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On absolutely measurable sets
Jens Erik Fenstad and Dag Nermann (Blindern—-Oslo)

Abstract. Every provable 4;-set is absolutely (uniformly) measurable. The proof
is by forcing and is obtained by analyzing an argument of R. Solovay. In most cases
there are more absolutely measurable sets than provable 4%-sets. The results are next.
lifted to arbitrary Polish and analytic measure spaces, e.g. it is shown that if every II;
subset of R is absolutely measurable, then so are also the II, subsets of an analytic
measure Space.

Let E be an analytic space, i.e. B is a Hausdorff space which is the
continuous image of Baire space N?. Let & be the class of absolutely
measurable sets in H, i.e. the sets which are u-measurable with respect
to every o-finite, complete, and regular Borel measure x4 on E. The de-
finition of absolutely measurable set is highly impredicative and it has
been an important problem to obtain a more constructive description
of the class &.

A set can be “described” by its definability characteristics, hence
one precise version of the problem of how to describe the clags § is: Which
sets in the projective hierarchy over E are absolutely measurable.

It turns out that the answer to this question depends on the under-
lying set theoretic axioms. Classically, i.e. on the basis of ordinary Zermelo-
Fraenkel set theory, one can show that every analytic set is absolutely
meagurable.

And this is as far as one can go as the following basic consistency
results due to K. Godel and R. Solovay show: )

1. In 1938 Gdodel [1] showed that if one adds the (consistent) as-
sumption that every set is constructible to ZF, then there are 4} sub-
sets of R which are not Lebesgue-meagurable.

2. In the opposite direction R. Solovay [8] proved the following
regult: Assume that there is a standard model for ZF plus the assumption
that there exists a strongly inaccessible cardinal number. Then there is
a standard model for ZF (with the axiom of choice weakened to the axiom
of dependent choice) in which every subset of R is Lebesgue measurable.

But consistency results alone do not entirely answer the question.
If one e.g. assume that there is a real universe of sets, then every indi-
7 — Fundamenta Mathematicae, T. LXXXI
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vidual set of reals is Lebesgue measurable or not. What the consistency

regults show is that the current attempts to deseribe this universe through

the ZF axioms have only been partially successful.

Various axiomatic extensions of ZF have been studied which have
a bearing on our problem (e.g. constructibility, measurable cardinals,
determinateness). But it seems fair to say that there iz mo universally
accepted extension of ZF which is powerful enough to give an answer.

Thig is the background for our conecern in this paper which is to use
some recent results in set theory to pugh the classical results a bit further.
Tirst, we shall introduce the notions of absolute and provable 4i sets of
reals and show that every such set is absolutely measurable. Second,
we shall lift various results about measurability to arbitrary analytic
meagure spaces. Finally, we ghall add some remarks on how complex an
absolutely measurable set of reals can be. Much of this material appeared
in the cand. real. thesis of D. Normann [6].

Remark on background and terminology. We shall need various
regults from set theory, topology, and measure theory. In set theory we
agsume that the reader is familiar with the forcing technique. A convenient
reference is Jech [3], and we shall mostly adhere to his terminology. In
topology and measure theory we shall use a few basic facts about Polish
~ and analytic spaces, a comprehensive reference is Eloffmann Jorgensen [2].

1. Absolute 4; sets, We introduce the basie definitions.

DurmsiTion. A set A C NV is provably 4} if there are X} and II;
formulas ¥ and @, respectively, and a parameter y ¢ NV such that -

(i) we A iff V(x,y) iff O(x,y),

(ii) ZF |- VaVy(¥ (@, y)ob(z, y)).

A set A C NY is absolute 4} if there are Xj and II; formulas ¥ and &,
respectively, and a parameter y ¢ NV such that

(iii) we A iff V(w,y) iff d(z,y), ‘
and such that for all (countable) standard models M of ZF such that
v, yeM

(iv) Bz, y) itt M |=B(z,y) and ¥(w,y) iff M |=¥(r,y).

Remark. By an absoluteness argument one immediately sees that
if A is provably 4} thens.d is absolute 4}.

LieMMA. a. The class of absolute 4} sets is & o-algebra.

b. There are absolute A% sets which are mot in the o-algebra generated
by the I sels.

The proof of a follows immediately from the fact that arbitrary count-
ahle unions can be coded by a single parameter from N¥. For the proof
of b let o(I1}) denote the o-algebra generated by the II} sets. The elements
of o(II}) can be coded in the following way. First observe that there is
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a IT; set A C N x NV x NV such that every B e II; can be written in the
form

B = {w; <n,y,w <A},

for some n e N and y e N¥. We now set
(i) For all ze NV, ne N y= {1,{n,z)> is a code and

By={2; {n,>,2)ecd}.
(ii) If @ is a code, then y = <2, 2> is a code and
By= N"\B,.

- (iil) Let &= {2>;.x and assume that »; is a code for all 7, then
¥y =<3,y is a code, and
By= |JB,.
ieN
‘We can now prove in ZF that the relations “y is a code for a o(II})-set”
and “z e B,” both are 4;, hence the set {»; = ¢ By} gives the required
counterexample for b. (We omit the somewhat messy details of the proof.)

Remark. The notion of an absolute 4; set may be too “metamathe-
matical” for the taste of an analyst. It would be interesting to get some

. alternative description of this class. The notion of absolute 4; is certainly

not original with the present authors, but we are unable to find a suitable
reference in the literature. ‘
We now come to the main result of this section.

THEEOREM. If for all x ¢ N¥ there is a countable standard model M
of %F such that » e M, then every absolute A; set is absolutely measurable.

Proof. Let u be an atomless, finite, positive Borel-measure (note
that this represents no essential restriction) and M a countable standard
model of ZF in which u can be defined (— note that a measure is determined
by its values on the base elements and thus may be represented by a se-
quence of reals). We call z random over M if z belongs to no Borel-set
of u-meagure 0 which is codeable over M (— note that similar to the
coding of the o-algebra o (II}) introduced above, one can introduce a coding
for the Borel-sets; a Borel-set is then codeable over M if the code for
the set belongs to M).

‘We now observe, since M is countable, that the set of non-random
elements has p-measure 0, and that no element of M is random, since
{#} is codable over M whenever z e M.

We shall make use of the forcing technique: Let B, and B, be Borel-
sets codeable over M and define B, ~ B, it u(B,4B,) = 0. ~ i3 an equiva-
lence relation and let % be the set of equivalence clagses [B]. Set P
Vi
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= $\{[@]}. Define an ordering < by [Bi] < [B,] if u(B\B,)= 0. It is
easily verified that <P, <) is a set of conditions.

LmvymA. Let @ be random over M. Then the set
Gy = {{B]; » ¢ B, B is codeable over M, u(B) > 0}

i P-generio over M.
We content ourselves by wverifying the density condition in the

definition of a P-generic set. So let 4 ¢ M be a dense subset of P, we

firgt verify that in M

(%) w( U

B) = u(¥7).
Bled

For the proof of (x) vassunr’le that in M we have u,( | J B) = r and that
[Bled
uw(N¥)y >r (here y, is the inner measure associated with ). Let C be

a Borel-get in M such that ¢ C |J B and such that u(0)= 7. Oonsider
TIBled

D = N¥\(. By density [D] must have an extension [E] e 4. Then u(C v B)
>, but Ow B C () B,—a contradiction.
[Bled
From (x) it now follows that if # ¢ |J B, then & would belong to some

[Bled
Borel-set ¢ which is codeable over M and which has u-measure 0. Bub

this contradicts the fact that # is random over M. Hence # ¢ |_ B, which
[B]ed

shows that 4 n @ # @. This ends the proof of the lemma.

Remark. Since {#} = () B, we see that # ¢ M[@], for every # which
[Ble Gy
i3 random over M.

Let now @ be a formula which is absolute with respect to all forcing
extensions of M. Define

P(@)="Vylye N

B-®(y)).
[Ble@

We then see that W(@z)—®(w), for all ». Define
B= J{B; [B] |- ¥(&},

and let # be random over M. Using the completeness theorem. for forcing
we obtain

weBl it WB(B]|-¥(@)AweB)
itt  E[B]eG{B] |- ¥(&)

it MG |- V(6

Vit M[G2] = P (w)
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(In this part we beg the expert to overlook some looseness with respect
to the languages involved.)

The proof is now finished: Let A be absolute 4} in the parameter y
and let M be a countable standard model containing y. Let & be the
defining formula for A, we then see that for # random over M, xed
iff # ¢ B, where F is the set defined above. Since the non-random elements
over M has measure 0, it follows that AAFX is a subset of a set with
measure 0. And since # obviously is a Borel-set, we conclude that 4 is
p-measurable.

Remarks. 1. The argument above is an analysis of the appropriate
part of Solovay [8]. His purpose in that paper was to obtain a consistency
result, but our result is quite easy to read off from his proof. We have
been informed that Solovay some time ago also formulated the above
theorem, but this was never published.

2. Adding the Shoenfield absoluteness theorem to the above argu-
ment and assuming that there exists a measurable cardinal gives the
result that X sets are absolutely measurable. Thls is- due to Solovay
(unpublished).

3. Restricting ourselves to provable 4} sets we do not need the as-
sumption about inner models, hence the result is a pure ZF result. The
reason is that since the proof only uses a finite part of the axioms, we
can use a Skolem-Lowenheim argument to obtain an “inner model”.

4. Our assumption about inner models is stronger than ZF - con (ZF).
Is this assumption a reasonable addition to ZF (i.e. can it be accepted as
a true statement)? At least one of the authors are inclined to believe so.

2. Analytic measure spaces. Let F be an analytic space. There are
two ways of defining the projective hierarchy on B:

(i) Starting with the Borel-sets in B, k=1, 2, ...
projective hierarchy in the usual way.

(ii) Let z be a continuous and surjective map m: N¥ - B* we let
A C B* belong. to the class IT, itf o (4) ¢ II,.

As we shall later see the two possibilities are equivalent for Polish
spaces, but in general (ii) defines a larger class than (i). Since we will
use condition (ii) in lifting results from R to arbitrary analytic measure
gpaces, we make the following definition.

DurFINITION. Let B be an analytic space, m: NV—E a continuous
and surjective mapping, n>1, and A C E: )

A belongs to class ITy(Zn, An) itf a~%(A) e OL(ZL, AL).

LEMMA. a. Bvery Borel-set in B is of class 4.

. I, is closed under countable imtersection and wunions, and A, is
a o-algebra.

, we generate the
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c. Let A C B"*" be of class IT, and let B be the projection of A on B*,
Then B is of class 2.

d. Let my, my: NN — B be two Borel-continuous maps (m: F— B is called
Borel continuous if ¥ Borel in B implies n~(X) Borel in F), and let A
C range(m) ~ range(m,). Then

mA) e IL(E)  iff  ag(A) e ML(Zy) .

We omit the proofs. (For the proof of d note that the set
{<@, ¥>; m(@) = my{y)} is Borel.) The lemma shows that method (i) inelud-

ed method (i), and it shows that the definition is independent of fhe

particular mapping m: NV - 1.

DuriNrroN. A set 4 C T i called absolute A, if n~(4) iy absolute 4.
(Part d of the lemma above holds equally well for absolute 43 set, hence
the definition of absolute 4, is independent of the map n.)

‘We now come to the main result of this section. This was proved
by D. Normann in [6]. Let I'(#) denote any of the classes Iy, X4, dn,
absolute 4, in the analytic space E.

TemorEM. The following three conditions are equivalent:

(i) Boery set in I'(NY) is absolutely measurable.
(ii) Let <P, u> be a Polish measure space: Hvery I'(P) set is
- measurable.

(iii) Let <B, uy be an analytic measure space: Hvery I'(B) set is
wu-measurable.

Proof. It suffices to prove (ii)— (iii) and (i) — (ii)-

(ii)— (iii). Recall that every compact subset of an analytic space

is Polish. Further recall that the measures involved are regular and

o-finite, i.e. there existy a increasing sequence of compacts <K, >,.n
such that

wENUJK,)=0,
neN

Let A «I'(H), it suffices to show that A ~ K, is u-measurable for all .

w(Ky) < oo, allm.

I m: N~ is surjective and continuous, it follows that a~Y(IK,) is

closed in N, hence my*(A ~ X,) is of clags I'(N¥). Since K, is Polish,
there i3 a continuous surjection my: NV I,. As in d of the lemma it
follows that m5 (A ~ K,) is of class I'(VY), which means that A ~ K, is
of class I'(K,) in K,. By (ii), this means that 4 ~ I, is u-measurable.

()= (ii). A Polish space is homeomorphic to a G, set in IV, From. this
it follows that if <P, u> is a Polish measure space there is a Borel-seb
Q C ¥¥ and a Borel isomorphism w: @ — P. Let A ¢ I'(P); in order to show
that 4 is u-measurable, we define a measure u' on NV by

W(T) = (¥ ~ Q)

iom
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whenever the latter is defined. It is a matter of routine to verify that u’ is
a complete and o-finite Borel-measure on N¥. Since #~*4) is of class
I'(N%), it follows by (i) that u'(n~*(4))is defined, which means that x(4)
= um(n(4) ~ Q) is defined, ie. A is u-measurable.

Remarks. 1. The Borel isomorphism x between P and a Borel-set
¢ C N¥ is precisely what is needed to verify that the two methods men-
tioned in the beginning of this section leads to the same hierarchies over .P.

2. We have a strong negative result. All uncountable analytic spaces &
includes a Cantorlike subspace [2, p. 118]; hence F includes a Borel-seb
homeomorphic to NV. Then, if there is a set in I'(¥") which is not
absolutely measurable, there will be & set in I'(¥) which is not absolutely
meagurable. On the other hand: If there is a mnon u-measurable
set A ¢ I'(B) we must, by our theorem have a set B e I'(NVY) such that
B is not absolutely measurable. Thus, given I' as above, the following
two statements aré equivalent: ’

a. There is an uncountable analytic space B in which some I'(E)-set
is not absolutely measurable.

b. In all uncountable analytic spaces E, some I'(H)-set is not ab-
solutely measurable.

3. In Normann [6] several other results are generalized from N? to
arbitrary Polish and analytic spaces. E.g. one may show that every
analytic space H is the continuous injective image of some IT} set in N¥,
which suffices to show the following result: Let I} C I'(N¥) and assume
that every uncountable I'(N%) set includes a perfect subset. Then the
same is true for sets of class I'(¥), where ¥ is an arbitrary analytic space.

3. On the complexity of absolutely measurable sets. Our results so far
go in one direction: every “nice” set is absolutely measurable. Is there
a converse, i.e. are absolutely measurable sets necessarily nice? We recall
the following classical result which suffices to answer the question in the
negative in most cases.

LeMMA. There exists o set A of reals of cardinality o, such that
(iy BC A=B is absolutely measuradle,
(il BC A= B is not perfect.

Remark. In [6] the following amusing forcing-theoretic proof was
given. Let 4 consist of one code for each countable ordinal. We show that
u(4) = 0 for all atomless Borel-measures u. Let M be a countable standard
model for ZF such that u is definable over M. The proof will be done if
we can show that every z e A such that the ordinal coded by # does not
belong to M, is non-random over M. Suppose not, then z ¢ M[G,], hence
the ordinal coded by z belongs to M[&]- But M and M[G,] have the
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game ordinals. (Note, the proof needs only a finite part of ZF, so the
assumption’ about inner models can be eliminated.)

Some consequences of the lemma are:

1. If 292 > 2%, then there are absolutely measurable sets which are
not in the projective hierarchy.

2. Let A be the get of the lemma. We can prove in the theory ZF -
+VaC (oM < o) that 4 is not Z3.

3. Let 4 be the set of the lemma. We can prove in the theory ZI--PD
that 4 iy not projective.

To prove 1 use a cardinality argument. To prove 2 and 3 notice that
in ZP+VaC o(wl® < o) every uncountable Xj set contains a perfect
subset, Solovay [7], and in ZP4-PD every uncountable projective set
contains a perfect set, see e.g. [5]. ‘

Remark. The lemma does nob answer the question about the com-
plexity of absolutely measurable sets in every case. It has been proved
congistent by Martin and Solovay [4] that every Z; set is absolutely
meagurable and that every set of cardinality o, is IIj.
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Solution to a problem of Gandy’s
. by
Stephen Leeds and Hilary Putnam (Cambridge, Mass.)

Abstract. Consider the hierarchy of ramified analytical sets g, where 4, = finite
gets of integers (for simplicity, finite reals), Apy; = Teals definable by analytical
predicates with constants from Apg and quantifiers restricted to Ap, 43 = ﬁU Ap, if

<A

2 is a limit. One of the authors and Gandy independently confirmed a conjecture
of Cohen by proving the existence of a smallest B-model of analysis. Moreover, they
identified it to be Ag, where By is the least place where the hierarchy Ag stops, i.e.,
the least f such that Ag= 4p,. We prove here that for all f<fBg Ay =reals
definable by analytical predicates without constamts with quantifiers restricted to Ag.
We also show that there is a constant-free predicate which uniformly well-orders the
Apg (when its quantifiers are restrieted to Ap), and a constant-free predicate which
is satisfied by the arithmetically complete sets of order less than f.

NorarioN. We define the 4, as follows:

iy Ay = {XCN: X is finite}.

() dpp={XCN: Xis 2-N.T. definable over 4,, using constants
to name sets in A,.

(i) A, = U 4,.

g<t )

Let By = (uf)(Ap = Agyy). The ramified analytic hierarchy (RAH) is
defined to be Ag,.

It X edp,—4, we say X i of order p. It X has the property, that
any ¥ of order § (a fortiori, any ¥ € Apy) 18 arithmetical in X, we say
X is complete of order . We shall use the notation “¥Y <4 X” to express
«Y i arithmetical in X». We shall reserve the notation Eg to denote
particular complete sets of order B.

Our notation will be otherwise that of [3]. We will assume throughout
the results of [1] and [2], and especially the results on equivalences between
the RAH and other hierarchies.

Gandy (in lectures in 1967) asked the following question: If we drop
the mention of constants from clause (i) above, do we still have a charac-
terization of the same sets? In other words, if X e d;,,, does X have
a congtant-free definition over 4, We shall answer Gandy’s question
in the affirmative. Our theorem is the following:
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