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On hereditarily separable Hausdorff spaces
in the constructible universe

by
Keith J. Devlin (*) (Manchester)

Absiract. We establish, from. the assumption V = L, the existence of a hereditarily
separable Hausdorfl space of cardinality greater than the continuum,. The proof, which
uses Jensen’s concept of a morass, depends upon a combinatorial reduction of the problem
due to Hajnal and Juhész.

0. Introduction. We work in ZFC throughout, and use the usual
notation and conventions. In particular, an ordinal is identified with the
set of all smaller ordinals and a cardinal is an ordinal not equinumerous
with any smaller ordinal. Xf X is a set, |X| denotes its cardinality. If X is
a set of ordinals, otp(X) denotes its order-type under the usual ordering.
If X, A are gets X denotes the set of all maps from A into X. For any
set A, H(A4) = {f|f is a function and |dom(f)| <'w and dom(f)C A and

.ran(f)C 2}

Problem 78 of [1] is the following. Does there exist a hereditarily
geparable Hausdorff space of cardinality greater than the continuum?

The aim of this paper is to prove that the answer ig “yes” if we
agsume the axiom of constructibility, V = L, (i.e. all sets are constructible).
To be a little more precise, what we shall do is establish from the as-
sumption V = L, a certain combinatorial principle formulated by Hajnal
and Juhész, which was proved by them to imply a positive answer to
Problem 78.

1. The Hajnal-Juhdsz Principle. Let » be any infinite cardinal. The
Hajnal-Juhdsz Principle for », BJ(x), says that there is a sequence
(f.| a< 2%y such that each f, e*'2, and for each XC 26| K| = 2,
there is »(X) << »* such that:

Vee H(M+—,,-v(X))(E[a eX)(eCf) -

() The main result in this paper was proved during the Autumn of 1972, when

the author was a visitor at the University of Oslo, Norway. He wishes to thank Pro-

fessor J. E. Fenstad, who arranged this visit, and in so doing prevented said author

from having to spend the three months concerned working for the British Postal Service
in a somewhat arduous, perambulatory capacity.
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HJ (») is formulated in [3], where Iajnal and Juhdsz establish its
consistency (by a forcing argument) for any » such that 2% = . In (31,
they also prove that HJ (») implies the existence of a hereditacily »- separ-
able, 0-dimensional, normal Hausdorff topological space of cardinality
2%, We refer the reader to [3] and the references therein for further
details on this matter. Our purpose here is to show that the principles
HJ(») hold in the constructible universe, L.

For a definition of L, we refer the reader to [2]. Our proof depends
heavily upon recent work of Ronald Jensen. In § 2 we introduce the
concept of a %-morass, a set-theoretical structure invented by Jensen.
In § 3 we use a »-morass to establish the principle HJ (). In § 4 we give
a brief sketch of Jensen’s proof that V =L implies the existence of
a z-morass for all ». The reader interested only in the principles XLJ ()
can, of course, omit § 4, since all he needs to know about L is that the
assumption V=L is a consistent extension of ZFC which implies GCH
and the existence of morasses. For the more demanding reader, we should
perhaps warn that the sketch in § 4 is extremely brief compared with
the proof itself (which is, as yet, unpublished), and that even the sketch
requires & good acquaintance with Jensen’s paper [4].

It is perhaps worth mentioning that the motivation for introducing
morasses in the first place lies in model theory, and that there are, in L,
much more powerful “morasses” which have very striking set-theoretical
and model-theoretic consequences, in particular the “Gap-n Cardinal

Transfer Property” for arbitrary = ¢ w (for those who know what this

means).

To aid the intuition, ‘we shall restrict ourselves to the case » = o
throughout. In every instanee, the proof for an arbitrary » iz entirely
analogous, so there is no essential loss in this. The main benefit is that,
as stated, the intuition can more easily follow the various induction argu-
ment for the case x = w.

Since we shall be assuming GCH (the existence of an w-morass

. implies the CH) throughout, we shall thus mean, by HJ (= HJ(w)), the
following assertion:

HJ = There is a sequence <fa| a<< wp) such that each f, €2, and
for each X C oy, |X| = w, there is »(X)< w, such that:

(Vee H{wy—» (X)) (Ea e X) (e CF,) .
Note that it is clearly sufficient to con sider the principle HJ for sets X
of order-type w only.

Since we shall not have need to consider cardinal exponentiation
any more, we shall write 2* rather than °2 from now on.

For later use, and to fix ideas, we end this section by proving a very
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weak form of HJ-principle. We should mention, however, that it is the
proof of this result, not the result itself, which we shall later use.

LemiA 1. Let v, 8 be countable, infinite or;iirg]ls, j}nd Ze't M be nge(

; le collection of countable infinite subsets of 6. Then there is a sequenc

c(j”jluzdigé,\ such tha{ cach f, ¢ 2 and (VX € M)(Ve € H(y))(Ha e X)(c Cf,).

Proof. Assume first of all that § = w. Let {&.] n<< 0> enumerffmte
H(y) in a one-one fashion. Let {Xq| 'n<. a.>> be a one-one enumeramlmz
of M. (We may clearly assume that M is infinite.) For. each fnt< , le
(& i< w) be the monotone enumeration of Xn. Wenéleﬁma;L by u}ductlon
on 1 < w, & strietly increasing (n--1)-tuple p™ = {p¥s s ppy of mtfgers,
for each m e w. The definition of p™ is by induetion on i << #. Set p; = 0,
P° = {ph>, and proceed thus:

putt = the least p such that zp > apm;

Pt = the least p such that o™ >m;;,+,, i<

For each new n< o, let fzé?: v—>2 be arbitrary sueh that &, ;

g fwi 2 i << n. .
1Dllf m< o and m = &, for any i <n< o, let fu: y—2 be arbitrary.

Then {fm| m<< @) satisties the lemma. For suppose m, n;d w, and
consider X, em. By definition, en C fngﬁn, 50 we are done already. _

Suppose now that 6 > . Let j: 5> w. For each set XelM,let X
— jX. Set T = {X| X ¢ M}. By the above, pick {f,| < @) such t];at
each f, 2 and (VX e M)(Ve e H(p))(Hae X)(sCf,). Set f,=fiq, for
each a< 8. Then {f,| «a< > clearly satisfies the lemma. B

Note. If we had so desired, we could have arranged matters so that
for each ¢ there are infinitely many « ¢ X with £ C f,, in the above lemma.
This point will be important later on. '

2. Definition of a morass. The structure which we define below, a]id
call a “morass” is, in precise terms, a universal (wy, 1)-mqras§.hT e
analogous structure required to establish HJ (?4) for % > (which we
would here call a “x-morass”) is a universal (zT,‘l)'-,l.norass. ) losed

Let S be a set of ordered pairs (a, vy of primitive recurs1’ve ¢ osel
ordinals o < v < w, such that wherever {a, v», <d’, > €8, a < d—=»r<a.

Set

8° = {a e o +1] (A [, »> € 8]};

8t = {p e ) (Ha)[(a, v) e 8]};.

8 =8usy

8, = {re8 (a,»>e8), for a el i

«, = that unique ordinal ¢ e §° such that (a,»)e§, for »e S

1*
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Let U,Cvx», each »e &, be such that
vel, ni>U,=U,n (vx») for each 7eS".

Set
U,= U, each acl,
s veSy
U,={U;{tH ¢, <7< sup(8,)}, ‘each wed,.

Let < be a tree on §* such that » < 7>a, <o,

Let {x,,] » < 7} be a commutative system of maps 7.t (1) = (z41).

Then, the structure I = <8, 8, <, (Fyc)y2rs (U,), e 18 @ morass if it
satisfies the following reqmrements

(MO) (a) 8, is closed in sup(8,), all ae 8%
(b) 0, = max(8°) = sup(8° N~ @), w,= sup(8,,).

(M1) (a) (U {v} o< »< w,) enumerates all bounded subsets of w,.
(b) I » < 7, then =, [ ¢, =1id [ o, and

Tt vF1 e, {o}, {7}, Sa,, Ny, U,);:(’r—}-l, &, {az}, {7}, Sa, T, U
(where the symbol > means that all X,-definable relations are preserved).

M2) 7 <7 and »ef§,_n7 and vy = mz(¥) ey <y and my, [v
=7z, [ 9.

(M3) {a,] v << 7} is closed in a,.

(M4) 7 not maximal in 8, —{a,| » < v} is unbounded in a..

(M5) {a,| » < 7} unbounded in e¢,—»7= E
<7
(M6) 7 » limit point of 8, and 7<7and 1= supmz,(v)—>7< A and
<7

ﬂ.f.’;_n f" : .
(M7) 7T a limit point of §,_ and 7 < 7= supn”(v) and

<z

ae [} {alvﬁnﬁn }.->.(t»[1'ssa>(;§1'_§f).

vesa_ T

This then, completes the definition of the morass. Intuitively, the
sebs 8,, a < w,, are countable approximations to the large set §,,. Since
{84l = @y, the sense in which these approximations piece together to
“give” 8, is fairly complex, the tree <X and the maps z,, along it defining
the precise mode of approximation. Note that by (MO) (b), (M4) and
(M5), every point in 8, is included in the approximation procedure.
The various morass axioms, in particular the “continuity” axioms (M6)
aI}d (MT), ensure that the approximations fit together smoothly. This
will enable us to define, by an induetive procedure of length ., an HJ -se-
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quence <f,| a< wsy, by defining successive approximations to such
a sequence, following a morass. Since, at each stage in the induction,
all the relevant concepts will be countable, we shall be able to use Lemma 1
to keep going.

*3. The Main theorem.

THEOREM 2. If there is a morass, then HJ holds.

Proof. Let S be as above. Let @* denote the quantifier “there exist
infinitely many”. We construet, by induetion on v e §*, funetions f,: a,—2
such that

1) r<s>f,=Ff"10a;
@) it v<vand zeU,, 2C S8, nv,otp(z) = o, then
{Va eH{a,—a,)) (e ) (e C o) -

Before we commence the construction, let us see how this will yield
the required result. Since §,, is a closed set of ordinals of order-type w,,
we can identify it with w,. Consider, then <{f,| »< 8, as above. Let
zCA8,,, otp(x) = w. Pick vy §,, with #C», z= U)'{y} for some y<».
By (MO) (b), such a » exists, and will not be maxunal in 8,,- So, by (M),
(M4) and (’\15), it is easily seen that We can find » < such that there
are £C S, mv, 7 <, with @5,(y) = y, 25, = i, and = U%{y}. By con-
dition (2), 1f ¢ € H(w,— a) is given, we can find 7 ¢ £ such that e C f._ (5.
Setting 5 = s5,(), we have nex and =Cf,. Hence {(f,] » €8, » satls-
fies HJ. ’

"We turn now to the construction of the f.’s. In fact, we must con-
struct an auxiliary system of maps as we proceed. Suppose a, ae .
Say 6(a, a) iff ¢« < a and there are 7 ¢ Su, 7 e 87 such that 7 immediately
precedes 7 in <. (Note that, in this case, 7 and r are uniquely determined
by ¢, a, by virtue of (M4). )The inductive construction proceeds as follows.
Welook at each ordinal in o, in turn, starting with 0 and working upwards.
If we come to a v which lies in &', we define f, as described below. If we
come to an ¢ which Lies in §° we look to see if there are any « such that
6(a, ). If so, then for each such « we define (by induction on a) a se-
quence <f% veS;, of maps f2%: «—2 such that:

(3) fi=1r"1a ,
(4) if o < a and §(a’, ), then fo% = fo2} o;
(5) for each ieSz, each 27, if we Uz, 2C8; ~ 7, opt(x) = o,

(Ve e H{u— a«)) (E*y e ) (e Cfi’%(m} .

The way we actually define the f@ is described Dbelow. (It is not
a true induction on g, since there is no connection between distinet a’s,
but we must do the definition in some order.)
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1t is convenient to describe the definition of the f2¥s first. We check
that all of our requirements are preserved as we proceed. There are three
cases to consider.

Case 1% (V< a)(Hy > p)0(y, ). B )

Set f28 = J {7l a< o' < a and 0(a/y @)}, By (4), f;% a—2. It is
easily seen that (3)-(3) hold, by the induction hypothesis.

Case 2° (VA< o) T10(B,a). ) )

Extend each f,, v € Sz, to & map f;*: a—>2 so that (5) holds. This is
really just a degenerate case of 3% below, so rather than repeat ourselves
we shall immediately proceed with the more general situation, Case 3°.

Case 3° There is a maximal o' < o such that 6(a, a).

Extend each f2% v € 8, to a map f2% a—2 so that (4) and (5) hold.

This is possible by a slight modification of the argument used in
Lemma 1. It would be unmanageably cumbersome to describe the de-
finition in detail, but the crucial fact is; that at each stage, not only do
we realise a given ¢ on certain o-sequences «, we in fact realise that e in-
finitely many times in @. (This is why we use E* rather than & in (2)
and (5).) This enables ug to preserve (3) whilst obtaining (5). (Note also
that there are at most a countable number of #’s to consider each time.)

(3) will hold at a since it did at o'.

That disposes of the f*% definitions. We now precede with the de-
finition of f, for = ¢ 8. There are three cases to consider.

Case 1. v minimal in <. .

Let f.: a,—2 be arbitrary. There are no new cases of (1) and’ (2)
“to consider. .

Case 2. 7 is a limit point in <. (i.e. {a,| » <<} is unbounded in «,.)

Set f,= U f,. By (1), f;: a,—2. It is easily seen that (1) and (2) are

T

preserved.

Case 3. 7 immediately succeeds v in <.

Thus 0{a,, az). Set f, = 12" By (8), fz=1f, | a3, 80 (1) is preserved.
It is a little more tricky to check that (2) is preserved, since the argument
depends upon the position of v in 'S'a,- There are three cages to consider.

Case 3.1. 7 is minimal in §,.

Then, by (M1) (b), = will be minimal in Su?. Hence (2) is vacu-
ously true.

Case 3.2. v immediately succeeds v in S,, -

By (M1), 7 will immediately succeed y in §,., where @z, (y) = y. By
im.?luction hypothesis, (2) holds for f, and (by (M1)) no new cases of (2)
arise when we pass from f, to f,, so (2) holds for f,. ’

icm®
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Case 3.3. v is a limit point in §, .

By (M1), = will be a limit point in §,_. There are two subcases to
consider.

Case 3.3.1. supz;(») = i<

<7
By (M6), v < A and =z, | T = =3, [ 7. Hence, (2) for f, follows trivially
from (2) for f;. .

Case 3.3.2. supm(v) = 7.

Let » <7, x':%'j,, 8C 8, N, otp(z) = .

Suppose z were not cofinal in ». Then A= sup(x) ¢ Sa' ~», and (2)
for f,, » follows from (2) for f, vey? & Hence we can assume sup(z) = ».

Suppose now that 1= supazz< 7. Then, again, 1¢8, N7 and,
since 7 = supm,,», (M6) tells us that » < 4 and =z, [ v= =, [» S0 (2)
for f,, z follows from (2) for f,, . Hence We can assume Supw,& = 7.

Set &= s/tw. (By convention, let =, =id [ (»+1) if »=7.) Thus
£C 8, ~ 7 and otp(Z) = o. Since z is cofinal in » and 7, @ is cofinal in T,
we must have sup(Z) = 7.

Let {(Z.| n< w) be the monotone enumeration of %, cofinal in 7.
Let (xn] n< w) be the monotone enumeration of z. In particular, there-
fore =, (zn) = %, for each n.

For each # < o, let u, be the <<-least 5 such that Fn < 5 = 25,(Zn).
Since w3,(Z,) is not maximal in §, (lying, as it does, in 8, 1), (M4)
tells us that, in fact, 7, <3 #4(%,) for each n. Set a(n) = q,, each n.

Claim 1. m< n<< o—a(m) < a(y).

By choice of (9| n>w), {a(n)} n< w) is nowhere decreasing.
And by (M4), it is thus in fact strictly increasing.

Claim 2. supa(n) = a,.

Suppose ng;,m and let o= supa(n) < o,. Using (M3), it is easy to

n<o

see that for each # < w there is 7, € 8, such that z, < 7, < ng(%,). Hence,
Dby (M7), there is v’ such that 7’ € 8, and 7 < v’ < 7. But this contradicts
the choice of 7,7. The claim is verified.

Note that 6{a(n), a;) holds for all n < . Suppose & e H(a—a,) i
given. By the claims, pick n< ® such that e e H(a(n)—q,). By (8) for
a(n), az, @, 7, v, we can find arbitrarily large m > n such that £C fenez,
For each such m, £ Cj&™<%, by (4). By definition, f,, = féme7, for
such m, so by (1), e Cf,. CfozGm = fo, lom - This proves (2) for f..

The theorem is proved. W

4. The existence of a morass in L. The following sketch should convey,
if nothing else, the idea behind the construction of a morass in L. We
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assume familiarity with §§ 1-5 of [4], and use the notation of § 4 of [4],
The first step is to formulate a combinatorial principle, which we ghall
call ®, which holds in L, and which embodies just sufficient of the fine
structure of I to enable us to construet a morass using ©. Assume V=1
from now on. )

. If we are given a structure <{J,, 4), we write X <, <J,, 4> to mean
that X CJ, and for all X,-formulas ¢(vy, v;) With parameters from X,

Feraon (VOB >a)p(8,dp) I Fg (Vo) (@f > a)p(B, Jp) -

COlearly, if lim(p), then X <,<J,, 4> implies X <y <J,, A). Conversely,
it X <5, ¢J,,A> and X ng is cofinal in g, then X <, <J,, 4).

Set 8= {(a,»y| a<v<< w, and » is p.r. closed and o= wd» and
k;, “a is the largest cardinal”}. Define 8§, 8% 84 8,, @, as in § 2. Note
that 8, ~» is uniformly X»({s,}) for all v ¢ §'. For v ¢ &, set:

B(v) = the least = » such that » is not regular at f;

n{v) = the least » = 1 such that » is not Zy-regular at f;

ol) =
A(v)= A5

0: There is a sequence {C,| v ¢ §') such that, for each »¢ 8, C, is
an unbounded subset of » such that:

(1) ¢J,, 0,> is amenable;

(2) Every zed, is X;-definable in <J,, 0,> from parameters in a,;
(3) <G5l ve 8, n vy is uniformly ZTen-400; )

(4) Suppose » < v, OCJ;, and o: (J5, 0y <o ¢J,, 0,). Then ved,

g= 05, and o(e;) = a,. Furthermore, there is a & D¢ such that
ot h :

<Jg(;)7 AG))‘ <z <Jg(r)7 4 (¥)>. . .
(8) Suppose » is a limit point of &, ; and o Ty, 05 <<, O)).
If A= sup o(s'), then 1e8, and G, =21~ C,.
v<3p . 4 Y

éssu.lning ®, we may define our morass as follows.
For v,ve8, set » Ly iff a;< o, and (H HECATR S
a’nd - F a-, _ id Fa;]. 3 'y d- ( n)[ﬂ <Jy’ 0v> '<Q <Jy7 01>
By ®£2), the map = in tlle above is unique, so we set @;, = that m.
For » <, defive z5,: (14-1)—> (1) by w5, = (75 [ %) v {<¥, >}
It is immediate that < is a tree and that the systems {;,| » < },
{75 » < »} are commutative systems of maps.
Let UC v, w, be the canonical XVe:-predicate such that:
@) T} Cw
(11) (U} o< v< 0,> enumerates all hounded subsets of Wy}
(i) »<7v=>U"{p} <, U"{z}.

iom®

On hereditarily separable Hausdorff spaces in the consiruciible universe 9

For each ve&,, set U,= Un (vx»). Thus U, is 37 If v 8,
and » < », then 7;,: J; <y, J,, so U, induces a X7 set U;Cyxv.

Set I = (8,8, <, (T5.)5205 (T)yesr ‘

Using ©, it is not very hard to show that J is an «-morass. In

" particular, (M4) requires ©(4), (M6) requires ©(3), and (M7) re-

quires ©(4). (These are the most tricky cases.)

@ is established as follows. Construct the @ -sequence in two disjoint
cases, which do not clash at ©(3)-0(5) in any way. (eg. if » in B4) is
in case 1, so is the ».)

Case 1. B(») = y+1, n(») =1. (Thus p(»)= B{») and A(»)y=0.)

Let p(») = the < ;-least p «J, such that:

(i) Every z eJ, is J, -definable from parameters in a, v {p};

(ii) o, is X;-definable in J, from p.

For each m < o, set X, = {#eJ,| © is X, -definable in J, from
parameters in a,u {p(»)}. Then X, ~nJ, is transitive, and X, .,
<spin Tye L0t Tpys Xy d,,, and seb Py, = TpmsalP(»). Then
Gmst] M< @> is cofinal in v. Set yy = p, = a(»). Let B, = {{ym, Pm>|
m < o}. Let ¢, C» be a canonical p.r. coding of E,.

The proof that <C,] v & and »eCase 1) is as in O Is similar to
(but much easier than) the proof of [] in [4], using § 4 of [4] heavily.

Case 2. Otherwise.

Let p(») = the < ;-least p eJ,,, such that:

(i) Every redy, is X,-definable in <{Jy,y, 4(»); from parameters
n a, v {p};

(ii) @, is X-definable in J,, from p.

Let k(») = the least % such that a,, p(») € Jp.;.

Let h be the canonical X, Sholem function for {J,,4(»)>. For
7< p(v), let h, be the restriction of 2 to <(J,, 4(+) ~Ad>

For k(»)<t< o(), set X,=h'lox (], x{p()}). Providing we
have chosen & a little more carefully than might be the case if we -
followed [4] literally, we have X, <y {J., 4(») nd.> for all 7. Bach
X, ~J, is transitive. Set J, = X, ndJd,. Let m: (X, 40) ~X>
=, A, and set p.= a(p() Set pp=yr=m=a,4,=0. Let
B, = {{p:y da s Prs vl Ep)< t<o(»} Let C,Cv be a canonical p.T.
coding of E,. By choice of p(»), (3.l k<7< o(»)y is cofinal in », S0 We
may assume O, is.

The proof that <C,| » ¢ §* and » e Case 2) is a8 in ©® is again similar
to the proof of [ in [4]. The argument turns on the following easily
established fact. Suppose zed,, q €d,,. Then = will be ZX;-definable
from ¢, p(v) in <J s 4 (¥)> just in case @ is X,-definable from 4 (alone)
in &J,, B, ‘ :
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That completes our sketch. We should remark that, as we have
written this out, it has taken up 31 sides of paper. The full argument,
as we have it written out (on the same kind of paper, ete.) takes up some
24 sides. The reader has heen warned. (Though, indeed, most of the details
required are buried in [4], at some point or other.)

Remark. Since we have stated that all our proofs generalize to
arbitrary x, we should perhaps mention how the above generalizes, since
the observant reader may have noticed that o figured heavily in our
definition of § (more precisely, ot so figured). In order to construct
4 »-morass for % > w, one would work entirely above x and carry x as
2 constant of all structures concerned, whence it would be entirely analog-
ous to speak of » (since » would, for the purpose in hand, be “absolute”).
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Degrees of dependence in the theory of semisets
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Petr Hajek (Prague)

Probably we shall have in the future essentially differen
intuitive notions of sets just as we have different notion
of space, and will base our discussions of sets on axiom
that correspond to the kind of sets which we want to study

A. Mostowski (*)

Abstract. The relation of dependence between semisets is studied through the
special outlook of the theory of degrees of unsolvabhility. Degrees of dependence are
compared with similar notions of Recursion theory and Set theory; the Kleene-Post-
Spector theorem on bounds is transferred to the theory of semisets; some consequences
coneerning transitive models of set theory are deduced.

The aim of this paper is to study the relation of dependence between
semisets through the special outlook of the theory of degrees of unsolva-
bility. We shall not attempt to create any systematic theory of degrees
of dependence; we only show that it is possible and perhaps useful to
consider them. Tn Section 1 we give a summary of used notions of the
theory of semisets and try (again) to formulate the relations of the theory
of semisets to the set theory. In Section 2 we compare degrees of de-
pendence with similar notions of Recursion theory and Set theory. In
Section 3 we transfer a proof of a {(Kleene-Post-Spector) theorem on upper
and lower bounds of degrees of unsolvability into the theory of semisets
and obtain a result on bounds of degrees of dependence. So we have an
application of Recursion theory to the theory of semisets. In Section 4
we formulate some consequences concerning model-classes (“transitive
models containing all the ordinals”) in Set theory in the style of usunal
applications of the theory of semisets to Set theory. It is of some interest
that we obtain a model-class without the axiom of choice by & construe-
tion that does not use any notion of symmetry.

(*) A. Mostowski, Recent results in set theory, in: Problems in the Philosophy
of Mathematics, 1967, p. 24.
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