260

For this purpose one may take as an example one of the well known modal systems, described in [4]: system M of Wright, system S4 of Lewis or system Br of Brower. But any extension MG of a theory G, received in this way, will have the following property: for any formula A of G

 $+\Delta A$ if and only if A is derivable in G.

One can see, the weak decidability of MG coincides with the decidability of G for any such extension. Hence, such modal extensions are not interesting.

References

- A. Tarski, A. Mostowski and R. Robinson, Undecidable Theories, Amsterdam 1953.
- [2] B. Wolniewicz, The notion of fact as a modal operator, Teorema (1972), pp. 59-66.
- [3] A. Tarski, A Decision Method for Elementary Algebra and Geometry, Berkeley and Los Angeles 1951.
- [4] K. Schütte, Vollständige Systeme Modaler und Intuitionistischer Logik, Berlin 1968.

DNIEPROPETROVSK UNIVERSITY, USSR

Reçu par la Rédaction le 27. 2. 1973

Some remarks on set theory XI

by

P. Erdös and A. Hajnal (Budapest)

Abstract. Let \varkappa,λ be infinite cardinals, $F \subset P(\varkappa)$, $A \not\subset B$ for $A \neq B \in F$; $|A| < \varkappa$ for $A \in F$. We give a necessary and sufficient condition (in ZFC) for the existence of an $F' \subset F$ with $|F'| = \varkappa$

$$|\varkappa - | |F'| \ge \lambda$$
.

- § 1. Let κ , λ be infinite cardinals, $F \subset P(\kappa)$, $|F| = \kappa$. Problems of the following type were considered in quite a few papers.
- (1) Under what conditions for F does there exist $F' \subset F$, $|F'| = \varkappa$ such that $|\varkappa \bigcup JF'| \geqslant \lambda \P$
- (2) Assume f is a one-to-one mapping with domain \varkappa and range F, $\xi \notin f(\xi)$. Under what conditions for F does the set mapping f have a free subset of cardinality λ , i.e. a subset $R \subset \varkappa$, $|R| = \lambda$ such that $\xi \notin f(\eta)$ for all $\xi, \eta \in R^{\frac{n}{2}}$

It was proved in [3] that (1) holds with $\varkappa=\lambda$ provided there is a cardinal τ with $|A|<\tau<\varkappa$ for all $A\in F$. In [4] it was proved that the same condition also implies the stronger statement (2) with $\lambda=\varkappa$. It is obvious that if we only assume

$$|A| < \kappa \quad \text{for} \quad A \in F$$

we have to impose further conditions on F to obtain results of type (1) and (2).

The aim of this short note is to study the answer to (1) under the following simple condition

(4)
$$A \subset B$$
 for all $A \neq B \in F$.

Here we get a complete discussion without using G.C.H. and we give the solution of Problem 73 proposed in our paper [1] as well.

We mention that in a paper with A. Maté [2] we are going to study the answer to (2) under condition (3) and under some additional and more sophisticated conditions. To have a short notation we say that $P(\varkappa, \lambda)$ is true if (1) holds for all $F \subset P(\varkappa)$, $|F| = \varkappa$, satisfying (3) and (4).

§ 2.

THEOREM-1. Let \varkappa be regular. Then $P(\varkappa, \lambda)$ holds iff either $\lambda < \varkappa$ and $\imath^{\lambda} < \varkappa$ for all $\imath < \varkappa$ or $\lambda = \varkappa$ and \varkappa is weakly compact.

THEOREM 2. If κ is singular then $P(\kappa, 1)$ is false.

Proof of Theorem 1.

First we prove

(5) If $v^{\lambda} \geqslant \varkappa$ for some $v < \varkappa$, $\lambda < \varkappa$ then $P(\varkappa, \lambda)$ is false.

Proof. Let λ_0 be minimal such that there is $\nu < \varkappa$ with $\nu^{\lambda_0} \ge \varkappa$, and let ν_0 be minimal such that $\nu_0^{\lambda_0} \ge \varkappa$. Then \varkappa being regular $\nu_0^{\lambda_0} < \varkappa$.

It is well known that then there are X, $|X| = v_0^{\lambda_0}$ and $G \subset P(X)$, $|G| = v_0^{\lambda_0}$ such that

(6)
$$|A| = \lambda_0 \text{ for } A \in G \quad \text{and} \quad |A \cap B| < \lambda_0 \text{ for } A \neq B \in G.$$

Let $H=\operatorname{Co}(G)=\{X-A\colon A\in G\}$. We may assume $X \cap \varkappa=\varnothing$. Let $\{B_{\xi}\colon\ \xi<\varkappa\}\subset H$ be one-to-one, and put $A_{\xi}=B_{\xi}\cup \xi$ for $\xi<\varkappa$; $F=\{A_{\xi}\colon\ \xi<\varkappa\}$. Then $|A_{\xi}|<\varkappa$ for $\xi<\varkappa$, $|X\cup\varkappa|=\varkappa$, $|F|=\varkappa$, $A_{\xi}\not\subset A_{\eta}$ for $\xi\neq\eta<\varkappa$ since $|B_{\eta}-B_{\xi}|=\lambda_0$. On the other hand if $F'\subset F$, $|F'|=\varkappa$ then, by (6),

$$|X \cup \varkappa - \bigcup F'| < \lambda_0 \leq \lambda$$
.

This proves (5).

Now we prove

(7) Assume $\lambda < \kappa$, $v^{\lambda} < \kappa$ for all $v < \kappa$ then $P(\kappa, \lambda)$ holds.

Proof. Let F be a system satisfying (3) and (4). Let $\xi < \varkappa$. Put $F_{\xi} = \{A \in F \colon |\xi - A| \geqslant \lambda\}$. If $|F_{\xi}| = \varkappa$ for some ξ then by the regularity of \varkappa and by $|\xi|^{\lambda} < \varkappa$, (1) holds. We assume $|F_{\xi}| < \varkappa$ for all $\xi < \varkappa$ and we obtain a contradiction. Pick $A_{\xi} \in F - F_{\xi}$ for each $\xi < \varkappa$. Put $g(\xi) = \xi - A_{\xi}$, $h(\xi) = \sup g(\xi)$. We can choose a regular cardinal τ such that $\lambda \leqslant \tau < \varkappa$ otherwise $\lambda^{+} = \varkappa$, $\lambda^{\lambda} \geqslant \varkappa$.

The set $K_{\tau} = \{\xi < \varkappa : \operatorname{cf}(\xi) = \tau\}$ is stationary in \varkappa and $h(\xi) < \xi$ for $\xi \in K_{\tau}$. By Fodor's theorem there are $\varrho < \varkappa$ and a stationary set $C \subset K_{\tau}$ such that $h(\xi) = \varrho$ for $\xi \in C$. By $|\varrho|^{2} < \varkappa$, there is $C \subset C$, $C \subset C$ cofinal in \varkappa such that $g(\xi) = g(\eta)$ for $\xi, \eta \in C \subset C$. Choose $\xi < \eta \in C \subset C$ such that $A_{\xi} \subset \eta$. Then $A_{\xi} \subset A_{\eta}$ a contradiction.

(5) and (7) prove the first part of our theorem.

We now prove

(8) Assume $P(\kappa, \kappa)$. Then κ is weakly compact.

Proof. By the assumption $P(\varkappa,\lambda)$ holds for $\lambda < \varkappa$ hence, by (5), $2^{\lambda} < \varkappa$ for $\lambda < \varkappa$; \varkappa is strongly inaccessible. Assume \varkappa is not weakly compact. Then there is an Aronszajn tree $\langle \varkappa, \prec \rangle$ on \varkappa . Let T_{ξ} denote the set of elements of rank ξ in the tree and put $S_{\xi} = \bigcup T_{\eta}$. P is said to be a path of length ξ if P is a chain $\subseteq S_{\xi}$ and $P \cap T_{\eta} \neq \emptyset$ for $\eta < \xi$. It is well-known that there is a set $K \subseteq \varkappa$, $|K| = \varkappa$ such that there is a maximal

path P_{ξ} of length ξ for each $\xi \in K$. Put $F = \{S_{\xi} - P_{\xi} : \xi \in K\}$. Assume $\xi < \eta$, ξ , $\eta \in K$. Then by the maximality of P_{ξ} $S_{\xi} - P_{\xi} \not\subset S_{\eta} - P_{\eta}$ and obviously $S_{\eta} - P_{\eta} \not\subset S_{\xi} - P_{\xi}$.

On the other hand let $L \subset K$, $|L| = \varkappa$, $x, y \notin \bigcup \{S_{\xi} - P_{\xi}, \xi \in L\}$. Then there is a $\xi \in L$ such that the ranks of x and y are less than ξ , hence $x, y \in P_{\xi}$ and $x \leqslant y$ or $y \leqslant x$.

It follows that $\varkappa - \bigcup \{S_{\xi} - P_{\xi} : \xi \in L\}$ is a chain and thus it has cardinality less than \varkappa .

Thus F establishes not $P(\varkappa, \varkappa)$. Hence if \varkappa holds \varkappa must be weakly compact. This proves (8) (see Problem 73 of [1]).

Finally we have to prove

(9) If \varkappa is weakly compact then $P(\varkappa, \varkappa)$ is true.

Proof. Let F be a system of sets satisfying (3) and (4). It is well known that then there are $A \subset \varkappa$ and $\{A_{\xi} \colon \xi < \varkappa\} \subset F$ such that $A \cap \xi = A_{\eta} \cap \xi$ for $\xi \leqslant \eta < \varkappa$. First we claim that $\varkappa - A$ is cofinal in \varkappa . Otherwise there is ξ such that $\varkappa - \xi \subset A$. Then there is $\xi < \eta$ such that $A_{\xi} \subset \eta$ and then because of $\eta - \xi \subset A$, $A_{\xi} \subset A_{\eta}$.

Then by transfinite induction one can easily choose two increasing sequences σ_{η} , τ_{η} ; $\eta < \varkappa$ such that $\sigma_{\eta} \in \varkappa - A$, $A_{\tau_{\eta}} \subset \sigma_{\eta}$ for $\nu < \eta$, and $\tau_{\tau} > \sigma_{\eta}$ for $\nu > \eta$. Then

$$\{\sigma_\eta\colon\,\eta<\varkappa\}\subset\varkappa-\bigcup\left\{A_{\tau_\eta}\colon\,\eta<\varkappa\right\}.$$

This proves (9) and Theorem 1.

Proof of Theorem 2. Assume $\operatorname{cf}(\varkappa) < \varkappa$. Let $\{\varkappa_* \colon \nu < \operatorname{cf}(\varkappa)\}$ be a normal sequence of type \varkappa of cardinals less than \varkappa , tending to \varkappa such that $\varkappa_0 = \operatorname{cf}(\varkappa)$. Then

$$\varkappa = \varkappa_0 \cup \bigcup_{r < of(x)} \varkappa_{r+1} - \varkappa_r.$$

For $\varkappa_0 \leqslant \xi < \varkappa$ let $\nu(\xi)$ be the unique ν for which $\xi \in \varkappa_{r+1} - \varkappa_r$. Put $A_{\xi} = \varkappa_{r+1} - \{\nu(\xi), \xi\}$ for $\varkappa_0 \leqslant \xi < \varkappa$ and $F = \{A_{\xi}: \varkappa_0 \leqslant \xi < \varkappa\}$.

Assume $\xi \neq \eta < \varkappa$. If $v(\xi) \neq v(\eta)$ then $v(\xi) \in A_{\eta} - A_{\xi}$. If $v(\xi) = v(\eta)$ then $\xi \in A_{\eta} - A_{\xi}$. Hence $A_{\eta} \not\subset A_{\xi}$. On the other hand if $L \subset \varkappa - \varkappa_0$ is cofinal in \varkappa then obviously

$$\bigcup \left\{A_{\xi} \colon \xi \in L\right\} = \varkappa.$$

6 - Fundamenta Mathematicae LXXXI

§ 3. Remarks.

1) First we mention that the weak assumption (4) is insufficient to obtain set mapping theorems of type (2) as is shown by the following example

For $n \in \omega$ define

$$f(n) = \{m < n : m \text{ is even}\} \cup \{m+1\}$$
 if n is even

and

$$f(n) = \{m < n : m \text{ is odd}\} \cup \{n+1\} \quad \text{if } n \text{ is odd}.$$

Then $f(n) \not\subset f(m)$ if $n \neq m$ and there is no free set of three elements. (Two independent points obviously exist.)

2) The following would be a Ramsey-type generalization of the positive part of Theorem 1.

(10) Let
$$2 \leq k < \omega$$
 and let $F: [\omega]^k \rightarrow [\omega]^{<\omega}$ be such that $F(X) \not\subset F(Y)$ for $X \neq Y \in [\omega]^k$. Then there is $A \subset \omega$, $|A| = \omega$ such that

$$|\omega-|$$
 $|\{F(X)\colon X\in [A]^k\}|\geqslant \omega$.

We have examples to show that (10) is false for k=2 even if we assume that $F = \{F(X): X \in [\omega]^k\}$ satisfies the following stronger condition.

No member of F is contained in the union of l others for some $2 \leq l < \omega$.

We suppress the proof.

3) We also mention that some of the counterexamples can be obtained with set-systems F satisfying the stronger condition (11).

Using the fact that for each $1 \le l < \omega$ there is $G \subset P(\omega)$ such that the intersection of l members of G is infinite and the intersection of l+1members of G is finite one can strengthen the counterexample of Theorem 1 to

(12) For $\omega_1 \leqslant \varkappa \leqslant 2^{\omega}$ there is $F \subset P(\varkappa)$, $|F| = \varkappa$ satisfying (11) and such that

$$|\varkappa - \bigcup F'| < \omega$$
 for $F' \subset F$, $|F'| = \varkappa$.

The existence of the required G was pointed out to us by L. Pósa. Assuming C. H., we know that there is an F satisfying (12) and the following condition stronger than (11). No member of F is contained in the union of finitely many others. We did not investigate how far these results can be generalized.

4) Finally we mention a rather technical problem. Let $F: [\omega]^2 \to [\omega]^{<\omega}$ be such that $F(X) \subset F(Y)$ for $X \neq Y \in [\omega]^2$. Does there exist an infinite path $I \subset [\omega]^2$ such that $|\omega - \bigcup \{F(X): X \in I\}\} \geqslant \omega$

References

- [1] P. Erdös and A. Hajnal, Unsolved problems in set theory, Proceedings of Symposia in Pure Mathematics, 13, Part 1. A.M.S. Providence, R. I. (1971), pp. 17-48.
- — and A. Máté, Chain conditions on set mappings and free sets, Acta Sci. Math. 34 (1973), pp. 69-79.
- G. Fodor, On a problem in set theory, Acta Sci. Math. 15 (1953-54), pp. 240-242.
- [4] A. Hajnal, Proof of a conjecture of S. Ruziewicz, Fund. Math. 50 (1961), pp. 123-128.

Reçu par la Rédaction le 24. 4. 1973