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For this purpose one may take as an example one of the well known
modal systems, described in [4]: system M of Wright, system 84 of Lewis
or system Br of Brower. But any extension M@ of a theory @&, received
in this way, will have the following property: for any formmnla 4 of @

FAA it and only if A is derivable in &.

One can see, the weak decidability of MG coincides with the de-
cidability of @ for any such extension. Hence, such mndal extensions are
not interesting.
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Some remarks on set theory XI
by
P. Exdds and A. Hajnal (Budapest)

Abstract: et %, A be infinite cardinals, F CP(x), A¢gB for A+ BeF; 4] < =
for 4 «I'. We give a necessary and sufficient condmon (in ZFC) for the existence of
an B’ C I with |B) = «

le—JF|= 2.

§ L. Let %,A be infinite cardinals, FC P(x), |F| = ». Problems of
the following type were considered in quite a few papers.

(1) Under what conditions for F' does there exist F' C F, |F’| = » such
that |x— |JF'| =AY

(2) -Assume f is a one-to-one mapping with domain x and range ¥,
& ¢ f(&). Under what conditions for F does the set mapping f have
a free gubset of cardinality 1, i.e. a subset R C %, |R| = 4 such that
E¢f(n) for all &,7eR%

It was proved in [3] that (1) holds with » = A provided there is a cardinal =
with |4| < v << x for all 4 ¢ . In[4] it was proved that the same condition
also implies the stronger smtement (2) with A== #. It is obvious that if
we only assume

(3) | lAl<x for AeF

'we have to impoge further conditions on F to obtain results of type (1)
and (2).

The aim of this ghort note is to study the answer to (1) under the
following simple condition

(4) AgB forall A#BeF.

Here wo get a complete discussion without using G.C.H. and we give
the solution of Problem 73 ‘proposed in our paper [1] as well. -

'We meution that in a paper with A. M4té [2] we are going to study
the apgwer to (2) under condition (3) and under some additional and
more gophisticated conditions.
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To have a short notation we say that P(x, ) is true if (1) holds for
all FC P(x), |F| = %, satistying (3) and (4).

2. _
ngEOREM'l. Let x be regular. Then P(x, 1) holds iff either 1< x and
V< x for all v<x or A= and x is weakly compact.
TEEOREM 2. If » is singular then P(x,1) is false.
Proof of Theorem 1.
First we prove

(B)  If v*= x for some v<C 1w, A< x then P(x, ) is false.

Proof. Let i, be minimal snch that there is » < % withlv"“ = %, and
let v, be minimal snch that »% = ». Then » being regular 30 << sx.
It is well known that then there are X, |X|== " and G C P(X),

|@| = »» such that
(6) [A| == 1, for A @ [A ~"Bl< 2 for A #£BeG.

Let H = Qo(@) = {X—A: 4 e G}. We may assume X ~x = @. Lot
{Bs: E<%}CH be one-to-one, and put A,= B,v§ for &<ux; F
= {dg E<w}. Then [A)<x for é<n, |Xwn|=un |Fl=1w 4,¢A4,
for £ £ << » since |B,— B,| = 4. On the other hand if I' CF, || ==«
then, by (6),

and

X Un— U< h<A.

This proves (5).
Now we prove

(T)  Assume A< #, v*<<u for all v<< x then P(x, 1) holds.

Proof. Let F be a system satisfying (8) and (4). Let &< ». Put
Fo={Ad el |E—A|= 2} If |F| = » for some & then by the regularity
of » and by |£]*< %, (1) holds. We assume || << 26 for all &< and
we obtain a contradiction. Pick 4,eF—F, for cach &< w. Put g(&)
= &— Ay, h(E) = supg(£). We can choose n regnlar cardinal = such that
A< v <% otherwise At = %, 3= u.

The set K, == {§ < w: cf(£) == v} i8 stationary in s wnd A(E) < & for
£ e K,. By Fodor’s theorem there are g << » and a stationavy set ¢ C K,
such that k(&) = ¢ for & e 0. By |o|* < %, thevo is ¢ C 0, 0’ cotinal in »
such that g(&) = g(y) for & »e (', Choose &<y e 0" such thati Az Co.
Then A,C A, a contradiction. oo

(6)-and (7) prove the first part of onr theoren.

“We now prove

®)

Assume P(x, x). Then = is weally compact.
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Prool. By the assumption P(x,2) holds for A< % hence, by (5)
24 <o for A< ey w8 strongly innecessible, Assume % is not weakly 201{1 fict’
Then there iy an Aronszajn tree 6, <> on x Tiet T denote the? seig
of clements of rank & in the tree and put 8= J T: P is said t6 be
a path of length & it P iy o chain C 8; and P A 27’<E¢ O for g < & Tt is
well-known that there is o set K C %y K| = % such tﬁat there i a,\ma:ximal
path Py of Jength & for each ¢e K.

Pot Jes {8y~ Py EeK). Assumo £< %, §€,m¢K. Then by the
maximality of Py 8, P, ¢ 8,— P, and obviously 8,—P, ¢ 8,—P,.

On the other hand let T C &, L) =2, m,y ¢ | {:S'e—lg : & :L}. E’_Dhen
there is o & e such that the ranks of g and y are less Etham &, hence
@, € Ly undl @<y or g SR

Li Tollows that w— | J {8,— P,: &elL} is a chain and thus it has
cardinality less than s,

Thus 7 establishes not P(x, ). Hence i % holds » must be weakly
compact. This proves (8) (see Problem 73 of [1n '

Finally we have to prove ‘

9)  If = ds wealkly compact then P(x,x) is true.
Proof, Let F he o system of sets satisfying (3) and (4). It is well
known thati then there are 4 Cx and {dg E< %} CF such that 4 ~¢
m‘Aﬂ Al Tor & < n << x First we claim that x— A4 is cofinal in. . Other-
wise thove is & sneh that x— £C 4. Then there is &< 5 such that 4,Cq
and then because of n—EC A, 4,C 4,.

Then by transfinite induction one can easily choose two increasing
sequences oy, 7,5 <<« such that o, e x— 4, A,’ Co, for v< 9, and 7, > a,
for » = 9. Then

{o: n< %}C%wU{A,ﬂ: < %},

This proves (9) and Theorem 1.

Proolt of Mheorem 2. Assume cf(x)<< » Lot {#,: v<<of(x)} be
a normal sequence of type x of cardinals less than x, tending to » such
that wy == of (%), Then

wouw g | Ky T %,y
y<of()§

Tor sy < £« w0 Lot #(£) Do the unique » for which Eenyyy—un, Put A,
= Ay {9 (E), E} fox wy 5 E<< e and F = {dy o < E< 5}

Assume § o4 < n. I (&) #»(n) then (&) e d,— Ay If #(£) = »(n)
then §ed,— 4, Hence 4, ¢ 4;. On the other hand if LCx—zx, is
cofinal in s then obvionsly

U{dy éeL}=n.

6 - Fundamenta Mathematicae LXXXT
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§ 3. Remarks.

1) First we mention that the weak assumption (4) is ingufficient to
obtain set mapping theorems of type (2) as is shown by the following
example

For n e w define

Fn) = {m < n: m iy even}w {m--1} il n v even
and
fln)y={m<n: mis odd}w {n--1} il Qs odd.

Then f(n) ¢ f(m) if n % m and there is no free set of throe elements.
(Two independent points obviously exist.)

2) The following would be a Ramsey-type generalization of the
positive part of Theorem 1.

(10) et 2<h< o and let F: [w]*~>[w]< be such that F(X) ¢ F'(¥)
for X £ ¥ e[w]®. Then there is AC w, |A| = o such that

lo— U {FX): X e[AT) > w.

‘We have examples to show that (10) is false for k= 2 even if we assume
that 7= {F(X): X e[w]*} satisfies the following stronger condition.

(11)  No member of I is contained in the union of 1 others for some
2<l< .

‘We suppress the proof.

3) We also mention that some of the counterexamples can be obtained
with set-systems F satisfying the stronger condition (11).

Using the fact that for each 1 <1< w there is @ C P(w) such that
the intersection of 1 members of @ is infinite and the intersection of 141
members of @ is finite one can strengthen the counterexample of
Theorem 1 to

(12)  For w, <x<2° there is FC P(x), |F|=n satisfying (11) and
such that

e UF| <o for P'CE, |F| =

The existence of the required & was pointed out to us by L, Pésa.

Agsnming O. H., we know that there is an I salisfying (12) and the
following condition stronger than (11). No member of B is contained in
the union of finitely many others. We did not investigate how far these
results can be generalized.

4) Finally we mention a rather technical problem. Let F: [w]*—>[@]<®
be such ‘that F(X) ¢ F(Y) for X 5 Y ¢[w]2. Does there exist an infinite
path IClw]* such that lo— (J{F(X): Xel}| > @

21 — — and A. M4t6, Ohain conditions on
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