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A mnew construction of a non-constructible 4! subset of o

by

Ronald B. Jensen and Hivard Johnsbriten (Oslo)

Abstract. A new proof is given of the fact that it is consistent with ZFC that
w, = o’ and there exists a non-constructible 41 subseta of w. In fact, a satisfies a IT}
condition ¢ such that the following in provable in ZFC: If w;= ol, then there is af
most one z C o satisfying @-p is defined from an o-sequence of normal trees in L. Using
subtrees, we force w fimes with Souslin trees. The set o is defined from the sequence
of generic branches.

1. Introduction. In this paper we present a new proof of the fact
that it is consistent with ZF to assume that there is a non-constructible 43
subset of w. This was originally proved by Solovay, and improved (for
the case that ol < w,) by Jensen and Solovay. See the papers by Jensen
and Solovay [4] and Jensen [3]. The existence of a non-constructible 43
set of integers also follows if one assumes the existence of a measurable
cardinal, see Solovay [7]. For more historical details we refer to [3], [4]
and Levy [6]. ’

The theorem we prove will be a slight extension of Theorem 4.1
in [4], but the method of proof is completely different, Souslin trees and
forcing with Souslin trees being our basic tools.

TeEOREM. There exists a II; formula @ such that the following are
provable in ZF:

(a) p(2)—~>2C o,

(b) V= L—"1Hxe(z),

(¢) of = w—~>Tp (),

(d) if ZF is consistent, then so i
(%) | GR+ GOHA+ oF = o,+Ta(p(@) AV = LY,

(e) if Mk ZFC+ ol = w,+op(a), and N is a cardinal preserving exten-
ston of M, then N ko(a).

The assertion (¢) is our improvement of [4, Th. 4.1]. The theorem
has the following corollary: )
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COROLLARY. If ZF is consistent, then so are

(i) ZF+GOH+ of = w,+V s LMo C w(ae dzAV = L%,

(i) ZFCH+ TO0H+ of = w,+HaC w(a e dina ¢ ID).

If {a}¢II; (ie. o is implicitly II;- definable), then clearly a ¢ 4%,
Thus a model of (x) in the theorem is a model of (). It Mk &*)/\(p(ag
then ({:) and () give us that ¢ will be implicitly defined by @ in ever3;
extension of M which preserves w,. Thig gives (ii) (use Cohen’s conditions
to destroy OH).

) In section 2 we recall some bagice material about

ecall Souslin trees, the
proof of the theorem is given in section 3.

2. Some preliminaries. A tree is a partially orderved set (T , <) such
that {y] ¥ < @} is well ordered for every s e I. Let T'= T, <> be a tree
and define ’

ol = sup {ly|| y < a},
the level of #. (x| equals the order type of the predecessors of x.) Set
Tia={zel| |o|<a},
To={weT| |a|= o},
and define, for X C T
[X| = sup{|a|| @ eX}.
IT| is called the length of T.

_If T<Y ory <z o and y will be called comparable;
are sncomparable, and we write thig |y, A chain is
subset of T'. A branch b is a chain which is < -closed (i.e. if # ¢ b and Y < @
then y eb). Tf |b] = a, b is called an a-branch. An antichain is a éugse{‘.
pf T consisting of pairwise incomparable elements of 7. An antiemﬁn
18 & mazimal antichain if it is not included in a larger antichain, A tree

<T! \<~> 8 ¢ a I I 1
1 a“.ed d }Sousllﬂ'b tree ]f 1 = aﬂld ever Y chna < < €
h LTL qlll(l 1}]3.“(/1[,\1]1

It will often be important that the trees
properties. We call a tree KT

(i) 1T] = q,

(i) T has a leagt point,
(iii). each non-maximal point has at least two immedia
(iv) each point hag successors at each level < q,

{(v) each branch of limit length has at
(vi) each level T, is countable,

A normal tree certainly has length < 7 i
) <o, (otherwise, by (iii) and (iv
To, will be uncountable). Tt is also clear that a normai tree T’ of lelggt;;

otherwise they
2 linearly ordered

satisfy certain “normality”
v <O & normal tree of length o if:

e suecessors,

most one immediate successor,

.
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o, 13 Souslin if every autichain in T is countable. (For, from an uncount-
able chain in T' it is easy to construct an uncountable antichain (again
using (iif)).)

The proof in section 3 uses “forcing”. For basic facts we refer to
Jech [1] and to Jensen [3, § 2]. A Souslin tree is a natural object to use
as a set of forcing conditions. We reverse the ordering, and hence two
conditions are incompatible iff they are incomparable in the tree. Since
every antichain in the tree is countable, the set of conditions satisties OQC.
So cardinaly are preserved in the extension. The generic set is simply
an o;-branch through the tree, s0 in the extension the Souslin tree is
“killed”. (A detailed proof of this may be found in Solovay, Tennen-
baum [8, § 2.2].) The reader should also observe that if M is a countable,
transitive -standard model of ZFC and M kT is Souslin, then every
o¥-branch of T is T-generic over M.

The proof of section 3 also uses iterated forcing, as developed by
Solovay and Tennenbaum in [8]. The particular fact we mneed can be
stated as follows: Suppose we iterate the foreing process o times and
then take the direct limit. (By the “direct limit” we mean the extension
obtained by using the direct limit of the corresponding complete Boolean
algebras as the set of conditions, see [8].) If OCC is satisfied at each level
in the iteration, then the direct limit itself will be a COC-extension of
the ground model. Hence cardinals will be preserved.

‘When forcing with a Souslin tree, we principally add one generie
branch. But other w;-branches may be definable from it, and hence in
the extension, the generic branch may not be definable. Our proof is
heavily based upon a construction due to Jensen of a tree T with the
following properties: )

(i) ¥V = L—>T is Souslin,
(i) wf= w,~>T has at most one w,-branch.

If we force with this tree, we add exactly one branch. The tree T, as
constructed below will have these properties, 80 the construction of such
a tree can easily be extracted from our proof.

The reader not familiar with Jensen’s construction of a Souslin tree
in L is advised to consult [1] or [2].

In conclusion a word about definability. Let H, denote the set of
hereditarily countable sets. For X CH, we write X ¢ II(H,,) if X is
II,-definable in H,, without parameters. (Similarly, we define X ¢ Zn(H,,)
and X e 4q(H,)).) We note the well-known lemmas:

Leuma, Let X CT(w) and assume n = 1. Then
Xell,, » X ell,(H,) .
(We can also replace IT by X or 4.)

1*
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3. Proof of the theorem. We shall define in I an -sequence Tyl # € w)
of normal trees of length w! with some special properties. In I, T, will
be Souslin, and can be used as a set of forcing conditions (with reversed
ordering). In the extension cardinals are preserved, and T, contains an
o;-branch b,. From b, we can define a subtree 7% of T, which will be
Souslin. Foreing with T7 we get an «,-branch by through T, and define
T; C Ty ete. After w such steps we take the direct limit. Tn this Ffinal
extension, b, will be the unique o,-branch through T, for n e w. This
enables us 5o code <bu| 1 € w> a8 a subset @ of @ which will be implicitly
IT; - definable.

The trees T, will be defined by induction in the following way: For
successor ordinals a, T |a--1 will be defined simultaneously for each w3
for limit ordinals a, we first define 7| a1, then T,|a+41 ete., by forcing
over larger and larger models. We first state nine properties which will
be shown to hold for each T | (by induction on a), and hence for each 7',
(Most of the properties will follow trivially from the definitions.)

1) seTnhls| = a—s e {n} x (QF)*,

(2) SeluhqeQt-—>s¥gre Ty,

where QF denotes the positive rational numbers (not including 0) and x*
means concatenation of sequences. Hence, if se T, and || = a, ¢ will
be a (14 a)-gequence of the form KMy 8y, Sg, ... > The ordering <, of the
tree T i the usual initial sequence ordering, i.e. <p = C } (T)? for n e .

Simultaneously, for each # € w and e Ty, we define a subtree i,
of T, such that (for n ¢ o, T, Y,2ely):

(3) iz is a normal tree of length |2,
(4) @<, Y>to = byla],

(8) x|y and 2 is the <n-largest z <, », y—
(el ANty = LIVl = OAly Nty = {<n+-1>})
(the z above is well-defined since we have no splitting at limit
levels),
(6) Toa= Uty
xed'y
To state the last three properties we need some more definitions.
If g, e QT w {0} for » < 4, D¢, denotes the supremum of all finite partial
€2

sums if this exists, co otherwise. Let g: Q"o and [ ]+ (@2« Q* e
2y-definable bijections, and let ( )o and (), be the projections of [ ]
(ie. [(g)o, (9] = g).

For 5,5« Ty and f¢On we define

’ —— ‘,
Zp(s, 8') = [$140— 814,
B<r<|sl, 8]
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and for s,8" ¢ Ty, n>1 and f ¢ On we define

Zﬁ(sy ') = (814,01 — (Si—h«)ll .
sl 151 .
Also ‘let

Z(s,8')= Zys,s).

When T'= T, or T =1, for some x (with partial ordering <), we
require: :

(7) 2(s,8 )<< o0 for s,8eT,

(8) X(stf,s tp)< Z(s,s') when s,s e T, |s|=s'|= a>f and lim (a),

(9) itmew wiel and |z = a for i<m, yye T, y, >u, and r e QF,
then there exist ¥, ..., ¥m ¢ T such that y; > #; and ly¢| = ly,| for
1<i<m, and Z(y;, y;) <t when 4, < m.

(7) states that the “horizontal distances” shall be finite. The “vertical

distances” »' s,,, can (in fact: must) be infinite for some s.
»<|8|
‘We now turn to the construction of the trees T, and the subtrees .

Assume V= L. As described above we define T,|a for new by 'in-
duetion on a.
Case 1. a=2. For new set

Tal2 = {<nd} v {ln, ] g€ Q7Y
Yy =0,
Uy = {<n1>}  for

Case 2. a= f-+3. For new set

ge Q.

Tola=Ta|f+2 v {z*)] ® € Ta|f+2A|z| = f+1Ag e Q).
For @ e Tn|f+2, |#/ = f-+1 and ge Q" we now set
taxggy = o v {Y*L "Dy e tonlyl = BAr e QT .
Case 3. lim(a). For h € w, we have

Tola=\JTu|B.
f<a

In this case I, is already defined for each z e Ta)e.
Case 4. o= A+1, where 4 is a limit number. First we define Tl a.
Let 7, , be the least n such that

2 is countable in VL,, .

TylieL,, L,FZF~ and
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ZF~ denotes ZF without the power set axiom. Set T = T|4 and 5 = 5, ,.
Tyla will be determined by forcing over L,. The set P of conditions is
defined as follows:

FrhyeP <f’ hy eﬂn,
fru—T  for some finite u Cw,
@)= 1f(G)  for i,jeu,
B wr—>QF,  where u*= (G, j>| i,j ¢ wni# j},
h(d,j)=h(j, 1) for (4, j»eu* and

Z(f@), f(D)< h(i,5)  for i,y eur,
Kfy By < ffy W) o dom(F) D dom (f/) AR D B A
AVi edom(f') f(i) =0 f'(4).

Let @ be the <y -least P-generic set over L,, where < denotes the
canonical well-ordering of L. Sei

be={f(i)] Hh{f, > e G} and &= (b for deco,
b= U] @ffy e G}

Cramm 1. (i) h: {<3,§> € 0¥ ¢ % j}—0t,

(i) each by is a A-bramch of T,

(iliy the bramches b; cover T, i.e. T C | Jb;,

. iew

(iv) by = by when 4 £ j,

(V) 2(se,85) < h(4,]) for i + j,

(vi) if O e L, is & mawimal antichain in T, then by ~ O 5= B for all i ¢ w.

Proof. Though somewhat technical, the proof is standard. As an
illustration, we prove (ii). (Detailed proofs of the other party can be
found in Johnsbraten [5].)

Let ¢ e w. From the definitions it easily follows that the elements
in b; are comparable, hence b; is a chain in 7. Trivially, by i =2y~ closed,
and therefore a branch. Suppose now that b; C Ty|p for a B << A Set

A= {<f, W If0)] = B} .

4 is obviously L,-definable, and we now prove that it iy dense.
Let <fo, by eP. We can trivially assume that i e dom(f,). Leb
y = |fo(O). Let ys =, fy(i) with [y = B. Let » € @1 such that

7 < min (h(§, )= Z(fl), S0l 7, < dom(f) Aj 2 K} .
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By (9) there exist y; for j e dom(f,) such that Y5 20 fo(d), sl = |ys| and
Zy(y, yp)<r for j,% edom(fy), j k. Define {fu; > by: dom(fy)
= dom(fy), by = hy and f,(§) = y; for § ¢ dom(f,). Then we get

Z(fl(j);ﬁ(k)) = Zy(?/j: Yx)+ Z(fo(.?.); fo(k))
<7+ Z(Fol ), fo(B)) < ho(dy ) = hy(4, K)
for j,kedom(f), §+#%k Hence s> ePy (fyy ) < <{fyy > and
Fiylyed _

8o 4 is dense, and thus G ~ 4 contains an element {f', B>, Now
F'(4) e by, s0 by the assumptions |[f'(i)| < B, contradicting the fact that
fhhyed QED.

We set

Tola= T4ld v {sg| tew}.
(t,, for i e w will be defined below.)

CrAmv 2. (i) (9) continues to hold, :

(i) Z(ss B, 81 M )<< Z(si,s8q) for i,jew, 4 %5 and p<<

The proof of Claim 2 uses the same technics as above, and we omit it.

We now assume that T’ |« is defined, and proceed to define Toosla.
First we define t; for # e Ty|a, |2| = A by

Iy = Utzl -
y<nx

Let %,4,, be the least 5 such that

Tpla, Thiyldy g and [ ] are in L,, L,k ZF~ and 1 is countable
in L,

T, y1la will be defined by foreing over Ly, - For e Tula, o) =1
define P® by the same formula as for P above, but let % now denote N1, 2
and T =1, and replace <, by <,.,. (The expression (s, s') now has

a different definition than above. The distances are measured along the
“second projections of the rationals in the sequences s; the first projections

determine the a’s for which s e#,.)

Let G be the <;-least P®-generic set over L,,. ,» and define b7,
s7 and A* as above (with G instead of @). Then the modified versions
of Claim 1 and Claim 2 ave valid. So we set

Tplo=Toldv{sfl icorweT,|an|z] = 1}.
Oase 5. a= A-+2, where 1 is a limit number. For n ¢ » we set
Tula= Tuld v {o*{@| @ e Tu|2+1Al2] = Ang € O},
as in Case 2. Now let new and @ e Th|A+1, |o|= A The branches b%

(¢ € w) are exactly the 1-branches in 4, which were extended to s% in T, 1e
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We split them into  parts (each of which will be shown to cover tz) and
set, for ge O

torcay = Lo {Sgltgm] 7€ @1}
Cramm 3. 4, C \J by, for ge Q.
reQt
Proof. Let y ey, Set

A= {f" W) eP?| By e QF y <0y f'g([q, 7D)} -

Then 4 is L, -definable and dense in P+, So leti (f', 'y ¢ G* ~ 4. Then
Y <pir (910, 7)) € by 4y for some r e Q. QE.D.
The induction is complete, and for new we set
Tp=\JThla.
a<<wy

From the definitions, Claim 1 (ii) and (iii) and Claim 38 it follows that
each T, is a mnormal tree of length w,. (1)-(6) are trivially satisfied.
(7) follows from (v) in Claim 1, (8) and (9) from Claim 2.

‘We have not motivated the introduction of the treey f;. The main
reason is that we can mow define a certain function f. This function will
be a basic tool in the rest of the proof. For new, ¢ T,pq) o) =1 we
define .

f(@) = the <,-least y ¢ Ty such that ® ety .

This is well-defined by (8) and (6). ((6) gives the existence of such a g ,
(B) gives uniqueness.) By (4), |f(@)] = |o|+1.
Orama 4. If o = w,, then each tree Ty has at most ome w,-branch.

Proof. By induction on n. Suppose first that b 5= b’ are two
o;-branches of 7). By (8), ‘

KE(UD o, U 1) v< oy Alim(n))

“will be an uncountable, strongly increasing sequence of reals, impossible.
Now, assume the claim.holds for n, and suppose b % b’ arve two

o;-branches of T,,,,. Let " and b be the images of b and b’ under I

more precisely, :

&31(1 similarly for b, Then hoth 5" and b’ are w, -branches of T, hence
b = 1", But then both b and b’ are included in | tz, 80, again by (8)

web”

’

(UL by, U b9)] v< o Alim(s))

" forms an uncountable, strongly increasing sequence of reals. Q.B.D.
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‘We now proceed to find a model of (*) in the theorem. Let M he
a countable, trapsitive standard model of ZF--V = L, and let (Ty| # € o)
be the above described sequence, constructed inside M. M will be ex-
tended by forcing. The set of conditions is given by

P={{pyy s Dud| newApye TAVi<<np; et,},
(Poy oy Py < Py ooy Py W= MAVI< M Py =, D50

Let @ be P-generic over M. We will later show that cardinals are
preserved in M[G]. Set, for new

by = {pn] p € GAn e dom(p)}.
The following claim is trivial.

CLAIM B. (i) by is an o¥-branch of Ty for n e w,

(i) M[<bn| n e w)]= M[G].

Now let My= M and T; = T,. By induction, assume that M, and
Ty C Ty ave defined such that T is Souslin in M, and b, C T%. (If not,
stop the induction.) Then b, is Tj-generic oyer M,. Let M, ., = Mu[bn]
and set .

T ::-;-1 = U Ig .
zebn
Trivially, b,,, C Th,,.

That the definition above is not interrupted will be shown in Claim 6.
For this we need to code w-sequences of rationals ag subsets of w. So let
k: (Q)“— T(w) be some reasonably defined bijective map.

Crama 6. T, is Souslin in M, for n e .

Proof. The proof that Tj is Souslin in M, is just a slight simplifi-
cation of the general case below (drop the .4), so we omit it. Thus, assume
that Ty is Souslin in M,. Hence cardinals are preserved under the trans-
lation to M, .

We work in M,,,,. It is obvious how, using the function &k defined
above, we can code b, as a subset A of w, such that 4 ~ a codes byla
for all limit numbers ¢< w;. Then V = T4

Set 7' = Tp,,, and assume ¢ C T is & maximal antichain. We wanst
to show that ¢ is countable. Of course, ¢, T ¢ L. So let

M<JTZ  such that €,TeM and M is countable.

Then wy~ M e On. Set w, n M = a. There exist aniquely determined
z,  such that

m M & L#”".


Artur


288 R.B. Jensen and H. Johnsbriten

Then, by elementary equivalence,

7(w) = a,
w(T) = Tla,
#a(C0) = 0nTla and
0~ Tlais a maximal antichain in 7|e.
Since o is countable in L,,?m‘u, but not in Lg“‘“, we have that
B<prr,ar Now Tpla+1 ELnﬂ-l-l.a. Hence by|a and thus also 4 ~a lie
in I, So

i1, q " Tdne I
s g, q
Now, using (vi) in Claim 1, we have that 0 ~ T|a is maximal in Ta-1,
and hence also in 7. 8o 0 == ¢ ~ T'| « and therefore C is countable. Q.1.D.
Let N be the direct limit of the M,’s. We know that cardinals are
preserved, 50 N k wf = w,. By Claim 4, in N, b, is the unique w¥-branch
through T for new. 8o <(bx| e w) ¢ N, and hence

MG = M[<by] new)]CN.

(In fact, they are equal.) Hence cardinals are preserved also in M[G].

We shall now pick out the sequence of points in the branches bn of
level 1 and code it as an & C o. By tuse of the function fwe then show the
curious fact that <bs| % ¢ @) is constructible from a.

For new let S, be the point in &, such that 18| = 1. Let
8 = {8u| n € w}. Notice that each &, is equal to <(n, ¢> for some ¢ QO+,
This means that § ¢ (Q7)*. So let 4= k(8). Also define, for n ¢ w and
8 Co: gy = {n, (57 @))u). (Then 8, = a, for n e w.)

Crang 7. M[a] = M[G].

Proof. In M[a], by induction on a< w;, we define o sequence
<byl m € w> of branches which we shall prove is just by n e wd.

(i) a=0: Set 2% = ¢n> for n ¢ .

(i) a=1: Set &} = a, for n ¢ .

(it}) a= f+1 (8> 0): Set a2 = f(af,,) for n € o.

(iv) lim(a): If each {#f] f< a} is a branch in Ty with a suceessor
at level a, let @, be this successor. It not, interrupt the definition.

Thus the induction goes up to an ordinal y < wfl. Let b, = {22 a< ).
By induction on a we show that @, € by, for m € o, from which it follows
that by, = b, for every n. .

This is trivial for « = 0, 1. 8o let a = B+1 (8 > 0) and assame that

8 ; : )
%, € by for m e w. Let n e w. Since wh i eTh, ), there is a 4 e b, with i,

€ly. By (4) we may assume that [y| = «. But then, by the definition of f,
Y =f(@h 1) = 0. Hence a2 eb,.
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Now, suppose a is a limit number, and assume {&f| << a} C by
for n e w. But each b, is an w-branch in Ty, so {#f] § < o} has auniquely
determined successor in T, at level a. Hence the definition is never
interrupted.

S0 b, =1, for new, and hence (bu| new) is definable in M[a].
So M[G]1C M[a]. The converse is trivially true by the definition of a.
Q.E.D. ‘

Now we define a formula ¢ which we prove to be II(H,). Since
@ will define a subset of T(w), ¢ will be equivalent to a I} formula, by
the lemma given in section 2. So it"is enough to prove that ¢ (itself)
satisfies (a)-(e) in the theorem. ¢ is defined as follows:

T o) o rCoAVa< ol Hp e X Tilat+l Vreo

i€

(a £ 0—9(19,, € Tyl a+1APa| = aADPr =n &0 A

AV <1 D ([l # 0->F () < a))) -

In words, ¢(x) states that on every level we can pick a point Pa from
every tree Ty, lying above @, (the mth point in the decoding of #), such
that for all w beneath p, ., f(u) will lie under p,. That M[a] F ¢(a) is
easy: Pick the points p, from the branches b,.

Cratv 8. ¢ 4s I, (H,).

Proof. We claim that (Ty|a| ¢ < ofAnew) and f are 4, (H,).
The sequence above is defined by recursion. The reader should check
some details in the construction and convince himself that the in-
duction clause is 4y in L,r. (For instance: Show that the expression “@ is

the <z-least P-generic set over L, ” is 4; in L,p in the parameters T'
and «.) But then the sequence <Tula| a < wfAnew) is X in Lyp. Since
wp and L b are 2\(H,,); the sequence above is 4,(H,, ). f is treated in the
same way. We then replace :
“Va< ol Tp e X Tilat+l..”
iew
by
“Vo, T eH,(a< WP AT = X Ti|a-+1-+Hp e T...)7.
iew
“a < 0 iy Z(H »,)y hence the expression inside the parenthesis is II,(H,, ),
and we are done. Q.E.D.
CrAM 9. (i) Assume ¢ (x). Then, for n ¢ w, there exisis an wr-branch
by C T such that oy € by.
(i) Assume ok = w,. Assume ¢(x) and p(y). Then ©=7y.
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Proof. (i) For 2 € w, set
by = {<n>} v {ps| p has the property stated in the definition of [
with respect to @} .

Then each b, has points at every level < oF, so it remaing to prove that
by is linearly ordered. Obviously, @ <,y for new and Y € by.

So assume that p and p’ have the properties given in ¢ with respect;
to @, and suppose that palp, for some new. We seek a contradiction.

First we prove that p,,|p,, for m = n. If not, let m = n be such that
Pl P DUE Py gy Proys - Lt 2 be the largest 2 <y Dony Dy 20 Lot
¥ <1 Pmtay 1#'] = |2]. (Notice that 2] = 1.) By our agsumptions about P
and p', f(2') <y Py Prp- Bt this is impossible, since f(&') >n 2

So let 2 be the largest 2 <<, Py Doy, T0r m = n. By the same argunent
we must have

I’gnl > Izn—l.ll > |zn+2[ > ?

which is impossible. ‘

(i) If # # y, then @, # y, for some ». But then, by (i), 7' will con-
tain two different of'-branches, which is impossible by Claim 4. Q.E.D.

Now, (a) in the theorem is trivially satisfied by @. From (i) in Claim 9
we obtain Hap(x)—V s I, which is equivalent to (b). (¢) is exactly (ii)
in Claim 9. In M[a], () holds, so (d) is clear. (GCH ig implied by V = L%.)
(e) is clear from the absoluteness in the construction (or simply by Shoen-
field’s absoluteness theorem). The proof is complete.
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Banach spaces and large cardinals

by
Jussi Ketonen (Berkeley, Cal))

Abstract. The purpose of this paper is to introduce a new type of a basis-notion;
sets of indiscernibles, for Banach spaces. A structural theory for Banach spaces generated
by sets of indiscernibles is developed. It is shown that any Banach space of the cardin-
ality of a Ramsey cardinal has a set of indiscernibles of the same cardinality and that
consequently it has a big subspace admitting non-trivial projections. The behaviour
of linear operators on spaces of large cardinality is also studied.

0. Introduction and motation. Our intent is to stady the applications
of the theory of large cardinals to Banach spaces. The cardinals we choose
to work with, Ramsey cardinals, are of a fairly high order. It is
shown that the notion of sets of indiscernibles, which usually ariges
in the theory of Ramsey cardinals, has a natural interpretation in the
context, of Banach spaces. Chapter 1 is devoted to the study of the
structural theory of Banach spaces gemerated by sets of indiscernibles.
No large cardinality assumptions arve needed here except that we do
require the density character of the spaces in question to be uncountable.
It seems from the many counterexamples one can construct that the
countable case has very little coherence. Tn the remainder of this paper
we then invoke laarge cardinality assumptions in order to get sets
of indiscernibles; the general idea behind all of our proofs being
that every big enough Banach space has a big, fairly homogeneous,
subspace.

The author wishes to thank Professors Flaskell Resenthal and Per En-
flo for many helptul discussions. This research was conducted during the
author’s stay as a Miller Fellow at the University of California.

The notation and terminology conforms to that used in [1] and [2].
For example, cardinals are initial ordinals, Ordinals are denoted by small
Greel letters a, 8, ... The cardinality of the set X is denoted by |X|. The
finite linear span of the set X (if it makes sense) is denoted by [X].
Operator always means bounded linear operator.
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