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A model for HAS

A topological interpretation of the theory
of species of natural numbers

by
Dirk van Dalen (Utrecht)

Abstract. Using continuous mappings of the Baire-spaces into the Cantor space,
a model for second order intuitionistic arithmetic with set-variables is constructed.
The interpretation of sets is based on Kripke's schema. The main result is the validity
of a VX! z-uniformity prineiple.

In this short note we will provide an interpretation of the species-
version of second order intuitionistic arithmetic along the lines of Scott’s
interpretations of (real) intuitionistic analysis [5] and [6].

Model theory for HAS has entirely been lacking, in contrast to
a model theory for theories of choice sequences where some modelling
was done by Troelstra [8], Van Dalen and Troelstra [1] and“quite recently
by Joan Moschovakis, who presented a topological interpretation of
a version of Kleene-Vesley’s theory of choice sequences [2].

Since the theory of species is a relatively underdeveloped area it
seems highly desirable to have a manageable testing ground available
for a certain amount of experimenting.

For a proof-theoretic approach one should consult Troelstra [10].

The most direct modelling of HAS that, recalling Scott’s models, .
comes to mind is the representation of species by characteristic functions,
which then can be handled like choice sequences, cf. [2].

Unfortunately, from the intuitionistic point of view, not all species
(say, of natural numbers) have characteristic functions. For a charac-
teristic function y we have y(n) = 0vy(n) =1 for all natural numbers .
So for the corresponding species we have n ¢ Xvn ¢ X, for all n, ie. X is
decidable. Hence only the decidable species would be treated in the sug-
gested approach.

A more comprehensive characterization of species is obtained by
employing Kripke’s schema.
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We determine s species X uniquely by 2 funetion f: N—{0, 1}
such that
n e X< Hm/(f(<m, ny) = 1) (%)

(Amm-{m,my is a standard coding of N? onto N).

The existence of such an f is claimed by Kripke’s schema (strong
form, cf. [7], p- 96). Let us call f the Kripke-function of X. The following
topological interpretation is based on Kripke-functions.

1. The language of HAS contains individual variables #,y, 2, ... and
species variables X®, Y™, Z®, .. (n = 1). X® is an n-argument-
relation-variable. Instead of X® we write X and » ¢ X stands for X (a).
We will assume the language to contain constants for numbers and
various primitive recursive functions. The formation of terms and formulag
ig routine. We will not distinguish notationally a species and its name,
both will be denoted by &, 7, ...

2. We will freely use notations and facts from topological interpre-
tations and from pseudo-Boolean algebra.
In particular Int(S) is the interior of a set S,

8= T:=TInt(§w T), 8SOT:==>T)n(T=8).

The topological space considered here is NV (the Baire space) with the
familiar topology. 1 and 0 denote resp. N~ and O (the empty set). We
will use the guantifier \/ as a shorthand in the metalanguage.

Tf feNV then Pm denotes the open set {y| 90 = BOA...Ay(m—1)
= p(m—1)}.

Number and species variables are interpreted as numbers and continu-
ous mappings from NV into (2M)".

Truth values are inductively defined by

O

1 if 4 holds
14]] = { for A a numerical atom.,
0 else

(i)
lln € &l = {8 € NN)\/ m&(§)<m, my = 1}
= ng{ﬁl £(B)<m,ymy =1}

(*¥) The first to point out this representation, I think, was J. J. de Iongh (oral
communications). »
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and
HE Ry ooy Ton)ll = {81\ ME(B) oy ey Fony > = 1}
= U Bl £0) Chry oy Ty my =13 .

(iii) For composite formulas the truthvalues are defined by the
corresponding pseudo-Boolean operations (cf. [2], [3], [5]).

3. The validity of the axioms and rules of the two-sorted predicate
caleulus is a routine matter. See e.g. [3]. Note that the details are simpler
here than in the case of a theory of choice sequences, since the functors
here ave precisely those of first order arithmetic, cf. [2], § 2.

Since for all sentences of the first-order fragment the truthvalue
is either 0 or 1, the axioms of first order arithmetic (with the possible
exception of the induction-schema) are valid. The validity of the induc-
tion-schema is shown by an easy induction (in the metalanguage). The
only remaining, mathematically interesting axiom is the comprehension-
schema. For convenience we only treat the case with one free variable,
the general case follows accordingly.

Let A (z) be a formula of HAS with « as its only free variable. Define
a function £, which will interprete the species of all n such that A4(n)
holds, i.e., the abstraction of A(z). Define

£(8)<m, my = { Lo Al

(i) & is continuous. Let &(f)= 6. It suffices to consider individual
values of §:

6(""’3 ny = 1°E'm§ }]A(?’b)” )
3¢myny = 0« pm & A (n)] .
Hence for all a¢fm ‘
E(a)<m,ny=0.

In both cases the neighbourhood fm of g is mapped into the neighbour-
hood {y| y{m,ny = 8{m,n)} of 4. .
(if) & satisties the comprehension-schema for A ():

e &l = U {Bl &(B)<m,ny =1}

wm

’ = U{l pmCllAm)} ClI4 (@) -

Conversely, if 8 |4 (n)]| then there exists an m such that Bm C || A ()]l
Therefore : .

Be{l E(B)<mymy=1}Clnedl.
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Hence
Inedl—IA@m) and |[VoloefoA(@)|=1.

4. So far we have not considered equality for species. The (topological
interpretations of the) Kripke-functions stand more or less for the
intensional versions of species. The production of the values 0 and 1 of
a Kripke-function is intuitively thought of as the result of the activity
of the creative subject (cf. [7]). Therefore. it is not at all quite evidenst
how the Kripke-functions will behave under extensional equality.

DEFINITION.

6=l := [Va(z e oz en)=Tns ) (nedianeml)

(analogously for n-ary relations).
We verify the axioms of equality.
Ljg=¢&=1
2. It = gl = |y = & — immediate, :
8. [e=rllnim=¢&l<lé=1, apply (emb)~(bO0)<aoDg
4. Jl&=qll ~ A EN < [IA ).
"By Kleene, Introduction to Metamathematics 73, p. 399, it is suf-
ficient to cheek 4 for atoms. The only interesting case is A(§) =mneé

— immediate,

1€ = il ~ ln e &l = Int [} (lm e &] Oim < nll) ~ |In e &l
<l el -

5. Not surprisingly a version of Kripke’s schema in the language
of HAS bolds in the model (we first put it in!).
We show |[HY (Hz(x e X)« A)| = 1. Let A be given and define

1 i BnCl4l,
0 else.

£(B) (m, ny = {

Evidently & satisties [La(z e &) = [|4]] and [Va(z £ v @ ¢ £)] = 1.

6. We will show that the model satisfies a modification of Troelsira’s
uniformity principle

UP! VITzA(X, 2)>HloVE AX, ).

A more general version was put forward by Troelstra in [9] and [10]
(with @ insfead of H!), where he proved its consistency with HAS by
means of realizability. '

The principle is plausible for intuitionists as may be seen from the
following informal considerations. Suppose VX H!z A(X,z) and le
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A(X,n), A(X,m) bold where % # m and neither A (X, m) nor A(Y,n)
holds. Now consider a species Z which coincides either with X or with ¥,
depending on some unsolved problem. Say 4 (Z, p) holds. By comparing p
with m and # we can decide whether Z coincides with X, ¥ or with none
of them. This means that we can decide the problem mentioned above
positively, negatively or “open”, which is not in accordance with intu-
itionistic principles.

Note that the principle testifies the richness of the power species
of N, e.g. if one only considers decidable species then the principle fails,
as the following formula shows:

AX,2):=(@=0A0eX)V(z=170¢X).

There is an alternative explanation of the testimony of the prineciple,
namely it stresses the strength of VX H!z (the existential requirement)
when applied to species in an extensional context. This situation is com-
parable to Rice’s theorem ([4], p. 34). The verification of UP! in the
model is based on the second alternative.

The proof below uses ideas of Joan Rand Moschovakis’ [2], in par-
ticular Lemma 5 and *27.2!

We first prove an auxiliary result.

(a) If E(B)=n(B) and AN is clopen for every { then pel|lA(8)]

<« B ellAn).
Proof. (i) Let g e OL)E = ¢|| (i.e. the closure of || = &|) then

Bell A+ B elAQN.
For if By, By sy . € |E=C| and the sequence converges to f, then
B e[l A (@)ll<B €A ()], since
BielA(E)lepiellAl  (by 4.4)
and both |4 (&) and |4 ()] are clopen.
(i) Now we exhibit a suitable { such that
peClé=2¢) and peCll=l.
Detine
Eyy=n(y) & »=§,
t) =1 E(y) i \/2[y(29) = B (22)Ay(20) # B(22)],
nly) i\ 2[p(@e+1) = B(2e+1)Ay (2e+1) # f(2e+1)] .

Although in [2] the result § e CLjj¢ = £|| is fairly evident, because identity
i in that case perfectly natural, we will give the details here. Note that
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the “intensional” equality-case, in terms of Kripke-functions, is evident,
so the extensional equality-cause is expected to hold. Define g; by

2i(2i) = B (29),

0i2i+j) = B(2i+5)+1, =0
and o; by

Fi(2i1) = B(2i+1),

o2i+j+1) = B(Ri+j+1)+1, j>0.
Clearly § = %Lrg 04 == %1_1)?0 o;. We will show g; € ||£ = ¢||. Let Us = gi(24-41).
Claim: '
UiClg=14 or UsCInt() (neé]Olmell).

It suffices to show

UiClneél=lmedl of UinlnedlClnedl.
Uil edl = Uin U{5] £(3)<m, ny =1}

m

= U(Tin {8] &(8)<(m,ny = 1})

m

= U (Ui~ {8] £(8){m,ny =1})

m

since £ Y Usy=2C } Us. So
Uinlined|Clneg).
Likewise o; €||§ = 7|| i3 shown. - Now we imrediately conclude
BeCQllE=2] and feOlfE= .

(a) now follows from (i) and (ii).
(b) Let pe|lVX Hlo A(X, )|, then for each £, for some m and
a unique n B epmC|l4A(, n)|. Moreover for each #, & ||4 (5, k)| is clopen
relative to fm. Choose y € fm and put « = &(y). Define £,(8) == « for all 4.
Then, by a relativized version of (a) we have
velld(g,nf i yelAd(g,n) .
Define

m%ah={n+1 iy epmnldE, ),
! 0 else .

As m [2] ¢ is continuous. Now let & be an interpretation of the empty
species, e.g. &(f)(i) =0 for all § and i.
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Say Bm C ||4 (e, no)il, then for all y e fm we have
e(y)=0 (0=2k-0) and oy, 0)=mn+1 for y cfm.
By the continuity of ¢ there is a & such that for all 6 e p% and ¢ ¢ 0k
L] .
@(0,0) = mny+1.
Let us now consider an arbitrary &, we will look for an extensionally
equal % with suitable properties. Define 5 by
0 , it p<k,
E)<p—Fk,q> else.
Evidently 7(6) e 0k and [ = 5] = 1.
For 8 eyk and 7n(8) « 0k we have
‘P(‘S7 "7(5)) =n+1.
By definition of ¢ this is equivalent to
3 €|l (£, ma)l OT
SellAd(n, m)ll (by (a)) or
dellA(E, )l (by lE=17l=1).

We can find a sequence o, ds, J;, ..., converging to y such that
8 € |A (&, ny). Hence, by the clopeness of |l4(&, n)l, we also have
yeld(E noll.  _ ‘

This implies pm C ||4A (&, no)l| and therefore also

pm C Q I4.(&, )l -

m&q~w:={

‘ So .
' f e Int Q [4.(&, o)l = [VX A(X, mo)l
and by the uniqueness of n,
; BelLlaVX AX, ).
This leads to the desived result
VX !z A(X, 2)— MaeVX AX,z)|=1.
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Stable sets, a characterization of g,-models
of full second order arithmetic and some related facts*

by
W. Marek (Warszawa)

Abstract. We study here stable sets i.e. transitive sets with %, - reflection property.
As a result we get the following characterization of f,-models of A,: M is a f5-model
for A, iff there is stable transitive model ¥ of ZFC- such that M = N A ). We
get a generalization of both theorems of Kripke and Platek on stability of T, and
Lévy on stability of HC.

Zbierski (in [16]) gives the following characterization of §-models
for full second order arithmetic 4, (i.e. arithmetic with the scheme of
choice):

M is a f-model of Ay iff M = N np(w) for some transitive model N
of ZFC~.

We give similar characterization of f,-models of 4,. The characteriz-
ation is especially mnice in case of f§,-models. Namely we prove:

M is a fy-model of A, iff M = N @ (w) for some transitive model N
of ZFC™ such that N <, V.

The proof of these and related facts (for instance we prove that the
sets Thp(w)) and Th(HC) are recursively isomorphic) takes first two
paragraphs of the paper.

In the third paragraph we prove theorem of Kripke and Platek
about stability of 6,. We generalize this theorem getting result generalizing
both aforenamed theorem and theorem of Lévy.

Paragraph four is devoted to the study of levels of constructible
hierarchy from the point of definability. As shown in [10] pointwise
definability of levels is related with gaps, one of important means while
studying fine structure of constructible universe. 'We show that wide
class of stable ordinals gives pointwise definable levels. We finally prove
a result complementary to the one of Friedman, Jensen and Saks on
characterization of countable admissible ordinals as wil for A C .

* Part of the results was obtained in the summer of 1972 when the author worked
at S.UN.Y. at Buffalo. We express our gratitude for the Department of Mathematics
of that University.
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