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A note on topological model theory
by '

Abrabam Robinson (New Haven, Conn.)

Abstract, A lopological structure iy endowed with a topology, with first order
functions which arc continuous in that topology, and with first order relations
which are open or closed in it (like order and equality, respectively). In the
present paper we investigate questions of continuity concerning the predicates
tnd Skolem functions which are definable in a topological structure. An application
ao positive definite polynomials is included.

1. In the present paper, we offer several observations on the emerging
subject of topological model theory (see problem No. 4 in [4]). This theory
is, or will be, concerned with the general model theoretic aspects of alge-
braie structures endowed with & topology to which the algebraic entities
of the structure relate in a natural way. Topological groups or fields are
typical of the kind of structure that we have in mind.

We bogin with a rather natural definition although we shall see in
due courge that it iy not sufficiently wide to cover several cases that
should be taken into account.

A topological structure M is (i) a structure in the standard sense of
model theory, with respect to a first order language L in which equality
(if it occurs) is on & par with other relations, and (i) a topological space
such that the following conditions arve satisfied.

L1, Al basic functions in M (i.e., functions which have & name in L),
%1, are continuous in the given topology. .

1.2, If R is an n-place relation in M (which has a name in L), n > 1,
then it is either open or closed for the product topology in M™.

For o topologieal group, 1.1 is satisfied by the operations of multi-
plication and inversion (veciprocation). For a topological field, it is satis-
tied Dy addition, subtraction and multiplication, bubt not by inversion
(which iy discontinuous at zero, however we may define it there). Thus,
in our present framework, the language .L for a topological field may
include symbols for addition, subtraction and multiplication but not for
inversion’ or division.

As for Oondition 1.2, consider first equality, »; = »,, and suppose
that it coincides with the identity in M (i.e., with the diagonal in M?).
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Tt is then easy to see that @, = ®, is closed if and only if M is a Hausdortt
space in the given topology. In an ordered field, the order relation is open.

Let Q(&y, ..., @) be any predicate (well formed formula) in the lan-
guage L, with free variables @y, ..., #,. We shall say that @ is open. (elosed)
in M according as the sét determined by @ in M™ is open (closed). We
shall say that the term #(xy, ..., @,) is continuous in M if the corresponding
function M®™ M is continuous. Thug, for a topological structure M ag
defined above all terms formulated in the vocabulary of M are continu-
ous in M. As an immediate consequence, we have the following lemama,
which will be used in the sequel.

1.3. Let Q(yy, ..., Ym) be open im the topological structure M and let
1@y woey @)y § = 1, ..., m be terms in the vocabulary of M. Then the predicate

B(@yy ey a) = Q(tl(wl, e @)y ooy Iy ooy wﬁ:))

is open in M. Similarly, if Q (Y, ..., Ym) is closed in M so is B(@y, ..., m),

We shall also make uge of the following remark. Let 4., .., 4,,
n =1, be open sets in a topological space T' and, for any subset g of the
set of natural numbers a = {1, ..., n}, let B, be the intersection of the
sets 4; for § e f and of their complements A; = T'—4; for j ¢ a—p. We
then have

1.4. Let 8 be a nonemply open subset of T. Then there ewists a fCa
such that 8 ~ By is nonempty and open.

Proof. We have to show, on the stated assumptions that there is
a # such that § ~ B, is nonempty and open, J. Suppose first that n = 1
and consider 4, ~ §. If this set is not empty, take J = 4; » § and = {1}.
If 4,~8=@, 4,~ 8 equals § so we may take J = §. Suppose the
assertion has heen proved up to some n =1, and let 4,, 4y, ..., 4,4y
and § be given go as to satisfy the hypothesis of 1.4. Then § has an open
nonempty intersection D with some B, where gCa= {1,..,n}. If
D4, is pot empty, we choose it for J. If D~ A, =@, then D
C4,., so that D=J is the intersection of § with By~ 4,,,. This
completes the argument. An immediate consequence is:

1.5. Let A be a boolean combination of open sets Ay, .., Ay in a topo-
logical space T', and let 8 be o nonemply open set in T. Then either 8 ~ A
or 8~ A contains interior points.

For we may write both 4 and 4 as unions of the gets By congidered
in 1.4.

2. Although the basic relations of a topological structure M are
supposed to be either open or closed, a general predicate in the vocabulary
of M may debtermine a set that is meither. Let @Q(w,, 1y @) Do guch
a predicate. We shall say that a point P = (a,, ..., a) € M™ is stable for Q
if there exists an open neighborhood U of P in M™ (in the product topo-
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logy) such that for all P'=(&,..., &)« U, either M =Q(&, ..., &)
gimultaneously or M |=—-@Q(&, ..., &) simultaneously. A point P e M®
will be called stable if it is stable for all predicates Q (@1, ..., 2y) in the
given language. A point is unstable (or is unstable for a predicate Q) if it
is not stable (not stable for Q). It is obvious that the set of points which
are stable for a predicate @ is open. We have

2.1, The set of points which are unstable for a quantifier free predicate
Q(®yy ey Ba) 18 nowhere dense in M,

We recall that a set A is nowhere denge in a topological space T'
if the closure of A4 has mno interior points.

For any (atomic) relation symbol R, which is contained in @, put
Q,= R, if B, is open in M and Q,= —R, it B, is closed in M. Then
Q@ ..., @) 8 logically equivalent to a boolean polynomial ' of ingtances
of the @,, and these are all open in M by 1.3. We may identify the set
determined by such an ingtance of a @, in M"™ = T with an open set Aj
ag in 1.5. The assertion of 2.1 now follows immediately from the con-
clugion of 1.5.

Weo say that a structure M has elimination of quantifiers (in
a language L which may contain individual constaunts for some of the
elements of M) if for every predicate @ (w;, ..., #,) in T there is a quantitier-
free predicate @'(@y, ..., @) in L such that

I |= (Vay) coo (V2m)[Q(@1, ooy ¥n) = Q@ ey )] -

Bvidently, from 2.1, '

2.2. Suppose that M is a topological siructure which has elimination
of quantifiers. Then the set of points in M™, which are unstable for a given
predicate Q(my, ..., %), 98 nowhere dense in M™.

Using the Baire category argument (compare [2], p. 200) we now
obtain immediately

2.83. Suppose that the topological structure M has elimination of quanti-
fiers in a countable language L such that the topology of M is (i) regular
and locally compact or (ii) that of a complete metric space. Then, for any
w1, the set of stable points of M™ is dense in M™

3. While the argument leading up to 2.3 is exceedingly simple, the
regult can be illugtrated by some interesting concrete examples. First,
let M == ¢ bo the field of complex numbers with the usual metric and
topology. Tiet I be formulated in terms of the relation of equality and
in terms of the function symbols of addition and multiplication and the
individual congtants 0 and 1. Then L is countable and € has elimination
of quantifiers and go 2.3 applies. We have '

3.1, A point P = (@, ..., an) « O™ is stable if and only if the coordinates
of P are algebraically independent over the rational numbers.
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Proof. The condition is necessary. For suppose it is not satisfied.
Then there exists a nonzero polynomial (%, ..., ap) With rational coef-
ficients such that p(ay, ..., @) = 0. But the condition p(®y, ..., ®n) =0
can be expressed by a predicate @, (@, -, ay) in L. Since O {= @, (a1, .-y tn)
there exists an open neighborhood of P, U, guch that O |=@,(&1, ..., &)
for all points P’ = (&, ..., &) ¢ U, Le, P(Eyy ey En) = 0 for such points.
But this would imply that the set of zeros of p(@, ..., ay) includes an
open set in C™ which is impossible.

The condition is also sufficient. Suppose that the coordinates ay, ..., as
of the point P are algebraically independent over the rational numbers.
Let Q(xy, ..., @) be a predicate in the language of L and suppose that
Q(ay, ..., an) holds in C. Since ¢ has elimination of quantifiers, the set
of points of C", which satisty @, to be denoted by 4g is a finite union of
finite intersections of sets B, given either (i) by an equabion P (@, .., &)
=0, or (i) by an inequation p(#, ..., %) # 0 where p has rational coef-
ficients in both cases. Thus, P belongs to one of these intersections B; ~
A B, A ... ~ By, say. Bub if B, is given by an equation P(Byy vy Bu) == 0,
then the polynomial on the left-hand side must vanish identically since
the numbers a,..,a, are algebraically independent. It follows that
By~ B, A ... ~ By is an intersection of open sets, and so P is stable for Q.

Suppose next that M = R is the ordered field of real numbers with
the usual topology where the language L has been augmented by the
inclusion of the order relation (<<). Then we still have

3.2. A point P = (ay, ..., an) € B" is stable if and only if the coordinaics
of P are algebraically independent over the rational numbers.

The proof of necessity is similar to that given for 3.1. For gufficiency
we recall that B also has elimination of quantifiers. Thus, the above
proof is still applicable except that the inequations p(wy, ..., o) # 0
have to be replaced by inequalities p(wy, ..., @x) > 0.

4. The following relativization of the results of section 2 is of interest.
Let V be a nonempty subset of a topological space T. By the topology
of ¥ we mean the topology induced by 7' in V. Then the lemmas 1.4 and 1.5
can be relativized from T' to V, thus

4.1. Buppose the sets Ay, By are as defined in section 1 and let 8 be
a nonempty open subset of V. Then there exists a fC a such that § ~ By is
nonempty end open in the topology of V.

4.2. Let A be a boolean combination of open sets A, ..., An in T and
let 8 be o nonempty open subset of V. Then either § ~ A or § ~ A contains
points which are interior in 8 relative to V.

Now let M be a topological structure in a language L. Let V be a non-
- empty subset_ of the space M™, n > 1, with the topology induced in it
by M". A point P eV is stable for a predicate Q(w, ..., &y) in V if there

@ ©
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exists an open neighborhood U of P in V' sich that either M |= Q (&, ..., &)
for all P’ == (&, «., én) € U 0r M |z~ Q (&, ..., &) for all such P’. A point
ig stable on V if it is stable in V for all predicates @ (y, ..., #,) in Z. Then

4.3, The set of points which are unstable in V for a given quantifier
free predicate Q(@y, ..., wn) 18 nowhere dense in V. If M has elimination
of quantifiers then this applies to all predicates.

4.4, With one of the assumptions of 2.8 on M and L, let V be a closed
nonemply subset of M™, n = 1. Then the set of points of V which are stable
in V is dense in V.

For example, lot V be an algebraic variety in O™ which is defined
and irreducible over the field of rational numbers. Then the points which
are gtable in 7 are just the points which are generic over the rationals.
Algo, the generic points of a real algebraic variety ¥V C E™ which is defined
and irreducible over the rationals is stable in V. However, the converse
ig no longer true in full generality. Thus, let V' be the real elliptic curve
which is given by

y*= (o—1) (@-+1)".
Here the point P == (—1, 0) is isolated and so the set {P} is open in V.
Tt follows that I is gtable in V. However, P is not a generic point of this
curve.

5, Tel X bo & sentence which holds in a topological structure M
(for o given language I). Suppose that X is given in prenex normal form.
Then every existential quantifier in X gives rise to a Skolem function
(symbol) whose arguments are the universally quantified variables to
the left of it. Tt is natural to agk whether these Skolem functions can be
realized by continuous functions.

Suppose to begin with that X is an VH-sentence,

(B.1) X e= (Vay) v (Vo) (HY) oo (Eym)Q (@1y ovy By Y15 ooos Ym) 5
nzl mz=1
where ¢ i free of quantifiers. Suppose, moreover, that M is a model of
a gob of universal axioms in L, K, say, and that X is not only true in M
but actually deducible from J. The Skolem open form of 5.1 is
|
A e Q(mzn vory By Pol@yy ery Bn)y ooy By g vy @) -

We have

5.2. Tet 8 be a nonemply open subset of M™. Then there ewists a non-
empty open subset W of 8 such that the Sholem functions @gy ..., Pm COT be
realized by functions

Foyy ey ) MMM, §= 1, ey M

that are continuwous on W.
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Proof. According to a result which is due to P. Bernays (compare

ref. 3, p. 230), the deducibility of X from K implies that there exist terms

T (g eny D)y By ey Bu)y oly LBy ey Ba) 5 J =1y Ll=1

such that the sentence
. i

(V) ... (Vaow) \/Q(ﬁﬂu weey @y B @1y oey Tn)y ey B @y oo,y ’”n))
i=1

is deducible from K. Now @By, ., @ny tual@ry ey @n)y vors bim( @1y vor , @)
is a predicate which is free of quantifiers. Hence, by 2.1, there exists
a nonempty open subset W' of § such that either

Q(Ecy s Ens Bulbrs ooy Gn)s ooy tamlbry ooey En)) = Qu

holds for all (&, ..., &) e W’ or else — @ holds for all points in W’. In
the former case we put W= W', in the latter case we notice that

1
(V) ... (V) \/2 QB covy By Ua (s vevy Bu)y ooy L@y, ooy B))
P

holds for all (&, ..., &) e W. We mnow repeat the procedure for
Q@1 «vy Buy togy vrry bm), and so on. In any case, we arrive at a nonempty
open subset W of § such that for some j,

Q(fla sy ‘Sﬂy tfl(£17 ery fn); vy tim(gu ey 5“))

holds in M for all (&,...,&)e W. But the terms (..., Za), ...
wes bm(®yy ...y @n) arTe Obtained by the composition of the atomic function
symbols of L and since these represent continuous functions in M, the
same is true of the ;. Accordingly, the functions g, which represent
the i, satisfy the conditions of 5.2.

6. To illustrate section 5, we are going to produce an effective result
in the theory of positive definite polynomials. Let D (#1) ooy @n, Yy ooy Yin)s
n =1, m=1, be a polynomial with integer coefficients, where wo regard
the ¥y, .., Ym a8 parameters. Suppose that p is a nonzero positive dofinite
polynomial of @y, ..., o, p =0, for all values of gy, ..., ym in @& ball §:
=0+ oo A [Ym— b2 < 92 by, .o, by and r veal, r >0. Then we are
going to show

6.1. There exist a ball 8’ C 8 and an identity

i
D@y ey Bny Y5 ooy Ym) = Zf’k(@/la ) ym)(flc(wu ey Ony Yy ooy Ym))?

. =l

wherg the pi are polynomials and the fi rational functions, all with rational
cogfficients, such that Px(Yy, -.., Ym) > 0, for all (y, ey Ym) 8y == 1, .y ]

©
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To prove 6.1, 1ot K be a set of universal axioms for an ordered integral
domain formulated in terms of =, <, 4~, —, + and the constants 0 and 1.
Then the model completion of K, K*, is the theory of real closed ordered
fields. We then have the following ‘variant of Artin’s solution of Hilbert’s
geventesnth problem.

6.2. Let M, be a model of I and let M be an ewtension of M, which is
o model of JC*. Suppose that the polynomial q(w,, ..., zs) with coefficients
in M, is positive defivite, d.c., that it satisfies

Q& vy )20 for all &, ..., & e M.

Then there ewist positive elements ¢y, ..., om of My and rational functions
Gu(@yy cory @)y cony Gmliyy vony W) with coefficients in My such that
L
(6.3) Gy ey Tn) = )_7 0a(ga(@yy <ory @)™
’ fenl

Tor the proof, consult [3], pp. 214-224. The present 6.2 differs from
8.5.20 in that reference only inagmuch as M, there is supposed to be an
ordeted field and M its real closure, Both differences are inessential since
K is the model completion of I as well ag of the theory of ordered fields.
Also, we still have the corvollary (compare 8.5.22 in [3])

6.4. For a given n and for a given bound on the degree of g(®yy ey Bn) -
in 6.2, there are bounds on the number | and on the degrees of the numerators
and denominators of the functions gy(#y, .., @a). These bounds are independ@t
not only of the coefficients of q(@y, ..., @a) but even of the partioular choice
of My and M.

The method of elimination of quantifiers for real closed fields shows
that the condition of positive definiteness for g(w, ..., @) is equivalent
to the satistaction of a quantifier free predicate P of the coetficients of ¢
in M. Suppose in particular that the coetficients of ¢ arve themselves
polynomials of the variables g, .., Ym- Then we may formulate P as
a prodicato of ¥y, wy Yy P == Py oy Ym)- On the o‘ther ha]nd., the ex-
istence of an idendity 6.3 subjeet to bounds such as exist according to 6.4
can bo formulated as an exivtential statement, in the language of K,
in which the oxistentinl quantitiers vefer to the coefficients c; and to the
coefficionts of the gy in some arbitrary but definite order. Thus, 6.2 can
be exprossed ag w senbence

(V) oo (V) [P (U1 wors Um) D (E2y) oo (H2,)Q Yy =y Ymy 215 s 2]
(whero snme of tho 2 have replaced the ¢ or, in prenex normal form

(6.5) (Vi) wor (V) (Bty) e (T [P (G5 v ) D Qa5 oo Yy 21y we0s B
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where @, like P, ig free of quantifiers. Then 6.5 is deducible from K. An
application of Bernays’ theorem, as in the proof of 5.2, now shows that
there exist terms p; in the language of X, in other words polynomials,
with the free variables ¥y, ..., ¥m, such that the sentence

(6.6)  (V9) o (Vo) yzllmyl, B

DOy s Ymy Pa(¥iy ooy Ym) s wovs PiulWay oovy )|

is deducible from K.

Suppose in particular that the assumptions of 6.1 are satisfied. Since
the field of real numbers, R, is a model of both K and K*, we then have,
for any (7;, ..., 7m) Which belongs to the ball 8, that P(z,, ..., ) holds
in B and so therefore does the sentence

71:\—/1Q(m, vy Ty Ppa(fyy oovsy Nm) ---:plm(ﬂn ] "Ym)) .

The successive reduction of this disjunction as in the proof of 5.2 now
shows that there exists an open subset of 8, and hence a ball 8’ in § such
that, for a partienlar &, B = Q (s, ., tmy Dia(uy vy M), wees Dig (e, v 7))
for all (9, ..., 7m) € 8. From this we obtain 6.1 by renaming the
polynomials p, which correspond to the p; and by absorbing the re-
mainder in the fz, while taking into account that a pointwise identity
which holds between polynomials of Y15 -y Ym iDL a0 Open et of (4, vony Ym) -
Space must be a formal identity.

We have employed the method rather than the statement of 5.2 in
order to obtain a more precise result.

An example to which the theorem applies is provided by the
polynomial

P(@yy B, 1) = aﬂf'f‘?hwlﬂb'g-l—wg .

This is a positive definite function of @, and @, for 8: |yy| < 1. A possible

choice for 8 is 8: Jy,—0.5| < 0.5, and a corresponding representation
of p is

D@y Ty ) = (l_yl)wi"f‘ Yo (0 - w2)2‘|‘“ (Loyy)
But we may also write
D(®y, Ty yy) = (1"{“?/1)“%4“‘(‘“ﬂl)(m1+wz)2*|"(1+?/2)m§

which is appropriate for 8%y +0.5] < 0.5. A polynomial to which the
theorem does not apply is ‘

Dz, @, Yy) = w%‘f"wg'{'ylmls'{“‘f’/lwlz, ’

which is positive definite for %= 0 but not for any other y,.

©
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7. In section b we were concerned with the continuity of Skolem
funetions of VI sentences. We now wish to show that, in certain ciroum-
gtances, wo can extend our result to arbitrary sentences in prenex normal
form. Thus, suppose that the topological structure M has elimination
of quantificrs in a language L and that the theory of M in I can be
axiomatized by a set of universal sentences. This is the cage, for example,
it M is the additive group of real numbers, with the nsual topology, and
the vocabulary of L consists of =, --, 0 and a unary funection symbol
fal@) for each infeger m = 2, to denote multiplication by 1/n. We obtain
another example if we include the order relation, <, in L.

Now let A bo a sentence in prenex normal form. We exemplify X by

(7.1) A= (Vo) (Hy) (V) (Hu) (Vo) (Hw)Q (2, ¥, 2, u, v, w)
where @ is free of quantifiers. The corregponding Skolem open form is

(7.2) X o Q(maW(w)aza'F(woz)’”:%(w:z;w))-

Thus, wo have to deal with Skolem functions of one, two or three variables.
It will be clear what we mean by the projections of a set § in M® as
(m, 2, w)-space into M* as (@, 2)-space and into M = M as (x)-space.
Conversely, by the eylindrification in (z,2)-space of a set § in ()-space
we mean the set of points of (@, 2)-space whose first coordinate is in 8,
with similar definitions in other cases.

We are going o prove

7.3. Suppose that X holds in M, where X is given by 7.1, and let S be
a nonemply open subset of (m, 2, w)-space where x, 2 and w range over.M.
Then there exists a nonempty open subset W of 8 so that the Skolem funot?ons
@ (@), plw, 2) and y(@, 2, w) con be interpreted by furfctz’?m that are continu-
ous on the projection of W into (w)-space, on the projection of W into (, 2)-
space, and on W, respectively. :

Proof, By assumption, the theory of M is given by a seb of umvexjsal
axiomy, N, Since M hay climination of qmntlflers, there exists
a quantifiov-free prodieato @y(w,y) in L such thab

I f= (Vo) (Vi) [Quew, ) = [(V&) () (Vo) (Ew) @ (2, 3, 25wy 0, w)]]
and I |- (Vao) (8Ly) @ (@, 4)-
Algo, by the result of Bernays quoted in section b there exist terms

J
B(w) sueh (hat I |- (Vi) ’VlQl(w,tk(w)) and o
fosa

I |~ (V) </ (V) (1) (Vo) () @ o, ta(e) 2, %, v, )

Jemsd
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/
and, for each &,

E |- (V2)[@u(w, t (@) D (V2) (Hu) (Vo) (Ew)Q{w, tn(w), 2, w, v, w)] .
Rewriting the last sentence in prenex normal form, we obtain
K |~ (Vo) (V2) (8u) (Vo) (80) [@s (2, 1)) D Qe tal@) 5 25 w5 0, )] -

Again, since M has elimination of quantifiers there exists quantificr-free
Q¥x, 2, u) in I such that

(14) K |- (Va)(Ve) (V)| Q¥(a, &, w) = (Vo) (Ew) [Qu{e; tilw))
D Q(w, te(w), 2, u, v, w)]]

and g0 K [~ (Vo) (Ve) (Hu)Qkw, 2, u). It follows that there oxist terms
ry(2, &) such that ’

K |- (Vo) (V%) l\"? o, 2, 1ale, )
and so

K |- (Vo) (V2) \/ (F0) (@%)[@ulo, t(@)) D Qo (o), 2, 7y (@, 2), 0, w0

-~
=

and, for each I,

“

(7.5) K|~ (V&)(V2) (Vo) (Fw) [Qk (2, 2, 701 (@, 2)) AQu(w, 14(2))
DQ‘my (@), 2, 113(®, 2), 0, w)l .

Now let S, be the projection of § into (z)-space. Then §, i open. Asin
section B, with @, for Q there exists & nonempty open W, C 8, such that one
of the #; can be interpreted as a function which is continuous on W,. For
the corresponding %, choose @ as in 7.4. Let 8, be the intersection of 8
with the cylindrification of W, in (=, 2, w)-space and let Sy be the pro-
jection of S, into (w,2)-space. Again we may find a nonempty open
W, C 8; such that one of the r,,(z,2) can be interproted as a function
which is continuous on W,. Let 8§, be the intersection of 8§ with the
cylindrification of W, in (z, ¢, w)-space. We now consider 7.5 for the
chosen % and 7. Since this is an VI sentence as it stands, we know from 5.2
that there exists an open subset W of 8, such that the Skolem function
which corresponds to (Hw) can be interpreted by a continuous function
on W. The projections of W into (x)-space and into (2, 2)-space are con-
tained in W, and W, respectively where the remaining Skolem functions
have already been interpreted as continuous functions. This complotes
the proof of 7.3.

Although we have stated our theorem for the particular sentence X,

it is obvious that a corresponding result is true for an arbitrary sontence
in prenex normal form.

icm®

A mote on topological model theory 169

8. As developed so far, our theory does not include the case of a topo-
logical field in which inversion (veciprocation) is defined as a basic ope-
ration, () say. We adhere to the convention of model theory according
o which a function must be a total function, and we define r(x) = 1fz

usual topology of the real numbers or of the complex numbers, but the

_game would apply for any other definition. To take this case into account

we introduce the following concept which is tailormade for it.

A quasi-topological structure M is a topological structure augmented
by an additional function r(x) called the singular function such that for
a gpecific element of M, my (called the singular element) r(m,) = my,, and
such that #(@) is continuous in the topology of M accept, possibly, at
the gingular clement, The language of M, I, also is augmented to include
a function symbol, ¢(#), which denotes r(w) and the constant “my” (to
denote m). We ghall suppose that M is a T;-space so that every set thab
consists of a single point in M or M™ ig closed. Let F(a, ..., @a) be any
function which is the interpretation of a term ¢(@y, .., @) in L. Thus,
F is obtained by composition from the basic functions of M, includin-g
iteration, identification of variables, e.g., s{(#) = g(a, 2) where q(w_, y) is
in the set, and eylindrification, h(wy, ..., @a) = ¢(®,), where g(m). is in t}ae
geb. Weo also include the congtant funetions y = a corresponding to in-
dividual congtants that oceur in L and the identity function y = a.

We ghall prove

8.1. Let 8 be a nonempty open subset of M" and let F (21, ..., xy) be any
function as above. Then there ewists a nonempty open subsel of 8, W, such
that T (w0, ..., n) 98 cONtINUOUS 0T w.

The proof proceeds according to the complexity of the tern}s
U(@y, ory @) Which represent F(#;, .., @) in the formal 1q.ng11age. .(It is
quite possible that two terms represent. the same function.) .Varmble.zs
and constants are said to be of complexity 0. I g(Yyy ey Ym) 18 2 basic
funetion symbol and the terms (@, . T} jm Ly weny My a,‘r-e of c;m;
plexity not exceeding % but one of them 1 of complexity .k then
GUEABLy weey Bm) g ooy (g, vy @m)) 18 of complexity k1. There is i;)me
ambiguily in the interpretation of a term by & function since wo a,vfe
admitted eylindritication and we shall take this into ;wf:ount in ﬂu_a pro?l .

Oloarly, 8.1 is satistied for 'Eunc'bim_:m of.eom_plexﬂ;y 0?.1.0., for the
identity function and for constant funetions (if any). Also, if 9@y eers aa;})
is a Dbasic function sywbol, n = 2, and another term t—.—— B(@yy ooy Bp) 18
obtained trom it by the identification of some of the va;mgbles Dy g oeey fﬂ (i
then the corresponding function in M i, 11ke.the ?":unetlon rep;gsen ;ave
by g, still continuons (since (@) cannot oceur in this context). 11_10; e
may always agsamo that the identitication of Vamafbles hAas' pfaen carrie ou
on the bagie function symbols, we may disregard this possibility from now on.
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Suppose that we have proved our assertion for all ferms of com.
plexity <k and let s(@, .., @) = (@1 coor @n)y ooy ln (@1, ooy @) Do of
complexity k-1 where ¢ is a basic function symbol and the #(e,, veey )
are terms of complexity not exceeding k. If ¢ is not ¢ (which denotey the
singular function) then we select successively nonemply open subgetg
of 8, WD W,DW,D...0 Wa= W sguch that ¢,(@y, ..., s) is continuous
on Wy, ty(y, ..., @) is continuous on Wy, oy tm(®y, vy @n) 8 continuous
on W. This is possible by our inductive assumption, Since g is continuwoug
on M™, it follows that s(wy, ..., &m) 18 continuous on W,

Suppose, on the other hand, that g coincides with g, 80 8(@y, .., m,)
= o(t(@1, ..y n)) Where (2, ..., @) I8 continuouy on a nonempty open
subset W, of S. We now have two possibilitics. Bither &,(@,, ..., @) takes
the constant value m, on W;—in which case &(my,...,x,) takes the
same constant value on W, and is therefore continuous on Wiy; or, for some
(@1y oy Gn) € Wy, By, ooy an) = b o my. In that case, lob B boe an open

W= W, ~ W, are open and &(@,, ..., #,) is continnous on W and does
not take the value m, in that domain. It follows that ot (@, ..., @) is
continuous on W.

We still have to show, for each &, that if ¢(xy, ..., m) i8 o torm of
complexity &, and represents a function J (@, ..., #,) which satisfies the
aggertion of 8.1, then if we cylindrify F(w, ..., »,) by the addition of
a new variable, 80 G (@, ..., &, By ) = F (@1, ooy @), then 8.1 still holds
with ¢ for F. So let § be a nonempty subset of M™** taken ag (@, ..., Typq) -
space and let 8, be the projection of § on M" as (#,, ..., @)~ space. Then
8, is open, 50 F(a, ..., @) is continuons on a nohempty open subset W,
of 8y, 80 ‘G (&, ..., Tn,y @,,,) I8 continuous on the intersection of the c¢ylin-
drification of W, from M™ to M™%, with the original st 8, This complotes
the proof of 8.1.

In consequence, we can still prove 2.1 for a quast-topological structure M

Indeed, let § be a nonempty open subset of J™, By the successive
choice of appropriate open sets we can find a 1‘1011@1“r1‘])‘l‘y' open subset 8’
of § such that all the terms which oceur in Q represent funetions thab
are continuous on §'. We now interprot both 7 and § in 1.5 a8 our
present 8’ and we let .4 be the set of points of § that Balisty @ (myy ooy @n).
Then 1.5 shows that either 4 or the complement of 4. in ;S” confaing in-
terior points. This proves our assertion.

It now Jollows immediately that 2.2, 2.3, 4.3, 4.4 and B.1 remain valid
Jor quasi-topological structures.

9. L(_st M= be' the field of complex mumbers. It wo include in L
thle) relzu’gon of equg:hl:y M}d the operationy of addition, multiplication,
subtraction and reciprocation (ie., o(m), a8 in the provious section), we
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thereby obtain a quasi-topological structure. Hlowever, this language is
not sufficient in order to axiomatize the theory of ¢ as an algebraically
cloged field of characteristic 0 in terms of universal axioms. For this
purpose, we require, in addition, function symbols yu(#, ..., #s) to denote
golutions of the monic equations p(y) = y"*4-2, 9" - ... @, =0 for
n=2,3,4,.. Bo the question arises whether these function symbols
can be interpreted by continnous functions fu(wy, ..., @) in ¢. Thig is
indeed the case as we seo by choosing fu(w, .., @) for given @y, ..., s
in ¢ as the root of p(y) == 0 whose real and imaginary parts are as small
ag possible (see [1], p. 432). Accordingly, 5.1 and 7.3 are applicable to
the field of complex numbers, for the vocabulary just specified. We
obsetve that this still leaves the field of real numbers, M = R, as a real
cloged ordered field, outside our framework. For in oxder to axiomatize
the theory of B by a set of universal axioms, we now require (i) a function
symbol ¢ (@) for the (positive) square root and (ii) the above function
Symbols pu(®y, ..., #a) for odd n > 3. o(2) can, in fact, be interpreted by
the continuous funetion which equals the positive square root of a number a
for a = 0 and equals 0 for a < 0. But as far ag (ii) is concerned, Henriksen
and Isbell have in the above mentioned paper [1] given an example which
shows that (e, @y, €5) cannot in any way be chosen as a continuous
function on M ‘
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