \/yI(z,¥).

In [3] Morley associated with each countable first order theory 7' an
ordinal ar which we ghall refer to as the “rank” of 7. He also asked whait
model-theoretic conditions on 7 imply ap<< o and suggested that 7T
being categorical in some power might suffice. In [1] Baldwin showed
that indeed ar is finite when. 7' is w, - categorical, but whether the statement:

02. If T is w-categovical then ar < w.
is true or false is not known. In § 3 we ghall show that if M ig a structure
which refutes 02 then M containg a pseudoplane. Thus we have a link
between C1 and (2. When we say M “containg” a pseudoplane we mean
that there are binary relations Uy%, z'), U7, 7'), and U(%, 7) definable
in M without any use of parameters such that U, and U, are equivalence
relations and if we take the U,-equivalence classes ay points and the
U,-equivalence classes as lines then U induces an incidence relation I.
To prove the results already mentioned we shall use normalization of
ranked formulas where the rank is the same kind as was introduced by
Morley [3]. Suppose ¢(; 7) is a formula such that ¢(z; b) has rank o and
degree 1 for all b satistying = \/@g(w; §) in a given structure M. Suppose
further that g(z; 8°A Tl (w; 5') has rank < a for all &° and &* in M such
that |= \/@g(z; B)A \/op(z; B, and that M is o-saturated. Then there
is a formula ¢'(») with rank o and degree 1 and no parameters such that
¢'(x)Ag(w; b) has rank o for each be M for which |= \/@p(2; b). The
theorem we have just stated iy an example of what we mean by normali-
zation in that ¢’ is said to be obtained by normalizing p(z; 7). The first
result involving normalization was obtained by Shelah; we shall say
more about this in § 1 when we state the first of two normalization lemmas.
The other normalization lemma is stated in § 3. In § 4 we prove the second
normalization lemmas; the proof of the first one is omitted becanse it can

".be proved by exactly the same method. In § 5 we discuss the conjectures
C1 and 02 in the light of our results.

Most of our notation is copied from Shelah [5]. Throughout the paper,
except where the comtrary is explicitly stated, we shall be dealing with
a countable, complete, w-categorical theory 7. Further M will denote
a countable model of 7'. If ¢ is a sentence in the language of 1" augmoented
by names for elements of | M| then [= ¢ means @ iy true in M, Let ¢ have
at MOst @, ..., @ free then ¢ is called null if [=A\ @, ... A @ "1g. Lot o (& )
be a formula of 7' such that if |= \/Ze(Z; b) for 4 = 0, 1 then 5°, 5* realize
the same type over @; we say that ¢(F; 7) fives the type of 7. Hxeept where
the context requires otherwise all types are complete and over ¢

1. The superstable case. Here we ghall prove that if 7 is superstable
and o-categorical then T' is totally transecendental.

1
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For proof by contradiction let 7' be a complete countable theory
which is superstable and o-categorical, but not totally transcendental.
Let M be a countable model of T. For any formula ¢(z; ) of T and any
@< M, let »{p(2; @) be the cardinality of

{p: p e 8(| M) and ¢(w; @) € p} .

Tor any subset 4 of a model S(A) denotes the set of 1-types over 4.
We first observe that there is a formula p(z; 7) of T and @ € M such that
(i) x(p(w; @)= 2%, and
(ii) there do not exist a formula y(xz; 7') of T and sequences &, Gy, ..
in M such that

llp(@; @Ap(m; @)Ap(@; @) =2°<wi=]

for all 4 and j< . The argument we use is implicit in the discussion
of - superstability in [4]. Since we are assuming that T is not totally
transcendental we have x(x = ) = 2° which leads to (i). We obtain
(ii) by noting that if the kind of formula ¢(x; 7) we want doesn’t exist
then for any infinite cardinal A we ean construct a subset A of a model M’
of T such that |4]= 1 and |S(4)| = A°. (This would contradict the as-
sumption that T is superstable.) The construction consists of choosing
a formula gi(z; 7s) of T for each ¢ < w aund @;, « M’ for each i< w and
each mapping % e *A (where i = {0, 1, ..., i—1} by convention) such that
if v e “A then

{puw; @;,): i< o, ne’h, and nCr}v
w{TIou®; Bipnass): 1< 0 i< nedl, nCrand 5o > ¢ 7}

ig a congistent set of formulas. The choice of gi(x; ¥') is easy because
T is w-categorical. Now we take

A=J{ngd,,; i< o and ne‘l}.

For the rest we may as well assume that ¢(z; 7) is @ = =, because
this will simplify the notation. Choose a ¢ M and a forml-ﬂa e(z,y) of T
such that %(e(w, a)) = 2%, ¢ defines an equivalence relation on JV{, an’d
for any pair <a', ¢’> satisfying the same conditiong as {a, &y, if &'(x, a’)
implies s(z, ), then &'(#,a’) and s(z, a) are equwalent: We must be
able to choose @ and s (x, 1), for otherwise T would have an infinite number
of 2-types. (This, of course, would be contrary to the theorem of Riyll-
Nardzewski.) Since %(s(w, a))m2‘” there is a formula 0(x; y) of_ T an:l
@e M such that x(e(w,a)A6(z; @) =2 and #(e(@, a)A T160(w; @) = 2°.
Let y(w; y,7) denote the formula e{x, y)AO(w; 7). Let I' be the set of
formulas obtained by Boolean operations from formulas of the form
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x(@; b, b) where b and b are in M. Since T is stable we can define the
rank and degree, of any formula with just one free variable, relative to
any finite set 4 of formulas of 7. The notions of rank and degree stem
originally from Morley [3]. Considerable refinements of Morley’s ideas
have been made by Shelah. The particular notions of rank and degree
used here are those of [2]. We get y-rank and y-degree by letting 4 be
{y(2;9,7), %=y} Let m(x; z) be chosen in I' and ¢ in M such that
#(x(2; @, @) Am(z; )= 2° the y-rank of y(w;a,a@)An(w;0) is least
possible, and the y-degree of y(z; a, @) Am(w; 6) is least possible. Since
every type over a finite set is realized in any infinite model of an w-cate-
gorical theory, the x-degree of x(w, o, a)/\n(w, ¢) is 1. Let y(a; a, @)A
Am(m; ©) be denoted mg(w; a°) where @°= a"a" ¢ and m(z; 7°) is a suitable
formula of T'. Let, ny(z; a°) have y-rank Ico Choose a maximal sequence
a® @, ... in M such that whenever i < j: @ and @ realize the same type

and no(:o; a*) Amy(; @) has y-rank < k. The sequence. @’, @', ... must he

finite. Otherwise (ii) above would be refuted. Suppose the sequence ends -

with a™.

The remainder of the proof consists in showing that there is a for-
mula &'(z, y) of T and &'« M such that

(i) &'(@,y) defines an equivalence relation on M,

(ii) &'(x, ¢’) is a Boolean combination of formulas of the form
mo(@; B°) where 5° e M hag the same type as a°

(ill) &'(#, a’) implies ¢(x, o) and also implies some finite disjunction
of formulas my(w; 5°) where 5° has the same type as a°,

(iv) &'(%, ¢’) has y-rank &, and y-degree 1.

Suppose for the moment that & and o' exist satisfying (i)-(iv). For
some ‘particular b°, my(w; 8°) A¢'(w; a’) has y-rank &, by (iii) and (iv). Hence
ao(; YA s (w, @) has x-rank<Ck,. Therefore w(s'(w; a')) = 2%; other-
wise x{m(w; B°)A TIe'(w; o )) = 2 contrary to the choice of m,. I‘rom the
way ¢ and a were chosen it follows that e(»; a) and &'(»; o') are equivalent.
Now #(s'(w; a’) A Tmy(w; %) = »(e(@; a)A 10(2; @ )) = 2°, From (iii) thero
exists b in M realizing the same type as a@° mch that x(no(:v' BYAe' (5 a”) A
A (s B )) = 2% Binee ¢'(x, a’) A TImy(w; 8°) has y-rank <’Ioo the choice
of =, is again contradicted. This completes the proof given &' and a'.

To show that ¢ and a’ exist we use the idea of normalizing ranked
formulas. This idea has its origin in a theorem of Shelah communicated
to us by letter early in 1971. In its simplest form Shelah’s theorem says:
if Ty is a totally transcendental theory and o = # has rank a and degree %
in T, then there is a formula of 7, defining an equivalence relation ¥ with
a finite number of classes such that in any model M, of T,, & of the equiva-
lence classes have rank a. (Here we are using rank and degree in the sense
of Morley [3]. The rank of a formula ¢ is defined to be the greatest rank
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of types containing ¢. The rank of a definable subset of a model is defined
to be the rank of a formula defining the subset.) Let a formula y(x; 7)
be given. A formula 0(x; 2) is said to be normal with. respect to y(x; 7) if
the following three conditions are satisfied:

(i) 0(w; 2) fixes the type of Z and any formula 6(x; ¢) is equivalent
to a Boolean combination of formulas of the form (w; b).

(iiy There exists k< o such that if ce M and 6(z; ¢) is non-null
then 0(z; ¢) has yp-rank % and ¢-degree 1.

(ii) If ¢° and &' e M ave such that 6(w; ®)A0(x; &) has p-rank %
then 6(x; 2°) and 6(z; ¢) are equivalent.

LemMA 1. Let T be w-categorical and stable. Let p(z; 7) and 6(z; z)
be formulas of T which satisfy (i) and (il) above. There exists a formula
0%(x; 2) of T normal with vespect to y(x; §) such that for all ¢ e M

Rank, §%(«; 6) = Rank, 6*(«; ¢)A 6 (2; ¢) = Rank, 0(z; ©) .

TFurther for each © e M, 0™(x; ). can be ewpressed as a positive Boolean combi-
nation of formulas of the form 0(x; ") where

Rank, 0 (@; ¢')A 0 (w; ) = Rank, 6(=; ¢) .

The proof of the lemma is deferred until § 4. A formula * satisfying
the conclugion of Lemma 1 is said to be obtained by normalizing 6 with
respect to p. We now proceed with the proof of our theorem. Recall the
formula my(2; 7°) selected above. Without loss of generality we may sup-
pose that my(a; 7°) fixes the type of 7°. By Lemma 1 there is a formula
o*(@; 7°) of T obtained by normalizing =, with respect to yx. For every
70 ¢ M such that m*(w; b°) is non-null there exists ¢ < m, such that -

Rank,w*(@; 5% An*(w; ') = Rank,a"(w; 8°) =k,

because @°, @, ..., @™ was chosen to be a maximal sequence. Thus up to
equlvalence Lhele are exactly m0+1 formulas of the form n*(x; 8°). Let

¢'(@,y) be the formula AY ( (@; °) < «*(y; 7°)). Then ¢’ defines an
equivalence relation on M| one of whose equivalence classes is defined
by the formula

(@5 @) AN { " (@5 3%): 1< i< m}

which is non-null because it has y-rank k. Let a’ ¢ M be chosen satisfying
this formula. From the lemma for each < m a*(2; &%) is a positive Boolean
combination of formulas of the form my(m; 5°) where &° realizes the same
type as @ Since my(w; &) implies ¢(x, a), so does = *(w; @°), and hence 50
does ¢'(w, ¢). It is now immediate that ¢’ and o' satisfy all the required
conditions. This completes the proof.
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2. The stable but not superstable case. Here all we have been able to
establish is that if T is o-categorical, stable, and not superstable then
any model of 7' containg an infinite pseudoplane. The argument uses
a series of propositions which we label P1-P7.

Pl. There exists a formula @(w; 9) of T and @ e M such that »(p(x, @)
= 2° and for any formula y(x,y) of T and be M cither

x(p(@; @) Ap(e, D)< 2°  or  xlp(m: @)A (e, b)) < 27

Proof. Since T is w-categorical there are only a finite number of
formulas y(z, y) up to equivalence. Thus there is a single formula v'(x; 7)
of T such that for any y(#, y) and b« M, p(z, b) is equivalent to ¢'(»; )
for some be M. If the proposition fails there are clearly 2° y’-types
over |M| whence T is unstable, contradiction.

For the rest of the section suppose that ¢(x; 7) is a particular formula
satisfying P1, and that @ is a corresponding finite sequence in M.

P2. There exist a formula yp(z; §') of T and @° @, ... in M such. that

0 all realize the same type over Rngd, and

a, a, ...

x(p(@; @) Ay (@; T)Ap(0; @) =27 < i=j.

This proposition is immediate because otherwise T would be totally
transcendental by exactly the same argument which we used in the super-
stable case. In the conclusion of P2 let ¢ be the type over @ realized by
@, a, ...

P3. In P2 y and @ a, ..

realizing q y(%;

w(p (@5

.may be chosen such that for amy be M
b) has y-degree 1 and

a)Ay(x; a°
< x((p(a:, a)Ayp(@; &
<> Rank,y(z; @) Ay(z; b) =

) Ay (@; b)) = 2°
) TTp(w; b)) # 2°
Rank,p(w; b) .

(Notice that the conclusion is true if and only if it is true for @° replaced by @t

and the same v.)

Proof. Let 4°z; 3°) be a particular formula which will serve as
p(@; §') in the conclusion of P2 and let 8% 5", ... be corresponding values
of d", @, ... Choose wl(m; 7') and @ e M such that x(p(w, @)Ap(a; °)A
Apt(m; ) = 2°, yMw; &) is a Brolean combination of formulas ¢f the
form ¢%(«; ), andw (25 B°) Apt(; °) has least possible p®-rank and ¢°- degree.
Let y(x; 7') be y°(w; 7°) Ayp'(w; 7) where 7' is 7°° 7. Without logs of gener-
ality we may suppose that every instance of v is a Boolean combination
of mstances of y° and vice-versa. This makes p-rank and y; degree the same
a8 v -rank and y’- degree. Let @° be 5”& and for i > 0 let &

! be an extension
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of 5% which realizes the same type over Rngd as a°. It is now easy to see
that v and a° @, ... satisfy both P2 and PS3.

For the rest of this section let p be chosen satisfying P2 and P3
and let & be the y-rank of y(x; b) when b realizes ¢.

Pd. If be M, b M realizes q, and |=y[b; 5] then there emist B°, B, .
all realizing the same type over {b} which b realizes such that if i # j then
the w-rank of y(w; b)Ap(w; B7) is <k.

Proof. For proof by contradiction suppose that the hypothesis is
true and the conclusion false. Without loss of generality suppose that b
is @®. Let T'(b) be obtained from 7T by adjoining b as a new constant to
the language and adding a suitable axiom fixing the type of b. In the
new theory let =(3') be a formula fixing the type of b. Let v*(w; 7') be
obtained by normalizing v(w; §')An(y’) with respect to v in the manner
of Lemma 1. Since there exist no sequences 2% &', ... satisfying the con-
clusion of the proposition, up to equivalence there are only a finite number
of formulas of the form ¢*(w; &'). Thus \/7'w*(w: 7’), which contains one
parameter with respect to:-the original language, can be expressed as
a positive Boolean combination of formulas of the form w(x; 5') where b’
realizes ¢. From P3 it follows that

AN T (@5 7)) = 2°

for only finitely many 4. Also since we are supposing that b is @°, p(2; @) A
Ay*(w; @°) has p-rank & whence x(p(w; @) Ay(z; a®)A\/ Ty (@5 7)) = 2°.
We now have a contradiction of P1 if we take \/7p*(w; 7') to be y(z, b).
This completes the proof of P4.

P5. There exists a formula 0(z; Z) of T such that:

5.1. |= 0[a; €] for some o and G in M.

B.2. Awy formula 0(x;T) is equivalent to a Boolean combination of
formadas of the form y(w; b).

5.3. If |= 0[a; ¢] then there exist T, T, ... all realizing the same type
over {a} as G such that the w-rank of 0(x; €)A0(w; &) s less than the p-rank
of 0(w; &) wnless i = J.

5.4, If 0(w; ©) is non-null then it has y-degree 1 and y-rank indepen-
dent of €.

5.5. If 0(x; ©)
be satisfied.

If we ignore P5.5 then w(z; ¥ )A=m(F’) will serve for 6(x;2) where

n(y’) generates the type g. E‘rom this observation the proposition is
obvious. Let §(w; Z) be chosen satisfying P5 such that 6(w; 2) fixes the
type of z. Let this Lype be p,. When ¢ realizes p, let the p-rank of 0(x; e)
be 1. From 5.3 and 5.4 we have [ > 1.

10 — Fundamenta Mathematicae, T. LXXXI

x(p (w3 @) vy(; @

is non-null its p-rank is the least such that 5.1-5.4 can
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P6. There exists a formule o(; 7F) of T such that:
6.1. Any formula o(w; b%) is equivalent to a Boolean combination of

formulas of the form wp(; b). o
6.2. If © realizes p, then there ewist °, _b_l, ...t M such that for all 4
and j < o Rank,o(z; bY) = I—1, Deg,o(w; 0') = 1,

Rank, o (2; B)Ao(w; b)) = I—1 e i=j
and o(w; BY) implies 0(x; ©).

Proof. It is clear from the definition of rank and the w-saturatedness
of M that there exist formulas of(a; 7°) and sequences b* for i< w such
that oi(a; b%) is equivalent to a Boolean combination of formulas of the
form v (w; b), Rank,o*(w; b%) = I—1, Deg,o"(#; by =1,

Rank,o'(@; B)A o/ (w; b)) = I—1 e i= ]

and o'(w; B%) implies 0(x; 8). If o¥(@; 7°) will not serve as o(w; ) in the
conclusion of the proposition, by using Lemma 1 we can obtain a formula
7i(x; 7) such that v(w; 8) and %(w; 6)Ac(x; bY) both have p-rank I—I1.
Thus if no ¢* will serve as ¢ there are infinitely many pairwise inequiva-
lent formulas of the form 7(x; ¢). This contradiets the w-categoricity of T

Let o(z; 7) be chosen satisfying P6 and such that o(w; 7F) fixes
the type of 7%. Let this type be p,. Choose a type p’ such that in P6.2
B, B, ... may all be chosen such that ¢ 8% realizes p’ for each i< o.Let
o*(@; 7¥) be obtained by normalizing o (w; 7) with respect to p. If 8° and B
both realize p, call them equivalent it o*(w; 8°) and o*(a; B*) are equivalent.

P7. Let b realize p,. There ewist ¢, ¢, ... such that for all i and j < w:

7.1. There emists b* equivalent 10 b such that & © b° realizes p’.

7.2. Rank,(0(w; T)A0(w; &) =lwi=j

Proof. Given b we can find &< M such that |=ola; 0] and such
that there is a maximal sequence & = 09, ..., b™ satistying (i) °, ..., ™ all
realize the same type over {a}, and (ii) o(w; b*) Ao (w; 8%) has p-~rank (-1
it and only if ¢ = j. If not, then o (m; 7%) would contradict PB5.5. Lot & he
such that ¢ b realizes p'. We can find 2%, &, ... all realizing the same type
as ¢ over {a} such that 6 (w; ¢ A0(x; &) has w-rank | it and only if ¢ == j.
For each j < o there exists 5% realizing the same type over {a} as § such
that & " 5% realizes p’. Since ¢b%: ¢ < m)> cannot be extended there exigty
k< m such that 89 iy equivalent to 5% for infinitely many §. Thus the
conclusion of the proposition is satisfied for 5% in place of b. This sutfices
since 5% and b realize the same type.

Let 0*(w; %) be obtained by normalizing 0(w; 2) with regpect to w.
It ¢ and ¢ both realize p, call them equivalent it 0™(w;c®) and 0™(w; 7"
are equivalent formulas. Let & realize py. Choose B°, B%, ... such that for
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each ¢ < w, o’ " 5% realizes p’ for some & equivalent to & and such that & is
equivalent to &' only if 4= j. This choice is possible from P6.2 and the
choice of p'. Notice that if ° &', ... are chosen so that 3" b* realizes »’
for each << w, then Rank,6*(s; 6)Ao(w; b') = I—1 for all but a finite
number of < o since Rank, 0 (2; 8)A 716%(2; ) < L. Therefore, for any b
such that ¢ "% realizes p’ for some & cquivalent to ¢, we have
Rank, 0%(«; 2)Aa(w; b) = I—1. Let m be the greatest number such that
g, ¢, ... can be found satisfying the following two conditions:

cl. For each ¢ < m and j< w there exist &’ and & equivalent to & |
and & respectively such that @ " b’ realizes p’.
¢ and & are equivalent only if i = j.

Finally, choose <b%: i< w) so that m iy as large as possible. From
P7 we have mz= 0. Let p” be the type of 5° "Bt 7, O pm,

Now we can extract the desired pseudoplane from M as follows.
The lines are the. equivalence classes of finite sequences @ realizing p
under the notion of equivalence just defined. The points are the equiva-
lence classes of finite sequences ° 73" .. N §™ realizing ' where

2. ¢

B0 L D™ and BM O L. O FY™ are equivalent if

= Aol (603 59 < e (a3 B9 i < ).

The line represented by ¢ containg the point represented by &° © ...
if for each 4 << m there exist @ and b’ equivalent to ¢ and 5° respectively
such that & O b realizes p’. There are infinitely many points on each
line from P 6.2 and the way p’ was chosen. From the existence of &, &, ...
satisfying ¢l and c2, there are infinitely many lines through each point.
Since m is chosen as large as possible through two distinet points there
are at most a finite number of lines. Two distinct lines have at most
a finite number of points in common because the rank of the inter-
section is << 1.

n Zm

3. The case in which the Morley rank is infinite,. 'We now consider an
a-categorical theory 7' whose Morley rank is infinite. In [3] Morley
conjectured that no suceh 7' exists. Here we show that any model of such
a theory containg an infinite pseudoplane. As before let M be a count-
able model of 7. We shall again need to normalize ranked formulas this
time within the context of Morley rank. A formula 6(z; 2) is called normal
if the following three conditions are satisfied:

(i) 0(w; ) fixes the type of z.
(ii) There exists a such that if e M and 6(sx; ©) is non-null then
0(x; ) hay rank o and degree 1.
(iii) Tf ¢° and @ e M are such that 0(z; e°)A 0 (w; &) has rank « then
0(x; ) and, 0(»; &) are equivalent.
10
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LEMMA 2. Let T be o -categorical and 0(x; 2) be a formula of T' satisfying
(i) and (ii) above. There exists a normal formula 6%(w; Z) of T such that for
all ce M

Rank 6*(z; ¢) = Rank 0*(w; €) A 0 («; 8) = Rank6(z; ¢) .

The proof of this lemma iy deferred until § 4.

To find a pseudoplane in M let I be the least number such that there
exist 6 M and a formula 0(x; 2) of T satistying: (i) 0(z; ¢) has rank 1
and degree 1, and (i) if a ¢ M and |= 0[a; z] then there exist &, ¢, ... all
realizing the same type over {a} as ¢ such that for all zmd J < w,

0(; ¢*)A O(x; &) has rank 1 only if ¢ = j. To see that | exists, observe that
gince T has mfmlte rank for arbitrarily large k< o we can find ¢* ¢ M
and 6%(x; 7*) such that 6%(w; ¢¥) has rank & and degree 1. If (ii) fmls when.
we take 0 and & to be 6% and & respectively then there exists a* ¢ M such
that |= 6[a*; &] and a maximal sequence &*°,...,c"™ of sequences all
realizing the same type over {a*} such that 0"(93, oA 0%(x; ©%7) has
rank % only if ¢ = j. By normalizing 6% we can find a formula of rank &
with only one parameter. (This iy exactly the same argument as was
uged to prove P4 in § 2.) Since up to equivalence there can exist at most
a finite number of formulas v(x; y) and since any parameter realizes one
of a finite number of types, there cannot be a formula of rank % with
only one parameter for every k< . This shows that 1 exists.

Having shown the existence of I we can follow the same line as in § 2.
‘We choose 0(z; Z) corresponding to 7 which fixes the type of Z and we
denote this type by p,. Next we choose a formula o(z; 7 #) guch that
if & realizes p, then there exist 8% &', ... in' M such that for all ¢ and j < @
Rank o(x; b%) = 1—1, Dego(w; 51') = 1,

Ranko(w; b)Ao(w; b)) =I—1lei=]

and o(w; b*) implies 6(x; ¢). The whole argument has the same pattern
as before from this points onwards.

4, The normalization lemmas. Before discussing the proofy of Lemmas 1
and 2 we need a simple combinatorial result.

LEMMA 3. Tet {X (i): i < I} be an infinite collection of infinite sels such
that for some n < w, | X (i)— X (4;)| < n for all iy and i, in I. Let It bo the
greatest number such that for any finite subset B of I there exists § such that

IN{X@): e} —X({) =k..
Let
I={: FCI, Pl <w, and [ {X(

i): i e F}—X(j)| < & for alljel}.
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Then there is a finite subset 3, of 5 such that

ULN{X@): ey Fefy=\J (N {X(0): i ¢F}: Fedy}.

Proof. Let FeJ. By choice of k¥ we can choose gy G35 ... In T such
that for each j<

IMX )

0): e T {ig, iy, v, i,;i}}—-

X)) =k.

Since I'e J, for each j < w
[ {Z(

It follows that the sets (M) {X(i): i e Fy— X (45) for j= 0,1, ... all have
cardinality % and are pairwise disjoint. Let w e () {X (i): 4 sF’} for some

I’ eJ and suppose @ ¢ () {X(3): i eX}. For all sufficiently large j <
we have :

i): i e B — X (i) < ko

(MAX(

Otherwise X (¢)— X (4') would be infinite for some i and i’ in # and F”

respectively. Thus @ ¢ X (4;) for all sufficiently large j < w. Otherwise
there would exist j such that

IV {X(

contrary to #’ being in J. If there were an infinite number of possibilities
for @ then |X (i)~ ) {X (4): i e F}| would be unbounded as j varied. This
ig impossible and the desired conclusion follows easily.

Since Lemmas 1 and 2 can be proved by exactly the same method
it will be sufficient to treat only one of them.

Proot of Lemma 2. Let T be o- categorical and 6 (x; ) be a formula
of T fixing the type of z to be g say. Let o be an ordinal such that 8 (x; ©)
has rank o and degree 1 whenever ¢ e M realizes q. We first of all make
the assumption that 6(z; €°)A 6(w; &) has rank ¢ whenever ¢® and & both
realize ¢. Later we ghall show how this assumption may be removed.
Let B be the greatest rank < a such that 0(z; °)A 710(x; &) can have
rank g when € and &' both realize q. If § = —1 there is nothing to prove,
then suppose B = 0. Let 4 consist of all formulas of rank f and degree 1 of
the form 7 (x; b) where v(z; ) is a formula of 7 and b « M: Call two mem-
bers of A equivalent if their conjunction is also in A; for v € A let [7] denote
the corresponding equivalence class. For each formula ¢ having at most
free define '

X(o)={[7]: ved and oATed}.

For an application of Lemma 3 let I = {0(; ©)

1)1 4 e F}—X (i) C (| {X(3): i e F'}.

i) i e BY—X (i) > %

: e M and ©T realizes q}.
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Tet 7 be defined as in the statement of Lemma 3. From the conclugion of
Temma 3 there exists a formula 0'(w; #') of T and ¢ « M such that

X(0'(w; o)) = U | N {X(0): oeF}: Fed}.

Notice that the right hand side of this equation is invariant under an
automorphism of M. Further, since 3 can be replaced by a finite subset
0'(; €)A T10(w; ©) and 0(w; E)A T10'(w; ) both have rank =g for’every ¢
realizing ¢. Thus 6'(z; &) has rank o and degree 1. Let ¢" be the typo
realized by & If @ and o both realize ¢’ then X(0'(w; &) == X (0'(w; "))
which means that 0'(; &) A 710(z; ¢*) has rank < f. Repeating the process
by which 8’ and ¢ were generated from 0 and ¢, wo eventually get
6%(x; 7%) and ¢¥ such that if ¢ and @ both realize ¢¥ then 0*(w; 2°) and
§%(w; &) are equivalent. Further for each ¢ realizing ¢ 0¥ (a; TF) hag
rank o and degree 1 and 6%(z; %) A 0 (w; ©) has rank a if @ realizes ¢. Clearly
we can suppose that 6% has only # free which completes the proof. In the
general case where ¢® and ¢ exist realizing ¢ such that 0(; &°)A0(w; &)
has rank < g, let ¢(2°, 2') be a formula of 7' such that for ¢° and & realizing ¢
we have [=¢(e% @) if and only if 0(z; €A 0(w; ¢') has rank a. Let =(2)
generate ¢. Form 7' from T by adjoining a new predicate symbol U and
the axiom

V2 UEANZ Uz - a @)\ PN\ TR~ U7 < 9, 7)) .

T is w-categorical and we may apply the result already obtained to
0(x; )A U(Z) in place of 0(x: Z). As above we get 0%(z) which will now
contain some occurrences of U. By replacing each atomic part U(-)
of 6% by ¢(z: -)Am(Z) we obtain the desired formula 6%(w; 7).

It is worth pointing out that normalization works when T is not

w-categorical. Let T be stable but not necessarily w-categorical. Let
w(@; 7) and 0(w; ) be formulas of T, ke w, anud p, be & type such that,
if e M realizes p,, then 0(z; €) has y-rank % and p-degree 1, and is
equivalent to a Boolean combination of formulas y(w; 5) wheve b e M.
Call such 6 normal if 0(z; &°) and 6(w; 7" are equivalent whenever &° and.
¢ ¢ M both realize p, and 0(z; ¢®)A 0(x; &) has ¢-rank k. Using the sume
method as above one can deduce that given any such 0 there exists a normal
formula 0*(x; 2) with pu=p, such that for any ¢eM realizing p,
0*(x; 2)A 0(w; ©) has y-rank k. This theorem can be uged to obtain the
theorem of Shelah stated in § 1. (This is perhaps a little surprising be-
cause Shelah’s theorem speaks of Morley rank while our theorem is about
p-rank.) The method used by Shelah to prove his theorem although more
elegant than ours does not seem adequate for Lemma 2 because T is not
necessarily stable.
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5, Conclgsion. Call a structure M w-ealegorical if the theory of M
is o-categorical, and let other adjectives applicable to theories be trang-
ferred to structures similarly. Both 01 and 02 would follow if we could
prove:

C3. There ewists no w-caregorical pseudoplane.

Using the coordinatization theorem it is easy to show that no infinite
Desargueian projective plane is w-categorical. Beyond this we have no

* information. If 03 is true it will probably be very hard to prove because

of the richness of the class of pseudoplanes. Of course, Ot would follow
from the non-existence of stable w-categorical pseudoplanes. Also, it is
eagy to show that if no totally transcendental pseudoplane is w-categorical
then any w-categorical theory has rank < . Progress in this area seems
mosgt likely to come from constructing psendoplanes which are either
totally transcendental or at least stable.
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