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On hereditarily o-Lindel6f and «-separable spaces, II
by
A. Hajnal and I. Juhdsz (Budapest)

Abstract. The aim of this note is to show that the continuum hypothesis implies
the existence of the following two kinds of regular spaces:

I. hereditarily Lindelf not separable,

I1. hereditarily separable not Lindeldf.

It is also shown that the general construction supplying the second type of, ex-
amples always produces spaces which are hereditarily collectionwise normal. )

Tt should be noted that both constructions are closely related to forcing argu-
ments with the help of which the same authors already proved the consistency of
spaces of both types: I and II, with strong additional properties.

In our paper [2] we have shown that the two properties mentioned
in the title are independent of each other within the class of Hausdorff
spaces. We have also raised the problem there, whether the same is true
in the clags of the regular spaces as well. It ‘was more or less clear already
then that this problem is, if not undecidable itself, at least clogely con-
nected with such problems. . ’

In [3] and [4], respectively, using Cohen’s forcing method we have
indeed established the congistency of the existence of hereditarily a-Linde-
16£ regular spaces which are not a-separable and vice versa. In fact, these
examples provide solutions to much stronger problems, e.g. a hereditarily
a-geparable regular space of cardinality expexpa and a hereditarily
a-Lindelof regular space of weight expexpae are constructed.

The main aim of the present paper is to show that the independence
of the properties (within the class of regular spaces) can be established
without using the forcing method, by ordinary transfinite induction.
However we nood to assume here 2°= o, and the resulting examples
will not have those very strong additional properties enjoyed by the ones
constrocted with forcing. :

The constructions of these examples will be donein § 1 and § 2. Finally
in § 3 we shall show that the hereditarily «-separable regular spaces
constructed by our methods— both by forcing and transfinite induction —
can even be chogen normal, and in the case a = o are always hereditarily
normal too. The hereditary normality (and even paracompactness) of the


Artur


1438 A. Hajnal and I. Juhész

other type of spaces is obtained much more easily. We remark that,
using a Suslin tree, M. E. Rudin has also constructed a hereditarily separ-
able, non-Lindelof normal space (ef. [6]).

For all the relevant concepts and the notation which we do not define
here, we refer the reader to [2] and [5].

§ 1. Hereditarily o-Lindel6f spaces. Throughout this section lot « he
a fixed regular cardinal and we assume that 2°= ot and = a (ie.
of = a for all f< a).

‘We denote by L the set of all functions mapping « into ¢ in a one-
to-one manner (i.e. each x ¢ X is a sequence of type a of distinet ordinals
less than o%), by & the set of all funetions from a into 2 (Le. all a-type
sequences of 0 and 1), and by # the set of all pairs (¥, »), where B C a*\{»},
v< ot and |B| < o. Finally let us put s

§=JXXEXa.
Levma 1. There exists a function
F: atxat-2

satisfying the following two properties:

(1) For each s= (¢, ¢) «8 there ewists a v,< a* such that for all
¥ > there is a o< a with F(o(go+1),%) = ¢(go-+1) for every v < 0.

(2) For each e = C(H,v) e # there is a £< a* Sfor which F(&, u) =0
if pel and F(E,v)=1.

Proof. Both 8 and # are of cardinality ™, therefore they can be
written in the form

§={sz &<a*} and A={e: f<a’}.

The definition of F is divided into two steps, as follows. FRirst, by
transfinite induction on » < «t, we shall define F(&,v) for a different
values of & in such a way as to insure the validity of (1), Secondly, for
each £ < ot we shall extend the definition of (the so far partially defined)
function ¥ by assuring that (2) holds.

Step 1. Let »< o™ and assume that for each << there is a geb
a, C o with |a,| < « 50 that if & ¢ a, then 7 (&, u) has already heen defined.

Since » < o we can select an enumeration of the set {sg2 E< o}
of type a, i.e.

L= {8 §<o}={t;: n< o,

where we put

t'l= <wﬂ’ 8", Qy)> .

iom
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Now we define a sequence of ordinalg 0,< ¢ by induction on n< a as
follows. Suppose that for all { <7< a, ¢, has already been defined. Then
we choose ¢, < a 80 that

@) ~ @
Ae,:c,, Ca \c!"AQC"’C y

where
AP = {w(&): o < & <p(o+1)} .

This is possible because

| UA® | <a,
i<y

e
and the sets
A(Q:jz for o<a
are pairwise disjoint.
Having defined o, for all n<<a, we pub
a,= U {4gn:

[

n<a and  Pla(8),r) =@

for g,0, < £< g,(0,+1) and n < a. By the choice of the o, this definition
is justified. ,

It is quite easy to see now that no matter how we ex’gend F to a full
function on ot X o it will satisfy (1). Indeed, if s, is arblt_rajry then for
» > £ we have s;eX,, and therefore if s, =1, in &,, o, will be as re-
quired by (1). .

Step 2. Observe that in step 1. F(£, ») has been defined only for a
values of £ for each » < a™. Therefore we can find a u, < ot so that F(€, ?:)
is undefined for all & > p, and v ¢ By v {3}, where ¢,= <X, »> (and in

eneral ¢, = (B, vp)). - ‘ N

¢ The Eexl:ensfén of F' will now again be done by induction. Initially
we put
0, it
1, if

vel,,

P =9 .

F(l‘o:"’):|

Having defined p, for each n < { for a fixed ¢ < o™, we choose u, in guch
a way that F(£,) is still undefined for &=y, and v e B, {v} Slncg,
for fixed v, F(&,) has only been defined for at most a values of &, this

is possible. Then again we pub
0o, if
1, if

vell,

V=Y.

F(Nc:”)=‘
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Having completed this induction we see immediately that no matier
how we extend F to a full function on at X o™, in addition to (1), it will
also satisfy (2). Thus the proof of the Lemma is completed.

Now we come to the main result of this section.

TEEOREM 1. There exists a hereditarily a-Lindelof, regular space X of
cardinality o in which every subset of power <a is closed and discrete.

Proof. Let us put for each &< a*

A= {p<at: F(&»)=1}.

We shall simply write —A4, for at\4, = {»: F(&,»)= 0}.

Then we take ot as the underlying set of our space X and choose
the family of all sets 4, and —4, as an a-subbase for the topology of X.
In other words all intersections of sets 4, and —.4,, less than a in number,
will provide a basis for the topology of X. Obviously, this topology is an
a-topology, i.e. the intersection of less than a open sets in X is always open.

Denoting by H,(a™) the set of all partial functions of cardinality < a
from «* into two, the above defined basic open sets can be labeled by
the ¢ e H,(a™) in the following manner:

B,= {4 e(&) =1}~ {— 4y ¢(&) = 0}.
Obviously, » € B, if and only if
F(n,v)=1¢e(n) for all neD(e).

Now it is immediate from the definition that the sets B, are both
open closed, hence X is 0-dimensional. Moreover, it follows from (2) that
any B CX, |H| < ais closed and discrete, applying (2) to the pair <H, u)
it p¢H and to (EN{u}, uy if ueXB. In particular X is Ty, hence a Ty-
chonov space.

Now we prove that X is hereditarily «- Lindelsf. For this it will sutfice
to. show that every right-separated subspace of X is of cardinality < «*
(cf. [2] or [5]). '

Suppose, on the contrary, that {»: &< a*} is a right-separated sub-
space of X so that for each &< o there is an s, € H, (a™) with

vq¢Ba$ for g>¢£.
Let us denote by D, the domain of g,. Then acecording to the regularity
of ¥, o= @, and a well-known result of Brdés and Rado (ef. [1] or [B])
we can assume that every D, is of the form ‘

D;=DoB, (DnE=0)),
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where the sets I, are pairwise disjoint and all have the same order type
o < a. Moreover, we can ag well assume that the restrictions of all &, to D
are the same.

Now let us define &8 and # ¢ L by the following stipulations:

&(go+1) = &,(1)

(a)

for  o<aand v<
w(eo+7) = 1f | ©

where 7% is the vth element of ), in its natural order. That # is one-to-
one follows immediately from the fact that the F, are pairwise disjoint.

Now the triple <z, ¢, o) belongs to §, hence by (1) there is a v << a™
guch that if u >» then for some o < o we have

B, p) = Flw(eo+7), u) = e(eo+7) = £,(n)

for all << g.

Now let us choose a &< ot with £ > « and v, >» and pick a ¢ < a
satisfying the above equalities with u=v,. Since D,= D v K, D;
= D v H;, and ¢ and ¢, agree on D, we get from here that for all 4 e D,

F(n,vg) = &,(n)

which is equivalent to v, ¢ B, . However, this shows that the sequence
{r; €< ot} cannot be right-separated, and thus completes the proof
that X ig hereditarily «-Lindelof.

Let us remark that, as can be easily seen, every a-Lindeldf regular
a-topological space is paracompact (this is well-known for a = w), hence

our space X enjoys very strong separation properties.
Finally, since every a-element subspace of X is closed, it is obviously

not a-separable.

§ 2. Hereditarily o-separable spaces. Let now a be an arbitrary cardinal
number with 2¢ = ¢*. We shall again start with a general set-theoretic
lemma, from which the construction of our spaces will be easy.

LuvwA 2. There ewists o mapping
I gt X at—2
such that if A C a*, |A| = a then there is av< a* so that for every = H{a™)
we have a o € A for which
(3) Py, 0) = &(y) for all neD(e).

(Here, as usual, of. [4], H (8) denotes the set of all finite partial functions
from S into 2.)
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Proof. We ghall construet the function ' by transfinite induetion
as follows. Let us first take an enumeration {d,: u < a®} of all a-element
subsets of ¥, which is 1)0%811)16 by 2¢=a’.

Now assume that v < oF and F hag already l)een defined for each
pair belonging to ot xw. Then for any se H(») we can define the set

IO = {u<v: By, u) = e(n) for all neD(s)}.

Next we define the collection Z, as the set of all ¥ C o™, | Y| == a, Lor which
there are a2 u<<» and an ¢ e H(») so that 4,C» and

Y= A4, TP

In particular taking for ¢ the empty function we see that every 4, with
< v and 4, C» belongs to Z,. Moreover it is obvious from the definition
that |Z,| < a.

Thus Z, is a collection of at most a a-element subsets of », hence
a8 ig well-known we can decompose ¥ into a disjoint union »= HY v HY
so that for every Y ¢ Z, we have both

[ YnHY | =a and |YoHY =a.
Then we extend the definition of I to pairs of the form <»n, »> as follows:
0, if wyeHY,
F(gy»)= {1, if neH,
arbitrary otherwise .
We claim that the full function F: o™ x at =2 obtained in this

manner does indeed have the required properties. To see this let A = 4,
be an arbitrary a-element subset of «*, and let » < at be 8o that u<»
and 4, Cy.

Now let ¢ ¢« H(a™»), where we put D(e) = {5, ..., ne} in increasing
order, and for the sake of simplicity we denote by &, ..., & the corre-

sponding values of s. By the choice of » wo have A,eZ,C%

linyy eDCO

A, ~ H| = a.

But 4,~H™CA, F‘g)l wmy, hence this latter set belongs to Z,,.
Oontinuing this reasonmg in % steps and choosing any ¢ >z, we see that

A, NF e 7,

holds as well, but then |4, ~FP| = o, and for any ged, ~ 7 (‘3) is
satisfied. This completes the proof of our lemma.

©
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DerrNIrioN. Let
R=X{R(®): £<a)

Dbe the product of a* spaces. (The elements of E are regarded as functions f
defined on ot with f(&) e R(£).) A subspace § C R is called a-hereditarily
finally dense (or shortly o-HFD) if for any 4CS8, |A|= a there is
a v< oF such that if U is any elementary open set whose &th projection
is always R(&) if &< v, then Un 4 # 0.

Obviously 8 is a-TED in R if and only if for any A C § with |[4| =«
there is a v <2 ¢ such that the “tails” of the members of A “cut off”
at » are denge in the partial product

X{R(E): v< E< at}.
This explaing the term. a-HFD. )
TurorEM 2. Leb
R= X{R(): £< a'},

whara w(R( )) << a for each £<< a. If 8CR is a-HED, then the subspace
8 is hereditarily o-separable.

Proof. Suppose, on the contrary, that S8 is mnot hereditarily
a-separable. Then, as is well-known (cf. [2] or [5]) S contains a left-sepa-
rated subspace {fs &< ot} of type o. That is for each &< ot we can
choose an elementary open neighbourhood U, of f, which contains
no f, with 9 <& .

Pixing an open basis B, with |B| < e in each R(£) we might assume
that every elémentary open set U, is determined by a finite subset D, C a*
and a function V, defined on D, so that for o e D,

Ve(o) e Be,
where
[Tew{fEI\) o eDy—~flo o) e Velo (o)} -

Now we can obviously assume, similarly as in the proof of Theorem 1,
that the sets D, can be written as

_De::::])UEE (DmE5=®)7

where the e are pairwise disjoint, moreover that the restrictions of all

the V, to D are the sa,me
Now let us put A= {f; n<a} Then |4] = a, hence because
8 is q-TIED we can choose av< ot for A as indicated in the definition

of a-HFD.,
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Since the F, ave disjoint, there is a & with ¢ < &< a¥ such that
E,C a*\y. But then we have an f, ¢ 4, for which

f,(0)eVe(o) forall ceDy=Dv B,
i.e.

fyeU, where

a contradiction. This completes the proof.
TumorEM 3. Let F be as in Lemma 2, and for each o < o™ put

fol&) = F(&,0),

ﬂ<a<£,

and let
S={f: o<a’}:

Then 8 as a subspace of D(2)*" is a-HFD.
The immediate proof is left to the reader.
It is interesting to notice the following property of «-HFD sets,
Levma 3. Let R= X {R(&): £< a¥} as above and 8§ C R be a-HFD,
For every fe S let us choose another point f' € B so that

[{o: fo) # f(o)}| < a.
Then if 8'= {f': fe 8}, so §’ is also a-HFD.

Proof. Indeed if A'C S, |A'| = a, where AC S and 4' = {f': fe A}
then we can choose a »' < ot bigger than the » corresponding to 4 by
the a-HFD property of 8, and all the coordinates ¢ for which f(o) # f'(o)
for some f e A. Obviously this »" will be suitable for 4’.

CororLARY. There is a subspace T C D(2)*" which is hereditarily
a-separable but for which yp(p, T) = a* for each p ¢ T. (Here w(p, T) is
the pseudo-character of p in T, ¢f. [5].)

Proof. Let 8§ be the a-HFD subspace of D(2)*" indicated in

Theorem 3. Moreover let {g,: ¢ < a*} be an enumeration of all functions
g ¢ D(2)*" such that

I{&: g(§) # 0} < a.
Now for each o< ™ let us putb

_[w,
Le,

E<o,

tzo,

Po(8)
~and
I'={p;: o< at}.

Since each p, differs from f, in at most a coordinates, by Lemma 3 7 is
«-HFD, hence hereditarily «-separable.
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Let p, ¢ I' be arbitrary and consider any o elementary neighbour-

* hoods of p,. Then these specify at most « coordinates of P4, hence there

is a g, which coincides with p, at these coordinates but differs from p, ab
some others, which are less than ¢. However then the same is true for Pos
hence p, belongs to the intersection of the selected o neighbourhbods
although p, # Py, which shows indeed that

¥(Pg, T) = at.

Since in & hereditarily a-Lindelof space X we must have p(p, X) < a
for all p e X (ck. [6]), the above space T’ iy what we rvequire: hereditarily
a-separable, completely regular, but nop-hereditarily «-Tindelsf. Moreover
it also presents a very strong counterexample to Problem 2.17 in [5).

Remark. It is fairly easy to see that if @, in addition to 2*= at,
hag the property o= a (ie. o’ = a for every f< a), then the same
theorems will be valid for a-product spaces instead of ordinary topo-
logical (i.e. w-) products. B.g. in Lemma 2 an obvious change would be
to put & ¢ H (a™\») (i.e. ¢ i8 a partial function from «*\» into 2 with |¢] < a)
ingtead of a finite ¢ e H(at\»).

§ 3. Normality of w-FFD subspaces. Throughout this section let
B= X{B(£): é< u}

be the topological product of regular spaces B(£) of weight < w; for each
E< w, we fix an open basis B, for E(&) with |B, < o.
For any » < o, we shall denote by B, and E’, respectively the partial
products
B,= X{B(): §<}
and -
B = X {B(£): v < E< o}

The natural projections of B onto B, and B’ will be denoted by =, and =”,
respectively, For any f ¢ B or 4 C R we shall simply write f, and f* instead
of o (f) and #'(f), ov 4, and A’ instead of w,(A) and ="(4).

Our main aim is to prove the following result.

Trwonrnm 4, Let B be as above and S C R be o-HFD. Then S is he-
reditarily (collectionwise) normal.

The proof of the theorem is based on the foillowing two lemmas.

Tumma 4. For every AC 8 with |[Al'= o and every o< a, there s
a v< wy such that o<<v and

(%) if U 1s an elementary open set in B with U” = R’ and |U n A| = o,
then (U ~ A)* is dense in K. oo
1l — Fundamenta Mathematicae, T. LXXXI
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Proof. Obviously it will suffice to obtain a v in such a way that (x)
be valid for those U whose projection to R(£) is always a member of B,,
if not equal to R(£) itself. Let U denote the family of all such U and for

any fixed 7<< w; leb
U = {U eWU: U'=FR"}.

Obviously if 7< w; then
U < .

Thus in particular there are only countably many U ¢ W? such that
AnTUl=ow.

Therefore, since § i8 o-HEFD, we can find & g with o << gy < w, such that
(A ~ U is dense in R® for every such U. (Here we nge the obvious fact
that if X* is dense in R* then X’ is dense in R’ for all » > u.)
Reagoning in the same manner but exchanging o by g, we can obtain
2 g, with g, << 01 << o, s0 that if ~

UeW® and |Umndl=ow

then (U ~ A)® is dense in R®. Continuing this by induction we can define
a strictly inereasing sequence of ordinals gp << gy << ... << n << v forn<< o
so that for each n< o if

UeU®™ and [(Undl=o,
then (U ~ A)e+ is denge in R Now let » be the limit of this sequence.
Obviously o< » and we claim that (x) is also satisfied.

Indeed, if UeW? and [Un A|= w, then there is a # << » such
that U e U ag well, hence (4 ~ U)™* i dense in R*+ and a fortiori
it is dense in R’

For any ACS, |4] =« let J(4) denote the set of all » < e, for
which (%) is satisfied. We have just shown that J(4) is cofinal in oy,
while a moment’s reflection will convince us that J(4) is a closed set
of ordinals, i.e. it is both closed and cofinal.

Lemya 5, Assume that ACS, || = o and v eJ(4). Then (4), is
o dosed set in 8,, where A denotes the closure of 4 in 8.

Proof. It suffices to prove that if fe § and f, i3 an accumulation
point of (), then fe A. To see this let W be an arbitrary elementary
neighbourhood of f in B, whose projections to the factors R (&), when nob
equal to R(£), belong to B,.

Then W can be written in the form W= U ~V, where U ¢ U and
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V,= R,. Since f, is an accumulation point of (4), and thus of A, as well,
we have |4, ~ U,| = o, hence |4 ~ U| = w, t00. But then, since » ¢ J (4)
and U e U, the set (A ~ U) is dense in R’, hence there is a gednU
such that g” « V”. However then V, = R, implies g ¢ ¥ as well, and thus
geAdnUnV=A4~W, which indeed shows fe 4.

Now we turn to the proof of Theorem 4. Since by Theorem 2 § is
hereditarily S(_sl)amhle, every infinite closed subset of § can be represented
in the form A4, where ACS, |4]| = o.

Now let 4 and B be any two disjoint closed infinite sets in §. Tt is
well known that the intersection of countably many closed cofinal sub-
sets of w; is closed cofinal (ef. [B]). Therefore so is

J=J(A)nJ(B)nJ(4 v B).

Obviously, there exists an ordinal o4, << w, 80 that A,~n B, =@
for all o> 0,5, becanuse A N B=@. Let veJ be such that »> o, 5.
Since J is cofinal, such a » can indeed be chogen.

We claim that we have then

(4),~ (B), =6 .

Suppose, on the contrary that there are fe A and g ¢ B such that'f, = g,.
Sinee » = ¢4 p, We have 4, B,=@, hence we can assume e.g. that
g,=1f, ¢4, But then g, = f, is an accumulation point of 4, in §,, hence
a8 was shown in the proof of Lemma 5, we must have f, g e 4, which
contradicts 4 ~ B = @. This, together with Lemma 5 shows that (4),
and (B), are digjoint closed sets in §,. But 8, is of course metrizable,
being regular and of countable weight, and then in §, we can find open
sets G and H so that (4),C @ and (B),C H, moreover ¢ n H = @. But
then the sets 8§ ~ a7 (@) and § ~ a7 *(H) are digjoint open sets in 8 con-
taining the corresponding sets 4 and B, which completes the proof that
S is normal.

Towever it is well known that every normal space is countably col-
lectionwise normal, which in the case of § coincides with full eollection-
wise normality, as being hereditarily separable implies that every discrete
collection. of sety is countable.

Remarks. Tt in easily seen that Theorem 4 could be immediately
generalized to a-FIFD subspaces of «-product spaces, provided that o is
a regular cardinal. If we compare this with the remark at the end of § 2,
we see that if %= a, then all our hereditarily «-separable counterexamples,
including even the ones obtained by forcing in [4], can be chosen to be
(collectionwise) normal.
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A note on topological model theory
by '

Abrabam Robinson (New Haven, Conn.)

Abstract, A lopological structure iy endowed with a topology, with first order
functions which arc continuous in that topology, and with first order relations
which are open or closed in it (like order and equality, respectively). In the
present paper we investigate questions of continuity concerning the predicates
tnd Skolem functions which are definable in a topological structure. An application
ao positive definite polynomials is included.

1. In the present paper, we offer several observations on the emerging
subject of topological model theory (see problem No. 4 in [4]). This theory
is, or will be, concerned with the general model theoretic aspects of alge-
braie structures endowed with & topology to which the algebraic entities
of the structure relate in a natural way. Topological groups or fields are
typical of the kind of structure that we have in mind.

We bogin with a rather natural definition although we shall see in
due courge that it iy not sufficiently wide to cover several cases that
should be taken into account.

A topological structure M is (i) a structure in the standard sense of
model theory, with respect to a first order language L in which equality
(if it occurs) is on & par with other relations, and (i) a topological space
such that the following conditions arve satisfied.

L1, Al basic functions in M (i.e., functions which have & name in L),
%1, are continuous in the given topology. .

1.2, If R is an n-place relation in M (which has a name in L), n > 1,
then it is either open or closed for the product topology in M™.

For o topologieal group, 1.1 is satisfied by the operations of multi-
plication and inversion (veciprocation). For a topological field, it is satis-
tied Dy addition, subtraction and multiplication, bubt not by inversion
(which iy discontinuous at zero, however we may define it there). Thus,
in our present framework, the language .L for a topological field may
include symbols for addition, subtraction and multiplication but not for
inversion’ or division.

As for Oondition 1.2, consider first equality, »; = »,, and suppose
that it coincides with the identity in M (i.e., with the diagonal in M?).
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