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Abstract. The notion of valeney of simple graphs is generalized to élements of
structures of arbitrary signature. Then the valency of a strueture is defined in the
obvious way. Relations definable in slructures of finite valency are investigated.
Bvery relation first-order definable in a structure of finite valency is almost

- symmetric or, equivalently, almost identity generated; these notions arve defined
below. Non-dofinability of addition, multiplication aund ovdering of integers in any
strocturve of finite valency is shown.

A gtructure ov graph A== {4, R> i3 said to be of finite valency if
it satisties Val=?y o Ry (R a binary symmetrie relation on A, for generali-
zation to arbitrary structuves cof. Sec.1). It has torneéd out that this class
and even the subelass G, of graphs satisfying Vel <*y Ry is rather
complicated. The acting process of every Turing machine is describable (*)

. in the elementary theory ThGy and this implies ThGj to be of the highest
‘ ‘ ‘ recursively enuwmerable degree, hence Gy is a reduction class for first
order predicate logic. ) C

On the other hand it will be shown here that in no graph of finite
valency an infinite linear ordering or non-trivial binary operation in an
infinite sot iy definable. Relations definable in structures of finite valency
have a spocial property which in the binary case amounts to saying that
it s not antisymmetrie on an infinite set.

Tt follows that there is no system of relations of finite valency to
define the avithmetieal hasic operations. Varions other examples of non-
definability and non-interpretability will be given. The main” theorem
is Daged on the existence of homogeneous structures realizing special
types. Otlier results ave essential based on Ramsey’s theorsm.

We refer also to some classes of structures so as trees and n-separated
graphs in which valencies can be reduced with respeet to first order
formulas. Thus no infinite linear ordering is definable by means of a nnary
funetion. .

(* A detailled proof is given in [3].’
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1. Definitions and notations. We are ccncerned here with relational
structures A = (4; Ry, ..., B> of finite signature; A determinates itg
first order language L% the wvocabulary of which containg besides the
relational symbols and equality sign also constants denoting the clements
of A. (U, P) is the structure obtained from U by adding unary predi-
cate P (C A).

T denotes the set of formmlas of L containing ot most the vapi-
ables @; (i << k) as free variables. By an abuse of language I is some-
times taken modulo equivalence of formulas in U3 thus FM0 becomes
a Boolean algebra. TFY is the set of all k-fypes, i.c. the sot of wll ulirg.
filters in ™. a e A* realizes A (¢ TH™Y) if ¢(z) e A < = p(a) for all
P eFU. gy (p e FMY) denotes the relation defined by @ in A, ie. gy
={o e 4" Al=g(a). ‘

The binary relation 8= Sy is defined by

@8y i«>m=1y or there iy some element in R, u..w R, containing
both 2 and y as members.

8% 1w =y; a8y 1o (Uz e A)(w8"%A28y);
28% <> 28 for some n ¢ w. .

The equivalence classes mod8” are called the eomponents of A,

A is said to be a graph if the K are all unary or binary. If A = ¢4, R>
where E is binary, reflexive, and symmetric, then 9( is a simple }:raqﬂi.
Let A= <4, Ry be simple. The valency of a point @ e A iy the mumber
of points b e 4, b # a, such that aRb. The valengy of the graph itself iy
the smallest cardinal number » such that the valoncies of the points
of 4 are < ». These notions may be generalized to arbitrary strnetures A
Thus, A is sald to be of finite valency if Uy = (A , 8yd I8 of tinite
valency. This amounts to saying that all n-spheres Sy(a) == { ¢ A: a8}
are finite for every a ¢ 4.

Let A be a non-empty set. For a, b e A¥ put

a~b i (Vi 5 < k) (ag = apes by e by)

and a ~ bif 6 ~b and {as i <)== {by: 4 k}. Thus, it a, b,ced
@ %= b o6 5= a then

@,a,bp b, b,a>  and  <a, @y 0~ by by 6.

A relation RC 4% is said to be symmetric on A it @~ besRae RD
fc?r‘a,ll a,beA* This is a generalization of the wsual notion defined for
binary relations. !

A Dinary relation R is fully amiti-symmetria on 4. it aRhVbRa Lo
all a, bks 4, a #b (V denotes antivalence, either — or, but not Doth).
R (C.A*) is almost symmeétric on A, (B is a.8.) if for any infinite BC 4

icm

Definabilily in structures of finite valoncy 175

there is some infinite ¢ C B such that I iy symmetric on O (speaking
more precisely I [ ¢ is symmetric on ),

RA(C A") iy said to be identily generated (R iy i.g.) if B is a boolean.
combination of the k-ary relations of the type @y == (¢,j<k). It can
casily De checked that B iy i.g. iff B satisties a~b= Ra< Rb for all
a,bedb ,

In the same way as above the notion of almost identify generated
(a.i.g.) can be defined. Obviously ¢very ad.g. relation is a.8. Theorem 3.1
shows that the converse is also true.

Throughout this paper Apy, denotes the set of all k-element subsets
of the set A, Uw V== A is sometimes called a partition of A. '

2. Examples.

1. If for some binary relation I on A there ig some infinite B C A such
that (B, Ry (to be more precisely (B, R | B)) is a linear ordered set
then R is not a.s. on 4. Theorem 3.8 shows that the converse also holds:
for any n.a.g. (not almost symmetric) relation B on 4 there is an infinite
BC A such that (B, E) is linear ordered.

2. It RC A" and for every aq, ..., a4y € A, i<k there are at most

< finitely many @ ¢ 4 such that Rey ... a@a,. ... a5, then R is a.i.g. (or a.s.

what amounts to the same by Theorem 3.1). For it is easy to show that
every infinite B C 4 contains an infinite ¢ C B such that B equals @
or Idz on €. Therefore the hasic relations in every strncture 9 of finite
valency are a.s. Theorem 4.1 will show that every relation definable
in LYW is a.8. :

3. Let S, denote the linear ordered n-element set and A= <4, R
the digjoint upion of the J,,. If Qt*ﬂis an elementary extension of 9 then 9
containg an infinite subset sneh that R is a linear ordering on it. Hence
to bé a.8. 18 not expressible by first order formulas,

d. TE G = (A, R> is the graph of a unary function F: A->4 then
R i a8 on A, Later it will be shown that every definable relation in
G is wk. From example 2 follows that the graph of a binary function o
on A ig a.8. provided @ow==b and bo e = a have finite many solutions
only. By projection we can sometimes derive a binary n.a.s. relation
(addition of natural numbers). ‘

5. The class of k-ary a.s. relations of a set A is closed wnder comple-
mentation, union and meet. From Presburger’s elimination procedure for
the theory of the group I of integers it follows that the set of definable
Dbinary relations i the Boolean algebra generated by binary relations Ry
of the following tiypos: == n, ¥ = n, ko+my = n, ® = kmodn, y = kmodn.
All these relationg are obviously a.s. hénce every definable binary relation
in ¥ ig a.5. In view of Theorem 3.3 ¢very definable relation is a.s.
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3. Properties of a.s. and a. i. g. relations.

3.1. TuworeM. The class of almost symmetric velations and the class
of almost identity generated velations in o set A coincide.

Proof. Obviongly every a.i.g. relation B on 4 is a.8. Liet now I he a.g.
and first assume R binary. Let BC A be a given infinite subset of 4.
For some infinite B’ C B R is either reflexive or jrreflexive on B, Now
let ¢ C B’ such that

(Va,y e O) (@ # y—>aRywyRu) .

Define a partition U vV = (O of the 2-clement subsels of ¢/ sueh that
{6, 0} ¢ U iff a &b holds. By Ramsey’s theorem cither Dy C U or Dy C ¥
for some infinite P C 0. In both cases R is i.g. on D).

We now take k=3 ag typical for the general cage. Lot 0 C BC 4
be given as before, R either reflexive or irveflexive on ¢ (i.e. (Vi e (75(.'[&;;?1;90)
or (Va ¢ C)(T1Roas) holds) and R a.8. on €. Tet UV e Oy be a par-
tition such that {a,b, ¢} ¢ U itf Rabe holds. From Ramsoy’s theorem it
follows that for some infinite D C 0 Rabe<>Ra'b'¢’ for {a, b, o}y {0’y b’y ¢’}
€ Dy, Next construct a partition U vV = Dyyy such that {a, b} e U it
and only if Eaab holds (this is a correct definition since R aab is oquivalent
with Rbba). There is an infinite B C D such that RasbesRa’a’d’ tor all
{a, b}, {a’,b'} e By,;. Continuing in this way with the two romaining
cages (second and third argument, and first and third argument are
identical, respectively) one gets an infinite set P C B such that R is i.g.
on P.  Q.E.D.

3.2. Lesva. A binary fully antisymmetric relation on an infinite
set 4 is a linear order on some infinite subset of A.

Proof. Since R is either reflexive or irreflexive on gome infinite
subset of 4 it may be supposed from the beginning that B has this property
on 4. Let U vV = Ay be a partition sach that {ay, @y, ag} ¢ U it and
only if ay Ray, Ray, Ray, for some permutation (4 gy %) OF (1,2, 8). By
Ramgsey’s theorem there is an infinite BC A sueh that either By CU
or By CV. The first case is excluded since thore is o 4~ olomenti gub-
set 0 C B such that Oy C U. Hence B CV and it ix caily geon that B is
a linear ordering on B.” QEB.D.

8.3 Limwwa. A velation RC A* is almost symmetrio on A iff every
infinite subset P C A contains o k- element subsel Q on which R is symmelric.

Proof. The condition is obviously necessary. Assume now it holds
and let P be an infinite subget of A, UV = Pyy o pavtition of the
k-element subsets of P such that X ¢ U iff R ig symmetric on X (X e Py,).
By Ramsey’s theorem there is some infinite @ C P such that cither Qun C U
or @ug C V. The second case is excluded sines @ should contain an - ole-
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ment subset on which B s symmetric. Thus @, C U and therefore B is
symmetric on §.  Q.H.D.

Let B Do a ternary relation on A. K== {{a, by ¢ A% Raab} and
R, = {{@, by ¢ A% Dabe} are examples of binary relations derived from R
by tdentification of argwments and parametrization respectively.

3.4, Tuwonum. If B (CA% k= 2) is & not almost symmetrio relation
on A then there is some binary velation 8 obtained from R by identification
of arguments or paramctrization suwoh that 8 is a linear ordering on some
infinite subset of A.

The .case k== 2 follows easily from Lemma 3.2 and Lemma 3.3.
Tor the rest, the ease % == 3 is typical g0 we restrict ourselves to this
case. Liet B C A be an infinite subset such that B is not symmetrical on
every infinite subset of B. It may be supposed that R is either reflexive
or irreflexive on B. Lot Uw V== By be a partition such that for all
{a,b} ¢ Uy Raab< Rbba (the two other cases of argument identification
are treated similarly). Tor gome infinite ¢ C B either O C U or Oy C V.
In the seeond case a8y == Raxy would be fully antisymmetric on P and
hence by Lemmg 3.2 there iy some infinite subset P C O such that § is
a lincar ordering on P. Thus we may suppose now that there is an in-
finite ¢ C B such that for all {a, b} € €}y the equivalences R aab<>Rbba,
Raba<Rbab and Rabb<Lbaa hold. Now congtruct & partition of O
according ag
(%) Labo<>Rach<Reba  for all {a, b, ¢} e Oy,

holds or not. There iy no infinite ¢ g D such that (*) holds for all t € Dy,
otherwise B would be symmetric on D. Ience there is some infinite D C ¢
such that for {a, b, ¢} ¢ Dy either

RBabeVRach or RabeVRbac or RabeVRach.

Applying Rampey’s theorem again we may assume e.g. RaboV R ach,
for all {a, b, ¢} € Dy;. Ohoosing any a, e D one has RayzyV Eayya for all
@,y ¢ D\{ap}, @ # y. Therefore o8y :== Raywy is fully antisymmetric on
some infinite subset of A which proves the theorem by Lemma 3.2. Q.E.D.

This theorem can be of service if one wants to prove every definable
relation in o gteneture o e a.8. One has to check this only for binary
relations.

4. The main theorem. As ugual, a structure % will be called homo-
goneous if every partial elementary automorphism of % of cardinality
less than card 9 can be extended to an automorphism of %, 4 homogene-
ous structure % obviously has the following mice property: if a, bel
realize the same 1-type in 7 9 then there exist an automorphism a: A—A
such that a{a)=b.
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The following lemma easily follows from Theorem 20.5 in [4]:

4.0. LEMMA. A structure W possesses a homogeneous  elementary egq-
tension which realizes a given k-type A ¢ TH™Y.

The existence of homogencons extensions can he a useful tool in
studying elementary properties of struetures as shows the following

4.1, TurorzM. Let A = (A; By, ..., Ry be a structuve of finite valency
and (g, vy Bpy) € T be a formule of the language of N, Then the
relation gy defined by ¢ on A s almost symmetric on A,

" Proof. By Theorem 3.4 it iy suflicient to prove thiy theorem for

k=2 only (thongh, the proof for & >2 is similar). 8o let ¢y, @) be
a given formula. In view of Lemma 3.3 it will be sufficient to prove that
for any infinite P C A the structure (%, P) satisties the condition

() Holy[Pe & Py & w # y & o@, y) =y, o).

Let 4 be some 1-type of the ]angndge of (2, I') such that for any ¥ (ay) e 4 -

there is an infinite number of elements a ¢ P satislying ¥ (xy) (4 can be
taken as a_completion of the consistent set {>Pu & o # a<: e’}
Let I' be the following set of formulas from I, P)
D= {W(ay), Pylw:), TN, S Wed, new}.

‘We claim that I"is consistent. To see this it will be sutficient (o show that
every formula

X (@, 3;) t= W(2,) & Pary) & Ty Spe;,  (Pe Ay, mew)

is congistent. Take any aed such that 9 |= ¥(a). The set &
= {® e 4: a8y} is finite since U is of finite valency., On the other hand
Q={yed: Al=P(y)} is infinite hy the choise of 4. Therefore QNS # ﬂ:
Take any b e @\ then it easily seen that the pair a, b satistios ¢ (m, m‘).
: Thus I" is extendible to some 2-type 0. Lemma 4.0 {tells uy that ’o7]mlre
is a homogeneons structure B é_ (W, P) and elements ¢, d ¢ B realizing 0.
Let U= {ze¢B: c8za}, V= {yeB: d8yy). By definition of 0 wo have
UnV=@. On the other hand ¢ and 4 realize the same L- type A In the
homogene(n}s strueture B hence there iy an an lm);lm)rplliﬂ'ni A BB
over 9 such that A(c)==d. It is obvious that A(U):~ V. Def ims\nmw
p#: B—B in the following way:

Al) if wel,
p@) =12 it aeV,
2 elsewhere .,

iIlftcam] easily be checked that x is an automorphism of B over 9 and that H
nterchanges ¢ a . bhe % N isfi g
ges ¢ and d. Furthermore ¢, d ¢ Py and henee B satisfies the

[

formula (x). B is an elementary extension of
. . e ary extension of ([, P) thervofore (%) also
holds in (2, P) which completes the proof. Q.flﬂ.ﬁ}). ) e
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5. Applications. It follows at once from Theorem 4.1 that there is
no system of relations of finite valency on the set N of natural numbers
which defines addition and multiplication or ¢ven one of these operations.
There ig also no such system in any superset of N. The same holds for’
the additive group S of integers although all definable relations in thig
gtrueture are .8 Tor i not, add a unary predicate symbol denoting the
ot of natnral numbers, Then in the extended strueture the ordering of
the natnral numbers would be definable but the extonded structure is
still of tinite valency.

A simple graph <A, K is called a tree if it containg no circles. <4, It
is waid 1o o n-separated if any two cireles have at most n points in com-
mon. The graph of & unary funetion is 0-separated (this graph is directed
butb it can eagily be shown that it is interpretable in some simple-0-sepa-
rated graph). In [1] it has been ghown that any sentence gatisfied in some
point-coloured n-separated graph is satisfiable in some n-separated graph
of bounded valency. In particular, this holds for trees.

5.1 Turorm. If A is o coloured tree (or to be more general o n-sepa-
rated coloured graph) then every definable velation in %A is almost symmelrio.

Proof. If some formula defines a n.a.8. relation in 9 then by Theo-
rem 3 some formula ¢(@,¥) defines a linear order on some infinite set
P C.A. Now there is some gentence in the language of (2, P) telling us
that there is some infinite set Linearly orderved by ¢(w, v). This sentence
is satistiable in some tree (or n-separated graph, respectively) of bounded.
yalency in contradietion to Theorem 4.1. QI.D. ‘

An immediate corollary is that no n.a.s. relation can be defined in
any strocture of a unary function gince every nnary function is inter-
pretable in gome {ree. This extends @ result of Taimanow [6].

We agsume as known the usual notion of interpretability (or definable
embedding) of a strncture 9 in a structure B: the universe and the basic
notions of 9 have to bo defined by suitable formulas of LB. It can easily
be checked that the group I is interpretable in the additive semigroup N
of natural numbers. Thug it is possible to construet I as an inner model
in the framo of the theory of M. It is rather surprising that the converse
does not hold. Bxample 5 shows that all definable relations in J are a.8.
and thig is not the case for M.

There is an important generalization of the interpretability notion
used hithertoo: the elements of 9 can be represented as congruence classes
of elements of B modulo o suitable definable congruence relation with
regpect to the other defined motions. Butb also in this sense <N cannot be
interproted in & as follows easily from the notions involved: -

If A is interpretable in B (in the general sense) and all definable
relations of B are a.s. then the same applies to A
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Hence J is infact properly weaker then M. From Theorem 4.1 follows
If B is of finite valency and U s interpretable in B then all definable
relations in (W, P) are a.s., P any additive unary predicate.

Hence no infinite Abelian group can be interpreted in a any structure
of finite valency. This follows from the fact proved in [2] that for any
infinite Abelian group 2 and every at most countable structure B there
is some upary predicate P C A such that B is interpretable in (3, P)
(P can he choosen e.g. in such a way that some infinite linear ordered
set is interpretable in (A, P)).

To give further applications we refer to the notion of model-
interpretability which has been succesfully used by several authors to
solve or to reduce decision problems.

If K, M are (not necessarily elementary) classes of structures of
signatures o, 7, respectively then K is said to be model-interpretable in M,
K — M if there is a finite set @ of sentences in L, such that there iy an uni-

m.l.

formly definable embedding of evéry I -structure in some M -struetire
satisfying @ and every M -structure which satisfies @ can be obtained
in this way. Many important classes of structures have {urned oub to
be universal with respect to model-interpretability in the following sense:
every finite axiomatizable class of structures is model-interpretable in
such a class. Universal in this sense are the class G of simple graphs, the
class of structures of a distributive lattice order relation. (n fortiori the
class of order relations, the class of rings, the clagy of groups and rather
special subelasses of these examples.

The class G, of simple graphs of valency 3 for every point (and actually
the class of structures of finite valency of any signature) is not universal
by the results presented here although it can be shown to be a reduction
class in the sense of the predicate caleulns deseribing the acting process
of any Turing-machine by those graphs (cf. [3]). Virtually no interesting
class of structires (lattices, groups, rings ote.) is model-interpretable
in G, for if we add one or several unary predicates to an infinite algabraic
structure it is easy to define n.a.g. rvelations in the extended strnciure.

Let X be a class of strnctures of signature o, ¢ e, a formula con-
taining ab least one free variable. SK{p] denotes the class of all structures
homomorphic to some (4,@y | 4> such that BeK and ¢ # AC B
3n is the linear ordered set with n clements. -

5.2. LmmmA. Let k& e o and K be a class of structures of valenoy at most T,
¢ a formula with ezactly two free variables. Then there is some Ny € @ §Uch
that 3, ¢ SK[g] for any n = n,. ‘

Proof. Assame the contrary: any given finite linear ordered set is
homomorphic 10 some <4, gy 4>, B e K. Then the set Th K v ¢ whero
O={p(er, 1) & Tp(eg; ¢0): 455 e 0,4 < j} and ¢y, ¢, ... aro new individual
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symbols, is easily seen to bo congisgtent and henee ?w,s @ 'mm‘i(al . The
x;al,en(ﬂy‘ of 9 ix at most & since the formuln expressing this @.01‘/ l)(*:lnng;a
to Th K. This is a contradiction sivee by Theorer 4.1 the relation gy is a.s.
and hence it cannot be fully antisymmaetrie on the infinite subset {6, ¢, ...}
of 4. Q.I.D. .

5.8, Turorum. The cass G, of simple graphs of fintte valency s not
model-interprelable in the class Qg of stmple graphs of bounded valency.
Gyouna 18 10t model-interpretable in Gy.

Proof. Otherwine the strneture Ny, the disjoint union of the
(ef. Tixamplo 3) would De definably embeddable in some structure €A of
valeney m,m e, If ¢ in the formula defining the order relation then
obviously S, S{UMe] in contradiction to Lemma 5.2. To prove 1:11',0 gecond
part it is sufficient Go observe that the class of finite ordered .S(}iiS is model-
interpretable i Giygua; however, by Lemma 5.2 this elass is not model-
interpretable in Gy,  QILD,

This theorem ean obviously be extended to arbitrary finite signature.
(Of conrse, 3 can be replaced by any k ¢ o.) Finally, we mention a problem
which is connected with the questions discussed here.

Prosrum. Is there an infinite Abelian group % and a formula ¢ (s, ¥)
which defines a linear order on some (not necessarily definable) infinite
gubget of AY ‘

The answer would be in the negative if it is shown that every flefin-
able binary relation in an Abelian growp is a.s. (ef. example 5 in section 2)
or the more stronger result that every infinite Abelian group ig stable in
some infinite cardinal. ‘
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