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Invariant sets in topology and logic
by

Robert Vaught (Berkeley, Cal))

Abstract, A natural mapping is introduced which carries all subsets of a space
acted on by a group onto all invariant subsets. Applications are made both in the general
theory of such actions and in infinitary logic (where the space of all structures on w
acted on by ! is such an action).

Let @ be a topological group which is Polish (separable, complete
metrizable). Suppose G acts on a (say, also Polish) topological space X,
the action (g, #) +» gz being continuous. A subset B of X is invariant
it gv ¢ B whenever © ¢ B and g« . The outer invariantization or satu-
ration BT of B is the smallest invariant set including B and is given by
Bt = {z: Hg(gx ¢ B)}. Dually, the inner invariantization

B~ = {®: Vg(gneB)}.

It B is Borel, B~ and B™ are respectively coanalytic and analytic, but
usually not Borel.

We will prove that there is a set B* (another “invariantization”)
such that B* is invariant, B~ C B*C B*, and B* is Borel if B is. Indeed,
B* preserves the level of B in hierarchies both below and above the Borel.
B* has the simple definition:

. B*={z: {g: gw<B}} is comeager. A related transform was studied
by P. 8. Novikov (cf. [2]) — see § 1 below.

The transform B ~ B* is investigated in detail in § 1, under more
general assumptions than those above. In the rest of the paper, the
transform is used to obtain results about invariant sets (not involving
the transform). For example, we can infer directly from the italicized
statement above that: if ¥ is an invariant subset of X, then BCY is
invariant Borel in Y if and only if B is of the form B’ n Y for some B’ in-
variant Borel im X (cf. 2.3).
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In § 2 the transform is applied to obtain invariant forms of some
classical theorems of descriptive set theory. Thus (2.5): every dwvariant
analytic (or even Z%) set is the union of & invariant Borel sets, (2.5 implies
the result of C. Ryll-Nardzewski [22]: every orbit is Borel.) Likewise (2.7):
the reduction principle holds for invariant coanalytic and for imvariant .
(For 2.7 much simpler proofs have subsequently been obtained by Burgess
and Miller [29].)

In § 3 the transform is applied to mflmtany logic. Here X is, say,
2o%a and @ is the group o! of all permutations of w. A well-known theo-
rem of Lopez-Escobar [10] states that (x) a subset B of X is invariant
Borel if and only if B is the set Mode of all models of some sentence s of
the language L, . We obtain a new proof of (x) and as & result the first
proof of Lopez-Escobar’s interpolation theorem from its classical ante-
cedent, the first separation theorem. Our proof of (x), unlike the old
proof, shows further that: B s invariant 30 (in the Borel hierarchy) if
and only if B = Mod o for some sentence o at the a-th level in the natural
Tierarchy of sentences. Moreover, we can go above the Borel level: Let
be all sets obtainable from open sets by Borel operations plus the oper-
ation (A). L, ¢ is the enrichment of L, by the game quantifier, studied
for example in [4]. In 3.8 we show that: invariant £ = (empressible in) L, 4.

In the last section, § B, we discuss the effective aspects of § 3. In
particular we give the following effective form of (x) above: If 4 is a transi-
tive, primitive recursively closed set containing o, and 6 ¢ 4 is the name
of an invariant Borel set, then Mod § = Mod ¢ where ¢ is a sentence of L, ,
which belongs to A. The method of Lopez-Escobar and Barwise had
established the same result assuming 4 is admissible.

I am indebted to John Addison, John Burgess, John Kelley, Ashok
Maitra, Calvin Moore, Dana Scott, and Robert Solovay for helpful con-
versations. T am especially indebted to Douglas Miller for a valuable
contribution at a formative stage of these ideas, which is now awkward
to describe precigely. My indebtedness to Professor Kuratowski will be
clear on every page.

Some interesting later results of Burgess and Miller concerning in-
variant sets appear in [29].

§ 1. The *-transf(njm. The following assumption is made hence forth:
& is a Baire topological space — i.e., one in which no non-empty open
set is meager (of first category); and J: Gx X—X'. (J (g, z) is written gz.)
Sometimes we agsume further that:

(0) X and X' are topological spaces and J is continuous in each variable
separately. .

For BC X’ we shall define B*C X in 1.1 below.
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The letters g, b will always denote members of G; similarly = ,yeX.

There are two important special cases of our assumptions in-
cuding (0). If G is also a (Baire) topological group, X = X', and (gh)x
= g(he) and e = (e the identity element of @), then we say that @
acts on X. (Thus for us this phrase implies that ¢ is a Baire space and
J is continnous in each variable.) This will be called the “action case” and
is our primary concern. (However, quite a lot of the theory requires only
the general assumptions above.) A second case, the “product ca.se," is that
in which & and X are given (as topological spaces, & Baire), X' = G x X,
and J is the identity function. Novikov (see [2]) dealt with the product
case with G = X = the unit interval. (The product case is practically
the general case (pass from BC X' to J7*BC G x X); but the notation
of our general case specializes more readily to the action case.)

DermTioN 1.1. Let B C X'. Put:
(a) B”={g: gv < B},
(b) B*= {z: B® is comeager}, and, in general, if U is open in @,
= {x: B®~ U is comeager in U} (so that B*= B*%),
(6) Bi= ~(~B)*= {#: B® is not meager}.
We write B~ and BT as before, and B~V = {m: (Vge U)gzreB}
and BtV = {x: (Hg e U)gz ¢ B}. Note that ~(B~)= (~B)*.

Remark. Let U be a non-empty open set in G and let J;; be J re-
stricted to Ux X. Then U and J meet our assumptions regarding &
and J, including (0) if (0) held (X and X' are fixed). Moreover, B*U ig
just B* for this U and J. (The same applies to B~ and B~7 and B*Y.)
Hence any theorem about B* automatically implies a corresponding theorem
for B*Y (and likewise for B~, B™).

TaroreM 1.2. B~ C B*C B4C B*.
Proof. This is obvious, but B*C B relies on our assumption tha,t.
@ is a Baijre space..

The next several theorems, 1.3-1.7, will give us a kind of inductive
definition for B*V (induction over the formation of B).

THEOREM 1.3. Assume (0). If B is closed in X' then B* is closed in X
and B* = B~. (Hence B4 is open if B is open.)
Proof. B is cloged (in @) because g+ go is assumed continuous.

Hence B” is comeager if and only if B®= G (since @G is a Baire space).
Thus B*= {#: @= B*}=B". B = ﬂ {m: geB"} is closed, because

each {x: ge B®} = {u: gw e B} is closed in view of the assumption that
@ = gz is continuous.

§ — Fundamenta Mathematicae T. LEXXXII
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Certain families are sometimes studied in place of the family of
Borel sets (and often called by the too popular title “Baire sets”). For
their sake we append to 1.3 an aside:

TeroreEM. 1.3". Assume (0). Then

(a) If B is clopen then B* is a countable intersection of clopen sets,
provided G is separable.

(b) If B is compact and closed then B* is compact, provided we assume
either the action case or else the product case with @ a T, -space.

Proof. (a) I D is 'a countable dense subset of @, then B*
= {w: DCB*}, so B"= [ {#: gz « B} and each {z: gw B} iz clopen,
- n

ge.
(b} B*= (M {@: gz<B}. In either case each 2+ gz is a homeo-

g .
morphism of X onto a closed subset of X', so {w: gx B} is compact.
TEEOREM 1.4. (N B,)" = () By. (Hence dually (") B,)* = M B2)
n n n n

1.4 is only the fact that a countable union of meager sets is meager.
We now need some familiar set-theoretical and topological notions.
Let F range over maps F': o— o and k over the set Sq of all finite sequences
of natural numbers. Write F [ n= (#,,..,F,_,). Recall that if E
=U M 45, then F is said to be obtained by the operation (A) from

F n
k+ Ag. (Of course we say F is obtainable by (A) from a class @ of sefs
if it is so obtained from some indexed family of members of @.) Recall
that (in a topological space) a set W has the Baire property if for some
open 0, W = 0 (modulo the ideal of meager sets). As is known [9], the
sets with the Baire property are closed under complement, countable
nnion, and the operativn (A). We denote by C the smallest family contain-
ing all Borel sets and closed under complement, countable union, and (4.).
{Thus C implies the Baire property.)

For the remaining inductive conditions we must restrict the class

of sets B being considered to the “normal” sets. BC X’ is said to be normal ‘

if each B” (for # ¢ X) has the Baire property. Since inverse images preserve
complement, countable union, and (A), it is clear that the class N of all
normal  sots is closed wunder complement, countable wunion, and (A).
Moreover, @ is normal. Under assumption (0), we saw that B® is closed
if B is closed, and thus every closed set is mormal and so: every. C-set
8 normal. .

Call % a weak basis for G if J& consists of non-empty open sets and
every non-empty open set includes a member of J&. (If @ has a countable
weak basis, G is clearly separable and hence if it is metrie, G simply has
a countable basis.) We do not assume yet that G has s countable weak
basis. But notationally we do now assume that 3 is a weak basis for G
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Moreover, henceforth, U, ¥V range over ¥, while W is used for arbitrary
subsets of G. Note that {V: V C U} is a weak basis for the subspace T.

TagoreM 1.5. If B is normal then
(~By*= ~|J BT,
128

Note that 1.5 forces us to consider B*U as well as B*. ~

Proof. Let # « X and put W = B Then 1.5 reduces to the following
known proposition concerning = set W having the Baire property (in
2 Baire space):

(1) W is meager if and only if W is comeagef nowhere (i.e., for each U,
W ~ U is not comeager in TU).

From left to right, (1) is immediate from & being a Baire space.
From right to left follows easily from the assumption that W has the
Baire property.

For later convenience we write explicitly some other formulas implied
by 1.4, 1.5: '

(UBY*=N U UBY, if each B* is normal,
(2) n U VCU n
(B— O)* = B*— | 0%, if ¢ is normal .
T

It follows at once from 1.3-1.5 that, assuming (0) and that @ has
a countable basis, if B is Borel then B* is Borel. In the special product
cagse he studied, Novikov (ef. [2]) established this fact and hence es-
sentially 1.3-1.5. Before turning to such matters (in 1.8 below) we are
going to add in 1.6 one more inductive condition, concerning the oper-
ation (A). Moreover 1.6 will involve us in a further resalt, 1.7, concern-
ing (A) whose proof is closely related. :

Several results in the rest of the paper do not involve (A) at all, and
the reader can now skip ahead to those if he wishes. ) ;

A space satisfies the countable chain condition if any family of disjoint
open sets is countable (and hence clearly if it is separable).

TEEOREM 1.6. Assume G satisfies the countable chaim condition, E
=\ NA4pn, and each A, CX' is normal. Then z e BF if and only if
¥ 'n _

(VU EV, C U,) (k) (VU, CV,)(BV, C U) (k) ... Vnlze A=, 1.

The last line of 1.6 signifies that the second (or (V, k)-) player has
a winning strategy in the indicated ordinary infinite (closed) game. )

Tt is possible to give a direct proof of (d), for example by making
use of the Banach-Mazur game (see [18], [19]). “However, the shortest

6*
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proof we know establishes at the same time another proposition which
we will use extensively in § 2, namely 1.7 below. 1.7 deals with the behaviour
mnder * of the usual basic ordinal decompositions of a set obtained by (A)
(as in [9]), which we now review: ’
Let a, f always range Over countable ordinals.
Suppose B =) [ 4pa (dp arbitrary sets). Then we put
F =n

() A= 4, AFT=A3oUAp,, wnd A= (N4f (ol
(i) Ho= 45 amd T,=UJ) (44—45") .

It follows (cf. [9]) that
(jjl) Esza::U(‘Ea_Tu)'

Finally, assume we are in a topological space satisfying the count-
able chain condition. (In [9], & countable basis is assumed but only the
countable chain condition is msed.) Then (ef. [9]):

(iv) If the Aj all have the Baire property, then for some a, ~T, is
comeager (and hence E,— T, is comeager in B).

Now we can state
THEOREM 1.7. Assume the hypothesis of 1.6. Then

E*z ﬂE:: U (Eq—Tu)*'

Proof of 1.6 and 1.7. 1.6 and 1.7 can be trivially reduced to pro-
positions (about comeager sets) taking place entirely in @ (since B v B®
preserves everything). However, since the only effect of this is to confuse
the notation, we do not take this step.

Let D be the set of all # for which the last line of 1.6 (the game con-
dition) holds. We first show that:
I) E*CD.

Let @ ¢ B* 5o that B®= | J ) A%, is comeager, Write W= () Afn,

F on - Fdk n

so that W, = E*. Let the first player choose U,. Since A* n ﬁ'; is come-
ager in U,, clearly at least one of the sets W; ~ U, is not meager, say for
j= ky. Now W, ~ U, has the Baire property, so we can choose V,C U,
80 that ¥V, = W, ~ U,. Thus W, ~ ¥, is comeager in ¥, and our position
is just as at the beginnming. Repeating indefinitely, we have a way of
playing the game which engures that for each n, Wy, .. ~V, is comeager

in V,,* —and hence the larger set A, , ~V, is comeager in V,, ie,
z e Aprn, . Thus (I) is proved.
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Next we show that
(IT) - DCNE;.

Given Vo 2V, 2.2V, and k= (&, ..., k;_;), we put
@ e Di(Vyy oy Vyy)
if and only if the game can be played from there on, i.e.,
B (VU;CV,)(@V; CUNEENV U, C Uy .. V(@ e A7)

FoooroTom
(Take V;_, = Gif j=0.) We shall prove, more generally than (IT), that:

(@) Dy(Vyy ey Vioa) C (AR for all 5,7V, k; as above.

We proceed by induction on o. The case a= 0 is immediate from
the definition (3) of Dy,. If « is a limit, then (A4%)7#H1 = N (45)7+ by (i)
L * Tk

B
and 1.4, so (IT) holds. Now assume (II'), in general, for a, and let
7,2 ...2V;_; and (&, ..., k;_;) = k be given. By (i) and (1.4), (Agt1y*¥ia

= (497 A U (43~ But, by (2),

Udgrd” = N U Uy

‘UjCVi1 VyCUy % ‘
2 N U UDyy (byind. hyp.)

T UCP VyCUs 4
=Dy (see(3))

Hence (A%™)*1D Dy, as desired.
Now we will show that

(I1T) NEBICU (B~ ( ~T ).

Suppose # ¢ X. Clearly (i) and (ii) are preserved under inverse image,
80 that B and T2 are the B, and T, for the decomposition B® = J () Af1a-
F n

Now (using for the only time the countable chain condition for G), we
can apply (iv), since the A, are normal. We obtain an ordinal B such that
~T%— (~T,) is comeager, i.e. o e (~Ty)" (III) follows at once.

The circle is completed with
(Iv) U (B—T)* CE".

Suppose x € (B,— T,)* so that B;— T is comeager. Applying (iii) to
the above decomposition of H® we see that HZ—TI; C B Hence B i§
comeager and = ¢ B, as desired. Thus the proof of 1.6 and 1.7 is complete.

Remark. Assume 3¢ is countable. The game in 1.6 is thus an ordinary
infinite game with countable choice sebs. It was ghown by Moschovakis
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[14-17] (see also [27]) that every such ga_,me‘haa‘;“its own'decompf)sitions
analogous to but different from those in (i)-(iil) for the Opera,tmz: (4)
(» one-man game!). Hence it is natural to ask whether the_ gets B and
even (4%)* correspond in some way to the game decomposition sets for
the ga,m_e in 1.6. That there is indeed such a correspondence was shown
by John Burgess. (It is not at first clear just what correspondence to try.)

We described 1.6 (at least for J& countable) as an inductive condition
(like 1.4, 1.5). This is justified (in (6) below) by the f.ollowing well-known
fact about infinite closed games over countable choice sets:

(8) Suppose @ e K if and only if
Vi Bk, Vi &k ... V0[Q € Koo Tn-skn-1] |
Then K can be obtained by the operation (A) from the sets K_,;.

(8) is proved by applying familiar coding procedures to the state-
ment “there is a winning strategy”. The argument shows that in fact we
. obtain K = |J [ Lp, where L= EHT® the function H being primitive

F n -

recursive.
Using. (5), we can establish

(6) TIf H is countable then in 1.6 the set E* can be obtained by (A)
from the sets A} (ke Sq, V < H) plus @ and X.

To see (6), one first puts the game in 1.6 in the form-in (5) — by
putting the condition U,CV,;, V;CU; after Vn suitably. Then (6)
follows at once from (5).

Tor the rest of § 1 we adopt assumption (0). We now consider con-
sequences of 1.2-1.6. (1.7 will be applied in § 2.) o

30 (I°), defined for o«>1, will denote the Borel cla.ss1fma.t10;13.
Thus 5 (II°) means open (closed); 23, (I;;,) means a countable union
(intersection) of sets each of type IT; (23); and, for limit o, 20 (II°) means
a countable union (intersection) of sets each of type Zj (IIf) for some
#< a. (Unless every closed set is an F,, there are geveral possible (non-
equivalent) definitions at limit ordinals.) Thus F, = X3 and &, = g, ete.

COROLLARY 1.8. Assume @ has a countable weak basis 3. Then:

(a) B* is Borel if B is.

(b) B* (resp. B%) is I (%) if B is.

(e) B* is a C-set if B is. )

1.8 (a) (and, in essence, (b)) was proved by Novikov (cf. [2]) in the

special, but typical, case described earlier.

Proof. That (a) holds (for all B*V) follows at once from 1.3-1.5,

(written in *7 form, by the remark after 1.1) by induction on B. This is
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pecause the mmion VUU from 1.5 is countable. Similarly (c) follows from
<

1.3-1.6 in view of (6). (b) follows also from 1.3-1.5 with 2 little care (by
jnduction on «). Indeed the case a= 0 follows from 1.3 and its dual,
Suppose B is Iy, so that B = [ B, when each B, is X, Then

n

B*=NBr=N(~~B)=) N ~(~B)'= N NB.
n n n n U

But each ByU is X by inductive hypothesis, so B* is I, ,. On the other
hand, it B is X3,,, then ~Bis II,,, so (~B)* is I°,,, and B* is ..
Finally, if B is I?, o limit, then B* is II° by 1.4 and the inductive hypo-
thesis.

Obviously (b) could be extended to a suitable classification of C-sets.

Remark. 1.8 does not fully express the import of 1.3-1.6 because
they can be applied to any particular J6. In applications to the actions
of logic in § 3 we shall consider a specific 3¢ and obtain (in 8.1) additional
information. It seems likely that some other actions have a particalar J&
for which 1.3-1.6 will yield interesting information beyond 1.8.

Let I (resp. ;) be the smallest family containing all clopen sets
(all compact @,’s) and closed under countable union and complement
(difference). Using 1.3’ in place of 1.3, and (2), we obtain

COROLLARY 1.8. B* is I (3) if B is.

There is one more result, related to 1.6-and 1.7, and analogous to (iv):

TEEOREM 1.9. Suppose G has a countable weak basis, X satisfies the
countable chain condition, B =\J (" Ap,, and each A, is Cin X’'. Then

F n -

there is am o such that (~T.)* is comeager (and hemce (B,— T.)* is come-
ager in T*).

In Burgess and Miller [29], 1.9 is extended to arbitrary 4, having
the Baire property, assuming the action case.

Proof. Here we shall not use directly the old results (iii), (iv) as
we did in proving 1.7, but we shall imitate their proofs. By hypothesis
we can take J& to be countable. By (ii) and 1.4, 1.5,

(~T) = ;O Q[~((Afr})*” A (~ AT
By 1.4, (~B)*C ~B* Using this and taking complements,
M ~(~T)*CU U (49" — (487
. R 4 .
Let & and U be fixed. Clearly the sets (43)'7 (a < ) are descending; so
the sets §, = (4%)*V— (4ALt)*V are pairwise disjoint. By 1.8 (c) each S,

i8 C and henece h_ag the Baire property. Hence (cf. [9]); since X has the
countable chain condition, only countably many 8, are non-meager.
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So there is an ordinal §({k, U) such that S, is meager for all o > Bk, T).
Since there are countably many (k, U), we can take a greater than all
Bk, U). By (1), ~(~T, )* is meager, as desired.

We shall digcuss the action case in the rest of the paper, so it may
be worthwhile in ending § 1 to state some of its results specifically for
the product case. Corollary 1.10 includes and extends the work of Novi-
kov (cf. [2]).

COROLLARY 1.10. Suppose G is a Baire topological space with a count-
able weak basis and X is a topological space. For BC GX X put B
={zeX: {gel: (g,9) e B} is comeager in G}. Then

(@) {w<X: Vg((g,2) e B)}CB*C{zecX: Hy((g, ) « B)}.

(b) If B is IS, Borel, or G, so is B*

(o) If B= E,J (M Apyn where each A, is C in GX X, then B* = " B}

= U (Ea'— Ta)*'

§ 2. Action. We now assume the action case, so that G acts on X = X',
We algo assume that G has @ countable weak basis JE.

THEOREM 2.1. (a) B* and B4 are invariant (and B~ C B* C B4C Bt,
by 1.2).

(b) Hence B= B* if and only if B is invariant.

() If weB*Y then gw e BXYI™

(d) B*Y is invariant under the (induced) action of the group Gy
= {g: Ug= U} (a closed subgroup of @).

(e) (¢B)* = B".

Proof. (b) follows from (a) and 1.2, while both (a) and (d) follow
at once from (e). For (¢) and (e), we begin by verifying the formulas

B = B%™' and - (¢yB)*= gB".

For the first, mote the equivalence of: h e B%, hgw e B, hgeB® and
ke B%~. For the second, note the equivalence of h e (¢B)* hwegB,
g ha € B, g"*h € B, h ¢ ¢B>.

Now for (¢), if # ¢ B*” then B” is comeager in U, so B%™'= B™ is
comeager in Ug™, since « right or left translation is an a.utohomeomorphlsm
of G. Hence gz ¢ B ag desired. For (e), consider the equivalent
conditions: e (gB)*, (gB)® = gB® is comeager, B® is comeager, @ ¢ B".

In the action case, because of 2.1, we can draw inferences from § 1
which do not involve %. The first is a kind of interpolation:

TEEOREM 2.2. If B is Borel (C, IIY, X°) then there exists am invariant
86t O such that B~ C C CB¥ and O is also Borel (C, I, X2).

Proof. By 1.8 and 2.1 we can take ¢ = B* except in the I case,
where we take ¢ = B4.
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Note that if B is closed, then we can take ¢ = B~, which is known
to be closed. On the other hand, 2.2 for ¥, or G, already seems to be new.

2.2 implies at once the statement about relamvxza,mon mentioned
in the introduction:

COROLLARY 2.3. Suppose Y is an invariant subset of X, considered
as o subspace, and B C Y. Then B is invariant Borel (C, II® Z‘“) in Y if

a) “n
and only if B= B’ ~ Y for some B which is invariant Borel (C, I, 2% in X.

As usual, we call (4,F) a Borel space if ¥ is a non-empty family of
subsets of A closed under complement and countable union. Clearly the
invariant Borel subsets of X form a Borel space. 2.3, for Borel sets, says
that the invariant Borel sets for Y are induced from the invariant Borel
sets for X in the standard way for forming sub-Borel spaces (cf., e.g., [11]).

A familiar example of an action is obtained by taking X = @ and
Jlg, B) = ghg™". 2.2 and 2.3 may be of interest even in this case.

§ 1 also tells us something about invariant meager sets:

TeEoREM 2.4. If ¥ C X is imvariant meager. then ¥ is included in
a countable union of closed, nowhere dense seis, each of which is Gp-in-
variant for some U.

Proof. By hypothesis ¥ C{J Cn, where each C, is closed, nowhere
n
dense. Hence Y = Y"CU 04 = U ~(~0)* —U U iU (by 1.2, 1.4,

1.5). Now some ¢ belongs to U, "and hence O*U 0 U (by 1.3)Cg0,.
But ¢0, is nowhere dense as a translate of C,. Thus each O;U is closed,
nowhere dense, and, by 2.1 (d), is Gy-invariant.

It is proved in [29] that if B C X is meager (or is a set with the Baire
property) then so is B*.

In the remainder of § 2 we are gomg to apply 1.7 to invariant sets.
In this way we shall obtain invariant forms of some classical theorems
of descriptive set theory. These results — 2.5, 2.7, and 2.8 — were already
obtained in the logic spaces (i.e., those in § 3) in work of Moschovakis
[14-17] and the author [27].

A topological space B is analytic if it is metrizable and is a continuous
image of a Polish space. If F is analytic, EC X and X is metrizable,
then F is obtainable by the operation (A) from Borel, and even closed
subsets of X, (The converse holds if X i Polish.) The next theorem (and
2.5" below), with invariant omitted, is a classical theorem (ef. [9]):

TeROREM 2.5. If B is invariant and E is obtainable by the operaiion (A)
from Borel sets, then B is the union of %, invariant Borel sels.

Proof. Let B =|J (1) Apyy,, Where each A, is Borel. By 1.7, B = B*
F n -
= (B,— T,)*. As is known (cf. (i), (ii)), B,— T, is Borel, so by 1.8 and
21 (a), (B,—T,))* is Borel, for each a.


Artur


280 R. Vaught

CoROLLARY 2.6. If X is metrizable and G is Polish, then every orbiy
{gz: g e G} is Borel.

Proof. Let B= {gw: g G}. Then F is a continuous image (under
g+ gz) of @ and hence (see above), since X is metrizable, F is obtain-
able by < from Borel sets. Therefore, by 2.5, E is a union of invariant
Borel sets; but as an orbit F is a minimal invariant set, so must be one
of these.

2.6 is due to C. Ryll-Nardzewski [22], whose proof used the quite
Jifferent method of selectors. A related result by that same method wag
obtained by Dixmier [5]. For the logic spaces, 2.6 had been obtained by
D. Secott [23, 24]. It appears that onr method and the method of selectors
yield overlapping results. Indeed the latter method does mot seem to
yield 2.5. On the other hand, Ryll-Nardzewski showed that in 2.6 the
orbit is absolutely Borel (Borel in the completion of X) and our method
does not seem to yield this.

We asswme for the rest of § 3 that both G and X are Polish (hence Baire,
cf. [9]). Such actions will be called Polish. We use the notations X3, I}, 21
for analytie, coanalytie, and PCA of [9].

THEOREM 2.5, Any invariant X subset B of X is the union of 8, in-
variant Borel sets.

Proof. By the classical version of 2.5', B = (J B, where each B, is

Borel (but not-invaviant). Then B = B* =] Bf. But B* is invariant

analytic (see below) s0 we can apply 2.5 to each B, obtaining 2.5'.

We just used the well-known fact that if € is Borel (or analytic)
then 0 = {®: Hg gz € C} is analytic. This is obvious if J is fully continu-
ous. When J is only continuous in each variable, it is known (cf. [9])
that J is a Borel funetion; hence again 0% is clearly analytic.

A family & of sets has the reduction property if for any A,, 4,8
there exist 4, 4; ¢ & which reduce A4,, 4,, i.e., 4;C A4, A4,CA4,, 4;n
~nA;=0, and A;u A;= A, U 4,. The reduction property for &, quite
generally, implies certain separation principles for & (ef. [9]). There is
also-a stronger reduction property involving a sequence Ay, Ay, ..., Ag, ..
in place of 4,, .4, (cf. [9]); everything below is easily improved to give
the stromger reduction property.

TEEOREM 2.7. The reduction property holds for the dlass of invariant
I sets, and also for the class of invariamt I3 sets.

The author proved 2.7 by using 1.7 in place of (iii) in the classical
proofs, relying on the fact that B*V has an inductive definition (by 1.3-1.5).
From these remarlks the proofs are an exercise, but a somewhat tedious one.
(The argument for IT} is sketched below.) Subsequently D. Miller found
a much shorter proof for IT}, still using the *-transform. Then J. Burgess
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found a short proof for Iy, directly from the classical analogne, with
no use of * Finally, Miller found an even shorter proof for 1. All three
proofs are in [29]. These proofs are also much simpler than those of
{14-17] and [27] establishing 2.7 for the logic spaces. They also yield
results more general than 2.8 (see [29]).

Since these short proofs exist our original proof might well be alto-
gether omitited. However there is some possibility that the method might
yet yield information not otherwise obtainable, so we shall give a sketch
of the proof for II} (from which the full proofs for I} and 2. are easily
obtainable).

Proof for IHj. Let D, and D, be invariant IO}. Put B;= ~D,
(i=1,2) and B; = J (N *4p,, (Borel),so that D;=|J ~'H}, by 1.7. Put

n a

-
D, = {w: meD, and uow ¢ B, < uew ¢*E,, if the latter exists}
D; is defined symmetrically, but with < in place of <. Clearly D; and D;
are invariant and reduce D, and D,. We show that Dj is II}, the case
of D; being analogous. By (i) and (2),
(8) @e( AL Verae AJUAVR< )(VV CU)(EW CV)(HEj)z e (iA",‘j)*W.

Now if B well-orders o, it determines an ordinal a, and hence (8) can be
translated from o to R. Thus, letting @ range over the Polish space 257 %®xw,
we form the Borel sets:

Zi={(R,Q,x): R orders wA(VEk, U,a)[(k,U,a)eQ
ore 1A;U_/\(Vbl‘ﬁcu) (VP C U)(EWCV)(HEj)(Ef, W,b)eQT}.
The proof is completed by showing thatb
(9) @eDjosweDA(VE, a,Q, @ )R, Q, o) c ZAR, Q') ¢ Zyn
ANB, G, a)eQ@—(B,G,a)eQ].

COlearly (9) shows D] is IT3. From right to left in (9) is obvious. If @ e D
CDy), (R,Q, %) eZ,, (R,Q, ) €%, and (@, F,a) <Q, then B must be
a well-ordering below a (from which it clearly follows that (@, &, a) € D).

Indeed, if not, it is easy to prove that z ¢ H, = B} (a contradiction) by
showing (from the definition of Z,) that the game in 1.6 can be played.

In invariant form the well-known first separation principle becomes:

(10) Disjoint invariant analytic sets B, and E, can be separated by an
invariant Borel set.

This result (which follows from 2.7) was obtained by Ryll-Nardzewski
about twelve years ago (cf. [10]). It was proved by the following argument:
By classical separation, obtain B, Borel such that ¥, CB, C ~F,. Then
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By is invariant analytic and B, C Bf C ~ F,. Repeating, we get B} CB,
CBf C ~H,; and so on. Then (J B, = U By is invariant Borel and

n n.
separates B, B,. (In [29] it is shown that invariant reduction (2.7) for I
can in fact be proved by a similar argument.)

The same type of argument gives, as is known, an invariant form
of the covering theorem (in [9]): However, the following result may be
a little stronger, as the sets H, are formed in a simple way.

TerOREM 2.8 (Covering). Suppose B is invariant analytic and in fact
E= N Apn, each Ag being Borel. If D is (invariant) analytic and

n
bC fE then for some o, D C ~H;.

Proof. By the classical theorem, D C ~E, for some a. Hence D
=D*C(~E)C ~F.

9.5, 2.6 (of Ryll-Nardzewski), and 2.7 extend to all (or at least all
Polish) actions results first proved for the logic spaces (in [24], [14-17],
and [26]) by methods peculiar to those spaces. It is natural to ask how
many other theorems about L, can be extended to all Polish actions.
In some cases the problem may be initially to obtain an equivalent state-
ment in purely action-theoretic terms. Sometimes, however, that state-
ment is quite elear, but it is not known whether it can be extended to all
Polish actions. A perfect example is Morley’s Theorem [13]: In a logic
action, if B is invariant analytic then the number of orbils included in B is
at most %, or else 2% Does this hold in any Polish action?

Added in proof. Burgess aud Milier [29] observed that the conjecture
at the end of §2 would fellow from an earlier conjucture of H. Friedman.
Now, in his thesis (Berkeley, 1973), Burgess has established Friedman's.
conjecture. He makes use of a recent result of J. Silver concerning II}
equivalence relations.

§ 3. Logic. Suppose I and J are disjoint sets and ¢: I—o. Then
o= {g’,J) is called a similarity type. For any set A #0, X, is the
topological space [] 24% % A7, A pair (4,8) where SeX,, is called

iel
a o-structure with universe A. X, is the class of all o-structures (over

all A). X, will be the space X, (where 4 = o) with the product topology.
Its members § are often identified with the structures (w, S). One can
consider the notationally simpler case X,= 2°*® to be typical.

Let @ be the group o! of all permutations of w. Under the product
topology, G is a Polish topological group which acts continuously on X,
g8 being the usual isomorph of § under g.If X is any invariant subspace
of X,, the induced action of @ on X (a “logic action”) meets the conditions
at the beginning of § 2. Moreover if X is €, in X, and I v J is countable,
then X is Polish.
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Logic deals primarily with sets B C X which are closed under iso-
morphism, Le., invariant. What is special about the logic actions is the
availability of an inductive method for forming invariant Borel sets
at least if we pass to the spaces X, X, X 0, X, X o?, ... (Note that X, x o:o’i
ig itself one of our logic actions, i.e. it is X, for a suitable o). This indéctive
method is just given by the infinitary language L, which we shall
now describe. In the unusual but not vacuous case that I w J is uncount-
able, our treatment of 7, , will differ from former treatments.

The syn:lxbolls.of our language are R; (a p;-ary relation symbol) for
iel,¢; (an individual constant) for j eJ, variables v, (n < w), and =,
~y, N\, V. Atomic formulas are v, ~ 7, and R, ... 7o, 5 where each 7, is
& v, Or & ¢;. A closed formula is an arbitrary (possibly uncountable) con-

janetion /\ 6, such that each 6, is of the form Vu, ... u,_, M, where M is
tel

a finite disjunction of atomic formulas and their negations. Here and

below conjunctions can only be formed which have finitely many free variables.

The class of formulas is the smallest containing all closed formulas and

containing ~¢, Vo, and A g, (a countable conjunetion) whenever it
n

containg @, @os @1y ooy (~@, /\ 0;, efic. are our names for certain possibly
ler

infinite formal expressions. For just what those expressions might be,
see, €.g., [3].) An n-formula is one whose free variables are among v, ...
viey Uy clearly every formula is an n-formula for some n. 6, , p always
denote formulas. Sentences (denoted by o) are just 0-formulas. (Of course,
the connectives A, \/, B, ete. are understood in the unsual way.)

Let (4, 8) be a ¢-structure. If ¢ is an #-formula, and ay, ..., @,_; € 4,
then (4, 8) Folay, ..., a,_,] means that a,,...,q,_, satisfy ¢ in (4, 8)
(in the obvious sense). Let L C XI,, and write T™ for {(4, 8, @y, «..; Bpoy):
(4,8) ¢ and ay, ..., a,_; ¢ A}. The set of L-models of ¢, denoted by
Mod% e, is the set of all (4,8, dy, ..., ¢, ,) ¢ L™ such that (4, 8)+F
Foldg, .oy @,_1]- We write Modyo = Modye. If X C X, we consider also
that X (really {w}x X)C X,, and we consider Mod%p C X X o™

We now fix an arbitrary class X C X, which is weakly closed under
isomorphism, that is, if (4,8)eX, (4,8 =(4',8) and (4,8")eX
then (4’, 8’} e X. We write Mod"p for Mod%e. (Later we shall usually
consider ¥ = X, an invariant subset of X,. Then action notions will
also be available. But it is just an important feature of the logical notions
that they can be applied to the whole X, and not just to X,.)

Classes of the form Modo are called Borel’ or L,, classes (over X).
Note that the Borel’ classes of X¥™ can also be described as all sets Mod"g.
Classes Modo where o is closed’ are called closed’ classes and their com-
plements are called open'.

There is a natural classification X2 (II.") (¢ =>1) of Borel’ classes

-
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(over ¥). I is just all closed’ classes. X, is the family of complements

of I classes. BCX is nyt, if B= Mod A\ (Vg +. Vgy—1) @ Where each
n .
Modkg, (C X X o) is £ For limit a, B is 10 if B = () B, where each B,
n

is Iy for some < a.
Closed’ classes are just the U0, classes of Tarski [26]. The @ (i.e., II}Y)

clagses have been considered by Keisler [8].

We now assume that X=X CX,.
Tt is easy to check and known for forty years (cf. [9]) that

(11) Borel' implies invariant Borel, and indeed 2(IL) implies in-
variant Z2(OY).

Tt is also easy and known that invariant closed = closed’ (though this

will follow from 3.2 below).

By now several primed notions — closed’, Borel’, etic. — have been
introduced and more will be, below. There arve two important features
shared by all these notions. Firstly (over X), a seb which is (P)" is formed
by some process which clearly yields in general only invariant (P) sets.
Thus (P) can be read: inherently invariant (P). Secondly, the notion (P)
over X is a special case of a natural notion “(P)’ over X7, uniformly defined
for arbitrary X. (To make this more precise one would have to consider
all the ¥™, taken as topological spaces under the open classes, together
with many canonical projection maps: x™_ ™, to form & multispace
in terms of which the definition of (P)" can be given.) We are going in
each partieular case to establish (usually mon-trivially) that, in fact,
over X, invariant (P) = (PY.

We shall be able to obtain information aboub L,, over X by using
the methods of § 1 while taking a particular basis Je for G. Let s, t always
denote finite sequences %k of natural numbers which are non-repeating.

Put [s]= {g: sCg™"}. For & we take the well-known basis consisting
of all [s].

Tt will be convenient to deal with the following variant of *. It BC X,
put B*M = {(8,5) e XX o™ § B}, and gimilarly for BY™. It is easy
to verify that B™™ is invariant in Xx o™

Write (0, e Vpo1)™@ £0r (0, o Uy (W\i N vy .

. <j<n
We now obtain an improvement of 1.8 (a), (b), by repeating ifs proof
nsing now our special .

Lmymwa 3.1. If BC X is Borel than B is Borel’. Indeed, if B 8
(M) then BY™(B*™) s Z(IY) (o> 1).

. ]?roof. (a) Suppose B= {8: (v, 8)F0O[0,1,..,p—1], where 0 is
a finite disjunction of atomic p-formulas or their negations. (Thus B is
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LD
a basic ‘elc?sed set.) Ihen B®* iy closed’. Indeed, since B*S— p-al
by 1.3, it is an exercise to,show that B*® — Mod(,Vv 2 )*60_ ?
v Dp_y)™ 0.

If B is closed then B = S
,Q,Bt where each B, is like B just above,

and hence B{™ is closed’. Now, (§,s) e B* i
— B — 5] ) 1 B 8) € if and only if §eB*S
=B = B™, so B™ = M B™. Thus B*" is eloseél’.y “®

tel teT
(kn) __ n "
(b) If B®™ = Mod"gp, for each = ¢, then, by 1.5,
(~B)*={(8,5) e Xx o™ Se~J U BW
m=n sClea™
= Mod" ~ Ho, o Uy )T0, = *
1};1&( n ’Um—l) Pm = Modn”/;ﬂ(vvn e Uppg)™ ~ P »

¢) Suppose B =
(¢) Supp (1 B,. Then, by 1.4, B*™ = | B¢™. Moreover,

. . 0 . . 4 .
;f}(ﬁ )131 Sﬂglgz E;nét,B a(.ﬁ::;l faCh,on is ng, B, << a, then (by inda.guctive hypothesis)
0 s 8 II.’. On the other hand, suppose a = -1, and
gach, B, is Zj. Then (by inductive hypothesis) (~B, )" = Mo’d“
is II’. Hence BY™ = (~ ~B,)* = (by (b)) Mod™ A (V'vﬂ.. .
Hence B™ is II2° men
From (a)-(c¢), everything in 3.1 follows.

Taking B = B* in 8.1 we obtain at once:
THEOREM 3.2. Invariant TN(I0) = ZNI°) (o= 1).
CorROLLARY 3.3. Imwvariant Borel = Borel' (=L, ).

Lop_ez—Escobar [10] proved that 3.3 holds — under the additiomal
assumptions that I wJ is countable and X is analytic (call this 3.3%).

His proof of 3.3" depended on his Int i
conmtante) erpolation Theorem [10] (for I v J

” P
. 'Un+1)r ~Ppm-

(T Ik o'(:g, T)—o'(8, I') then, for some sentence 6(S), F —0 and
F6—0o’. (F 0 means that 8 + 6 for all § ¢ X,.)

In fact before (IT) was proved, it was known that (IT) implies 3.3’ (almost
at once), and, on the other hand, Ryll-Nardzewski had observed via (10)
above that conversely 3.3' implies (IT) (cf. [10]).

Thus our direct proof of 3.3 (via (10)) gives what seems to be the first
proof of (IT) from its predecessor, the classical first separation principle.
N The strong form of 3.3 given in 3.2 can apparently not be obtained
by _the (IT)-proof (since the interpolant formula is obtained in a very
mdlrfaot way from the given formulag). 3.2 at the lowest new level says
that invariant @, = G5 (i.e., II0).

_ Even 3.3 itself generalizes Lopez-Escobar’s result by allowing any
161111;1a.na,nt XC Xgla.nd by allowing I v J to be mncounteble. Since in

er case, the first separation principle (and hence (IT)) may fail, it
appears that the old proof cannot work. Incidentally, instead of dealing
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all along with arbitrary X we could have inferred 3.3 for any X from the
case X = X, by using Corollary 2.3. :

‘We now give a further result closely related to 3.2 for @,. For a mo-
ment, consider again a class X C X, as above. A class 9 C X is calleq
meager’ it 9 is closed under isomorphism (in ¥) and 9 C Mod\/ Hv, ... Vsope Py

n

where each Mod*p, is closed’ and includes no non-empty set open’ in ¥%),
(In case X=X CX,, our condition on Mod*»¢, clearly just means that
Mod* g, is closed and nowhere dense.) The notion meager’ oceurs im-
plicitly in the Henkin-Orey w-completeness or omitting types theorem
{see below). Now return to X=X C X,. As was observed in [6] (for
a less general case), it is clear that: meager’ implies invariant meager.
From the *-transform we obtain the converse:

THEOREM 3.4. Invariant meager = meager’. .

Proof. By the proof of 2.4, if ¥ is invariant meager, then
YCUU U 0;¥, where each C; is closed and nowhere dense. Now

n Sew?

P 5 ilossed and hence can be written Mode,,; moreover each of it

projections €} is nowhere dense, so it is nowhere dense. Thus we have

Y CMod\/ (Hw, ... v,_1)"@,, where each Mod®¢,, is closed and nowhere
7y,

dense, as geshed.

For certain special X, related to complete first order theories
Suzuki [25] made a detailed study of which orbital sets are meager or
comeager. His work yields at once certain gpecial cases of 3.4.

Although it is not connected with the new direction in 3.4, we shall
say a few words about the

©-COMPLETENESS THEOREM. If X is G; in X, then X is not meager'
in itself.

This result, which has been successively generalized several times
from the original Henkin-Orey version, was given in the above form,
for I« J countable in Kejsler [8]. Since trivially meager’ implies meager
and @ implies @,, it follows at once from the Baire category theorem
for X. (This proof —in a less general case — was first given in [6])
Notice that the theorem is correct with our definitions even if T uJ is
uneountable, since the space X, is compact Hausdorff so the Baire theo-
rem still holds. However, this result may be deceptive, as we shall see
in & moment, for a situation which ought to be mentioned anyway.

The w-completeness theorem is usmally applied in an apparently
different form (see, e.g., [6]). We consider a set X of arbitrary first-order
g-sentences and sets @, of arbitrary first-order k,-formulas. Under a cer-
tain hypothesis (related to meager-ness) we assert that

Mod X ¢ Mod\/ Hu,...v,, A\ @
n

Oedy
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However, as is well-known, if we pass to a larger similarity type by
introducing many definitions of the form

V0 v Ol PG v Oy oy o0 0, M (000 0,)]

where M is finite, quantifier free, then our problem exactly reduces to
the situation in the w-completeness theorem above. (For details, see,
0.8, [8]). This reduction, when I v J is uncountable, involves uncountably
many VE sentences as above, and thus fails, since it reduces to an X
which is @, rather than G;.

Again consider X. 9 C X is said to have the Baire’ property if 9 is
closed under isomorphism (in ¥) and 9 symmetrically differs from some
closed’ class by a meager’ class. Now return to X=X CX,.

COROLLARY 3.5. Invariant -+ Baire property = Baire' property.

Proof. As always from right to left is obvious. If ¥ is invariant
and has the Baire property then ¥ = D(Y) (mod meager sets). (See [9]
for the notion D(X¥).) D(Y) is closed. Moreover, the definition of D(Y)
enstures that (¥ being invariant) D(X) is invariant (cf. [20]). Hence D(Y)
is closed’. Finally, YOD(Y) is invariant meager, so meager’ by 3.4; thus Y
has the Baire’ property. v

Tt now follows easily from the classical theorem *(A) preserves the
Baire’ property’” that

COROLLARY 3.6. The game operation preserves the Baire’ property.
That is, suppose for each n and k  o", B* has the Baire' property in X X
X 0™, Letk

0= {8: VmEp Vi HLp, Ak, ...
“e Vn((_‘s'.a Mgy Doy~ g M1y Pp1) € ka'"'k"—l)} .

Then C has the Baire’ property in X.

Proof. € is invariant and by (5) in § 1 plus the clasgicful theorem -
clearly has the Baire property, and hence, by 3.5, the Baire’ property.

'We shall discuss 8.6 again at the end of this section.

When the game operation (formalized) is added to the la.nguagg L
the much richer language I, is obtained, which has been studied by
Moschovakis, Barwise [4], and others. The language L, (as we take
it) has the symbols of L, plus & new varia,ble-bl.ndmg operatlor G. The
class of formulas (of I, is the smallest containing a:11 closed formul_as
and cloged under the formation of ~¢, Vv, /} ¢, (with the old restric-

3 ’ . 0 t
tion) and also of GXuguy ... Uy Up, oo P — WHETE Ugy Ugy Uy - a,rt; dl}ftlz,i
3 N . - €
variables and there are variables w, ..., %, such that each gy, for & s

7 —~ Fundamenta Mathematicae T. LXXXII
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has its free variables among wo, ..., Wy, Uy, Ugy cvey Uy_yy %", The go.
mantical interpretation in. (4, §) of G%u, ... ¢, is to be (crudely Written):

(12) Vo Hoasg® ey Voo, Tae T, .. Vg0 o

where u;, u; range over 4, k; over . (For more detail see [3].) Again each
formula ¢ of I, is a k-formula for some %, and the notion Modky i
understood just as before. Classes of this form are called C’ clagses or,
sometimes, L, o classes.

There is a minor technical question about L,¢ which must be dis-
cussed. It involves at least implicitly what is called weak second order
logic. Bach structure A= (4, 8) can be expanded to the structure
A=(AvA®vw,4,0,8,Se, Val) — where A® iy the set of all finite
sequences of members of A4, the sets A, w, A® are assumed disjoint,
Se(n) = #+1, and Val(s,n) =s,. Now each language, e.g., L, . has
a weak second order version whose definable classes are obtained by
applying sentences of I, , of the larger similarity type to the structures I —
to define a clags of As. It is well-known and easy to prove that the ex-
panded L, has no new expressive power.

Barwise [3] defined L, by adding to L, the operator:
(13) Vouo®abg Ve, g .. Vi, (g o %y _y) .

By considering propositional calculus, it is obvious that (13) is strietly
weaker than (12). On the other hand a weak second order version of
Barwise’s language would clearly include (12). Thus his language is not
invariant under passage to weak second order. (Moschovakis on the
other hand, assumed this invariance outright.) It should be noted, however,
that in many contexts (number theory or much less), Barwise’s language
does coincide with ours (I uJ being countable).

Our lamguage is invariant under passage to weak second order. To show
this reduces to proving that

(14)  VLHCLASHR..Vn(Vr, ' € o)
[(Vi< n)(1s) = r,AL(t) = rjm g(s%, ..., 1770

is expressible in our language, if the ¢’s are. (Here s%, t* are finite se-
quences in the model.) The proof that (14) can be so expressed is tedious
but invelves a very simple kind of coding, and will be left to the reader.
{(8)'In § 1 was a special case — also left to the reader!) Alternatively,
one could simply -define L, in the strongest way.
We return o ¥ — XCx,
LmMMA 3.7. If BC X is © then B™ ig ¢,

- “-Proof. It suffices to add to (a), (b), (c) of the proof of 3.1 the follow-
Ing ‘proposition;: :

icm
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(@) Suppose B=1J [\ By, when each B, is € and B{™ = Modg}.
F = - - -
Then B*™ is C'.

To prove (d), we apply 1.6 to obtain at once: (8, s) ¢ B* if and
only it 8¢ B* if and only if

(VD 8) (Ut D )8k, ... Vp (S e B;ﬁ‘f{kp) ,
that is,
(15) (VD 8)(Hi* D s")Hk,y ... (Vp, w)[H(I) = n—of, 1,08, . h_)]-

Clearly (15) is expressible in the weak second order version of L, 2nd
hence in L, q, a8 desired.

TEEOREM 3.8. Imvariant C= C' (= L)

Proof. If B is L, then as is easy using (5) and known, B is in-
variant C. If B is invariant C then by 3.7, B= B* is L, 4.

We close this section with some remarks about arbitrary elasses of
o-structures. Many questions about X, reduce to questions about X,
by means of the Lowenheim-Skolem theorem, which is known to apply
to I,, and even L. (by a result of Barwise [3] and Moschovakis):

LOWENHEIM - SKOLEM THEOREM. If IudJ is countable and 9 s
o non-empty L, o class of infinite o-structures, then 9 nX,#0.

For example, as is wellknown, the Léwenheim-Skolem theorem
easily implies that the «-completeness theorem (see above) extenfls to
any class ¥; i.e.: if I o dJ is countable and X is G, z':n Ife then X s not
meager’ in itself. However, the notions meager’ and Baire _a.pp}y to classes
which are not L, and hence the L(‘jwenheim-Skolem theor‘em ea.nno’f,
always be applied (to answer questions about the general notions Borel’,

- meager’, etec., etc. over, say, ¥,) when I uJ is countable. Even so, the

consideration of X, and the associated action may at least yield conjuc-
tures about X, to be proved in some other way. ) '

Tn this direction the author has established the following result:
3.6 holds in general, i.e., the game operation preserves the Baire' property-
relative to any X. A proof will be given in & later paper.

§ 4. »-logic. In this seetion, a, p, etc. range over a,rbit‘ra.ry O._rdma}s.
We take o= {f: f< a}. Oardinals are initial ordJ.na.]s. % I8 & lede in-
finite, regular cardinal. As is known, all the nothns a? the begm]';_‘]}:?jg
of § 3 can be extended to arbitrary x, the case there being x» = . LIS
is done as follows:

. . (41
We consider o = (o', J) where o': J —x. As before, X, 4, = Jl 247 x A7,

The class ¥, of all o-structures consists of all (4, ﬁ) where §e X, .
(Thus we consider a-ary relations for a < x.) X, is X, With the »-topology,
=
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which has as & basis all intersections of fewer than » sets open in the
produet topology. If X is any subspace of X, then, since » is regular,
X is clearly a »-space, i.e., the intersection of fewer than » open sets i
open. The »x-Borel sets fo1m the smallest family containing all open sety
and closed under complement and »-unions (i.e., unions of at most x sets).
(Thus the »-Borel sets are the same whether the product topology or
the #-topology is used.) A x-meager set (in any space) is & x-union of
nowhere dense sets.

. @ is the group #! of all permutations of », with the »-topology (bagsed
on the product topology), and g8 is the usual isomorph. It is known that
(X Dbeing any invariant subspace of X ):

(18) @ is atopological group acting continuously on X, and G is o x- Baire
space (%.6., no non-emply open set is x-meager).

(See, for example, [20] and [21], where a pioneering study of this action
and some of its connections with logic was made.)

L.+, has the symbols R; (1 eI), o; (jeJ), Va,riafbles v, (a<u), =,
~, N\, V. Atomic formulas are 7, = 7, or R;7, .. - (@< g7) (where 7, is
a v, O & ¢;). A closed” formula is an a.rbl‘ura.ry conJunctlon /\ 6, where

the 6, are of the form (Vu, ... %, ...),<p M Where f < x and M is a dJSJunetmn
of fewer than » atomic formula.s and their negations. Conjunctions are
never allowed having at least » free variables. The class of formulas is
the smallest containing all closed’ formulas and containing

~‘p1 (VMO b ua "')a<ﬁ§0! /\ (pa
a<ux

whenever it constains @, gy «.y @gy ooy and § < #.

Let X C ¥, be weakly closed under isomorphism. The notion Modse,
for a< %, is nnderstood just as before. Classes Modyo ave called I
classes (over X). Now fix ¥=XC X,.

We write %= Y 1% Under the G C.H., 2% = x for every infinite .

B<%

THEOREM 4.1. If »is regular and 25 = »x, then invariant »- Borel = L,

Proof. As always, from right to left is easy and essentially known —
and is left as an exercise. However, this argument does make heavy use
of the assumption 2% = ». On the other hand, that invariant s-Borel
implies L., is valid for any regular », as we now show.

In view of (16), certain parts of § 1 and § 3 can be directly imitated
so as to yield our theorem. Hence we shall only give a sketch.

If s maps o < % one-to-one into zx, put [s] = {y: gD s}. The set J& of
all [s] is clearly a basis of non-empty open sets of @. (If 2% = x then % = »,
but we shall not need this.) For such s and B C X put B*® = {: B* n [s]
is %-comeager in [s]} and B* = B*"!, (We use either 4 or § for members
of X.) Clearly B~ C B* and B*C B* (by (16)).

Wt

icm
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Now we show:
(a) It B is closed then B*¥ is closed.
(b) (ﬂ B )*[s] — m B}t

a<l# a<y

(e) (~B)*Is1 = ~|J B*" if B is x-Borel
o8
(a), (b), and C in (¢) go exactly as in 1.3-1.5 (of course using (16)).
If B is x-Borel, then each B” is »-Borel and hence B? is x-Baire (cf. [207).
Now D in (¢) can be argued just as in 1.5.

Now, for a <<, put B™ = {(8,5) e Xx 2™ § ¢ B*™), From (a)-(c)
we infer by induction, just as in 3.1, that:

(d) I B is »-Borel, then B™ is L., (in X X »%).

Hence if B is invariant »-Borel, then B = B*® is I, in X, as was
to be proved.

Note that the union in (¢), which may not be a x-union if 2% # «,
has been converted in (d) into a quantification. Thus the exisfence of
a basis of power x» for ¢ is never needed.

Of course, no proof of 4.1 along the lines of Lopez-Escobar’s proof
of 3.3 seems to be possible since there is no adequate version of (IT)
available (cf. [127).

It is clear that various other parts of § 1 and § 3 can be reworded
in a x-way and established by the rewording of the old proofs. Assuming
that x is regular and 2% = x, this appears to apply to 1.2-1.5, 1.8 (a), (b),
2.1, to 2.2 and 2.3 except for G, and to 3.1-3.5. As is known, the Lowen-
heim-Skolem. theorem (reworded) also holds, but the w-completeness
theorem (reworded) does not hold jn general. On the other hand, all
results of § 1-§ 3 concerning C are in an entirely different situation, since
it is not even clear what the »-analogue of C should be.

§ 5. Questions of effectiveness. We return to the topic (and notation)
of § 8. Familiarity with the terminology of [7] and [3], concerning admis-
sible sets and primitive recursive set functions, will be assumed. Thus
L,. is now defined as in [8] to be a certain subclass of the class of he-
reditarily countable sets. '

Tet o be a countable similarity type and let ¢ be a countably infinite
set of individnal constants not in g. We fix X = X,,, which is acted
on by the group C! Thus, for a o-sentence o, Modo C X. If 6 is a sentence
(without quantifiers) of type o+ O, write M(8) = {8: (C, 8, 0)co i8
& model of 6}.

TEEOREM 5.1. We can define a set function °, primilive vecursive in ¢
and g such that, for each L, , sentence 8 of type ¢ (without quantifiers),

w1
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g° is am L, sentence of 1ype o and M(6)* = M(6°). If 6 is I1° (literally)
then 0° is IIY' (Literally).

In other words given & name of a Borel set B C X, o we can effectively
find a name for B*.

Proof. For ( = o, the proof of 3.1 has been deliberately written o
as to give the proof of 5.1.

Tor other €, which may not primitive recursively be denumerable,
it is only necessary to modify the proof of 3.1 in the right way. The no-
tion B®M nsed there should be replaced by B®%-%-2  where the d,
are distinct ¢’s from C. dy, ..., &,, play a vole that was played by 0,1, ...
ey #—1. In other words, B0t = {(§, 4y, ..., 6,y): BE is comeager
in {g: g2 {(dy, ), -1 (Fu1y €n—1)}}}. Now the proof of 3.1 can be imitated.
For example, if B*e~%2 = Mod,0,,.,,, (in general), then

(~B)*dnd) = NMod® ~\/ \/ (F, .. 0)0g,. . gy -
P dnyeinlp

In this way 5.1 is easily proved.

In exactly the same way, the proof of 3.7 can be used to establish
the continnation of 5.1 below. L, , is obtained from L, (without
quantifiers) by adding a formal version of the (infinitary propositional)
operation (A).

THEOREM 5.1 (continued). Moreover: if 0 is L, 4 then 6° is L,y and
M(0)* = Mod (6°).

Of course 5.1 implies at once an effective version of 2.2, giving inter-
polation between B~ and BT. In particular, the same ° has the property
that if M (6) is invariant then M (0) = Mod §°. Thus:

COROLLARY 5.2. If A is o transitive, primitive recursively closed, count-
able set containing o, C, and 6, and M (8) is invariant (0 a o+ C sentence)
then M (0) = Modo for some p-sentence o in A.

5.2 improves a theorem of Barwise, in which it was assumed 4 was
admissible. (For such, he obtained the Barwise interpolation theorem,
which implies 5.2.) ‘

It is natural to ask for a proof of the Barwise interpolation theorem [3]
from Addison’s effective separation prineiple [1] via the s-transform.
However, the proof in [1], which resembles the classical proofs, applies
only to admissible gets +& of the form L‘;‘,{, where A C w. For such #, the
*-transform gives at once Barwise interpolation. For other countable
admissible #, one must establish non-invariant separation as well as
invariant. It is hard to say there is no such proof, but there does not
appear to be a short, elegant one.

[31
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{103
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