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That completes our sketch. We should remark that, as we have
written this out, it has taken up 31 sides of paper. The full argument,
as we have it written out (on the same kind of paper, ete.) takes up some
24 sides. The reader has heen warned. (Though, indeed, most of the details
required are buried in [4], at some point or other.)

Remark. Since we have stated that all our proofs generalize to
arbitrary x, we should perhaps mention how the above generalizes, since
the observant reader may have noticed that o figured heavily in our
definition of § (more precisely, ot so figured). In order to construct
4 »-morass for % > w, one would work entirely above x and carry x as
2 constant of all structures concerned, whence it would be entirely analog-
ous to speak of » (since » would, for the purpose in hand, be “absolute”).
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Degrees of dependence in the theory of semisets

by
Petr Hajek (Prague)

Probably we shall have in the future essentially differen
intuitive notions of sets just as we have different notion
of space, and will base our discussions of sets on axiom
that correspond to the kind of sets which we want to study

A. Mostowski (*)

Abstract. The relation of dependence between semisets is studied through the
special outlook of the theory of degrees of unsolvabhility. Degrees of dependence are
compared with similar notions of Recursion theory and Set theory; the Kleene-Post-
Spector theorem on bounds is transferred to the theory of semisets; some consequences
coneerning transitive models of set theory are deduced.

The aim of this paper is to study the relation of dependence between
semisets through the special outlook of the theory of degrees of unsolva-
bility. We shall not attempt to create any systematic theory of degrees
of dependence; we only show that it is possible and perhaps useful to
consider them. Tn Section 1 we give a summary of used notions of the
theory of semisets and try (again) to formulate the relations of the theory
of semisets to the set theory. In Section 2 we compare degrees of de-
pendence with similar notions of Recursion theory and Set theory. In
Section 3 we transfer a proof of a {(Kleene-Post-Spector) theorem on upper
and lower bounds of degrees of unsolvability into the theory of semisets
and obtain a result on bounds of degrees of dependence. So we have an
application of Recursion theory to the theory of semisets. In Section 4
we formulate some consequences concerning model-classes (“transitive
models containing all the ordinals”) in Set theory in the style of usunal
applications of the theory of semisets to Set theory. It is of some interest
that we obtain a model-class without the axiom of choice by & construe-
tion that does not use any notion of symmetry.

(*) A. Mostowski, Recent results in set theory, in: Problems in the Philosophy
of Mathematics, 1967, p. 24.
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§ 1. Preliminaries: The theory of semisets and notions of dependence.

(a) The theory of semisets. The theory of semisets (denoted by TSS)
is developed in [7]; one can find axioms of TS and some statements of
relations between TSS and Set theory (both the Zermelo-Fraenkel
system ZF and the Godel-Bernays system TS) in [2] and [3].

We shall summarize the basic facts in TSS. TSS can be viewed as a theory
with three sorts of variables — for sets, real classes and classes (both real
and imaginary). Sets are denoted by lower-case letters #, y, ... and classes
by capital letters X, ¥, ... The axioms assure that sets with real clasgses
behave as sets and classes of the Godel-Bernays set theory (with the
axiom of regularity; in the present paper we use TSS and TS to denote
the theories denoted by TSS' and TS in [7]). Semisets are subclasses of
sets; the axioms assure that a class is imaginary (non-real) iff it inter-
sects some set in a proper semiset (nonset). Semisets are denoted by
G,0,7,.. (A powerful axiom on “systems of semisets” — (C2) of [7] —
will not be repeated here.) We have two notions of equivalence of sets:
@ ~ ¥y (18 equivalent to y) iff there is a set which is a 1-1 mapping of
onto y, and ¢ & o (o is absolutely equivalent to o) iff there is a semiset
which is a 1-1 mapping of ¢ onto- o.

By [7] 1456, TSS is a conservative extension of TS. One can add various
axioms on existence of proper semisets to obtain various (proper) exten-
sions TS$* of TSS that are still conservative extensions of TS, i.e. a formula
 is provable in TS iff it is provable in TSS as a statement on sets and real
classes. We shall give some examples in the next subsection.

'(b) Dependence. We restrict ourselves to dependence of semisets on
_semlsets. By [7] 1460 and 4103, o is (disjointedly) dependent on o if there
is a (disjointed) relation r such that o = "o (i.e. if

(Va)(@ep = (Hy) (<o) er &y eo);

r is disjointed if the converse of r is a function, i.e. if
‘(Vaf'yz)('.’_mw er& <xz\ er. >y =2z)).

Since both  notions are reflexive and transitive, we shall write ¢ <po
and ¢ <pp o to denote dependence and digjointed. dependence respectivély.
¢ =poc means p<po&o<pp (¢ and o ave similar) and analogously
for =pp (disjointedly similar). A semiset o is a support (Supp (o); of. [7]
1462, 41.30) if semisets dependent on ¢ are closed under diﬁerence,; a sup-
j_port o i disjointed if (Vo)(o <po = ¢ <ppo). o is a Boolean support
1f there is a complete Boolean algebra b (a set) such that o is an ultra-
filter on b closed under intersections of subsets. By [7] 4219, a Boolean
support is a disjointed support. ’

A semiset ¢ is a total support (TSupp (o)) if all semisets depend on o.
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In accordance with [7], 4131, (83) denotes the axiom “there is a ¢ which
is a total support”.

Let ¢ be a fixed support; call classes intersecting each set in a semi-
set dependent on o “c-comprehensive classes”. Then sets, real classes
and ¢-comprehensive classes satisfy all the axioms of TSS and ¢ becomes
a total support. We denote the interpretation (direct syntactic model)
just described by Supp(s); it is a model of (TSS, S3) in (TS, Supp(s)).
Semisets of the model are just the semisets dependent on a.

By [7] 4107 and 4114, we have the following

1.1. Lemvs (1SS). Let ¢ Ca and put ¢* =P(a)—P{a—o) (P denotes
the power-class operation). Then, for each o,

(1) o<po=g<ppo’;

(2) o =p "

(8) o is a support iff ¢ is a disjointed support;

(4) o is a support iff P(a—o) <po.

Consequently, each support is similar to a disjointed support. Let
(3t) be the axiom “each non-empty semiset of ordinals has a first ele-
ment”. By [1], (33) implies (St) in TSS and hence, by [7] 4241, each support
is similar to a Boolean support.

(AS) denotes the axiom “each complete Boolean algebra bears
a Boolean support (complete ultrafilter)”. By [7] 5321, (AS) is equivalent
to the axiom (GC) of general collaps saying “each infinite set is absolutely
equivalent to the set w of all natural numbers”. The consistency of (AB)
with TSS was proved independently by B. Balear and the author (un-
published). (BS) is the axiom saying “each semiset depends on a support”.

We shall now give three typical examples of strengthened theories
of semisets. In this paper,

TSS, is the theory (TSS, S3),

T8S, is the theory (TSS,-AS, BS),

TSS, is the theory (TSS, AS, 718t).

All these theories extend TS conservatively and seem to be theories
with a reasonable theory of degrees of dependence. Evidently, we have
the following:

1ss,  (BS), T1(AS), TS, F (St), T8S; + TI(BS) .

Tn the next subsection we formulate the relation of these theories to TS
from another point of view.

(¢) 15S and TS from another point of view. Recall from [7] 1442 that
a modell-class is a real complete (transitive) class M which is closed under
Godelian operations and is almost universal, ie. each subset of M is
included in an element of M. Mcl(M) means that M is a model-class.
Tet M be a fized model-class and call a subclass X of M M=compre-
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hensive if (VoeeM)(X nzeM). Then the elements of M, M=com-
prehensive subclasses of VM and arbitrary subclasses of M satisfy all the
axioms of TSS. We denote the model just described by Gt (M). It is a model

of TS in (TSS, Mcl(M)) and a model of (TS, St) in (T, Mcl(M)). The last

fact can also be expressed by saying that TS (with a consmnﬁ. fixed for
a model-class) becomes an extension of (TSS, St) if variables for sets, real
classes and arbitrary classes of TSS are identified with variables for ele-
" ments of M, M=comprehensive subclasses of M and arbitrary sub-
classes of M. This justifies the following

1.2. METADEFINITION. Let TSS™ and TS™ be extensions of TSS and
(s, Mcll(M)) respectively not enlarging the respective lan.gn.zxge. 1SS+ %s
said to be emtensible to TSt if St(M) is a model of TSS™ in TS*, TS§* is
conservatively extensible to TS* if Gt(M) is a faithful model of TS§* in TS,
ie. if TSS* ko is equivalent to TS k%™ for each TSS-statement .
188+ is fully extensible to TST if, after the identifications of variables de-
seribed above, each TS*-formula whose ‘only free variables are TSS*-vari-
ables is TS*-equivalent to a T8$7-formula with the same variables. TSST is
not consistently extensible to a set theory if each TS* such that TSS* is
extensible to TS* is contradictory.

1.3. METATHEOREM. (1) TSS, is conservatively and fully extensible
to TS, Mcly(M), where Melg(M) 4s Mel(M) & (F2 C M) (Vs C M) (Er « M)
(z=7r"2) (read: M is a model-class with a iotal support).

(2) Neither 1SS, nor TSS; are consistently extensible to a set theory.

The demonstration of (1) is implicit in demonstrations of [7] 5129
and 6410. In fact, by the demonstration of 6410 for each TS-formula ¢
one finds a T$§-formula » with an additional variable o such that

TS Fg(at, oF, X7) = (Vo) (TSupp®(o™) -y (27, 7, X7, o))
= (Ho") (T Supp™(c™) &y (2", o, X7, o)) .

(The superseript © means that the corresponding notion or formula s
to be interpreted in TS*.) Moreover, if ¢ is a normal formula (only set
variables are quantified) then v is also a normal formula. (See demonstra-
tion of 6410.)

The assertion (2) follows from the more or less evident fact that
(TsS, AS) is not consistently extensible to a set theory since in a T8+ such
that TSS, AS is extensible to TS* one can prove that all ordinals are
countable.

The moral of the metatheorem is that somietimes speaking on semi-
sets is only an axiomatic way of speaking on subsets of a model-class
(e.g. if we work in TSS,) but sometimes not (e.g. if we work in TSS, or TSS,).

“ of regularity and choice; but in both cases the difficulty is not too
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§ 2. Degrees of dependence. We have the quasiorderings <p and <pp
between semisets and think of degrees of dependence and degrees of
digjoint dependence as of “factors of the equivalence =5 and =, re-
spectively”. There i§ a certain difficulty in that we do not know how to
define degrees of dependence within TSS. The difficulty is the same as

when one tries to define cardinality in the set theory without axioms

serious

and our theorems on degrees of dependence can be always decoded into

theorems on the quasiorderings <, and <pp.

Note in passing that degrees are definable in T8S,: if ¢ is a fixed total
support then one can put dgn(e) = {r; r''c =p o}, Le. degrees are pairwise
digjoint (proper) classes. The following is more interesting:

2.1. LEMMA (TSS). Let o be an arbitrary semiset and let ¢ C a, If g
then there is a v CP(a) such that o =p 1. -

Proof. By 1.1, there is a function f such that o= (6% and
o* CP(a). Hence o =pf'"p CP(a).

2.2. COROLLARY (TSS). For each o C a, each D-degree less than dgn(o)
is the degree of a subsemiset of P(a); each DD -degree less than dgpp(o) is
the degree of a subsemiset of a. )

We are interested not only in the analogy of definitions of D-degrees
(DD-degrees) and the degrees of unsolvability; our aim is the transfer
of some proofs of theorems on degrees of unsolvability to proofs of theo-
rems on D-degrees. We shall base our transfers on the beautiful Shoen-
field’s exposition [5]. We shall often need lists of sernisets; this notion
is easily explicated by the notion of an exact functor (see [7] 1408) and
all constructions of lists of semisets by induction are based on the meta-
theorem [7] 4228. :

In the rest of the present section, we shall compare D -degrees with
DD-degrees and both D-degrees and DD-degrees with degrees of un-
solvability (R-degrees) and degrees of (many-one) reducibility (red-
degrees) from Recursion theory and degrees of constructibility (C-de-
grees) from Set theory (considered by Sacks, see e.g. [4] Section 23).
The reader not interested in this comparison can turn to Section 3.

Since g <ppo implies g <po, each D-degree is a union of some
DD-degrees. We shall show that DD-degrees in general do not coincide
with D-degrees. Note that if o Ca and ¢* = P(a)—P(a—o) then dgp(o)
= dgn(o") and dgpp(o) < dgpn(s*) (by 1.1); hence to find a ¢ such that
dgn(o) # dgpp(o) it is sufficient to find a o such that dgop (o) < dgpp(c®).

2.3. LeMMA (T5S). If P(P(a)) & %, then there is o a C a such that for
o* =P(a)—~P(a—0) we have ¢* £op o.

Proof. Let exp(P(a), a) be the set of all set-mappings of P(a) into a.
Note that P(P(a)} = 5, implies exp(P(a), a) ~ ¥, and we can suppose

<po
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a = 8, Hence let {f,}c, De @ list of all elements of exp(P(a), a). (Bach
fa is @ set, but the whole list is a proper semiset.) Furthermore, let {2,},..
be a list of all subsets of a. We construct a semiset o C ¢ and assure the
following conditions: '

(1) 0 = @,

(2s) (HzCa)(wn o= 0= fa(®) < a).

The conditions imply that o is a proper semiset and o* € ppo. We
construct two disjoint sequences {u}ecn; {Vo}sco Of elements of a each
having infinite number of distinet elements and such that each o con-
taining all u; and no v, satisfies all the conditions. Let {r.},., be a list
of all the conditions and let w%y, ..., Us_y, Vg, -..y Vs—y e defined. We describe
the step s which assures the condition 7s. :

Tt 75 is (1) then take the least w e a distinet from all the w;, v: (< 3)
(a list of elements of a being fixed; by (St), {Ug; .y Us gy Voy orey Vpy}
is a finite set and hence one can find the w). If w e x, put v; = w and
let s be the first element of o distinet from {ug, ..., Uy_y, Vg ooy Vs If
W ¢ ©, then put us = w and let o5 be the first element of a distinet from
{Ug, +ery Uy, Ty, ey Dy_g}. Then (1,) is assured.

TIf 75 i8 (24) then find the first # C a such that & & {v,, ..., vs} © {fu()}
and fuo(z) ¢ {4y, ..., w,_,} if there is such an #. Then take Ug € B—
—{Vgy +ey D;_q} and vs = fr(x). This assures (2,). If there is no such x then
put 4, = u,_, and v, = v,_,. We must prove that (2,) is assured also in
this case. Whenever #C a and # has more than s--1 elements, fu(z)
€ {tg, ..., %s_y} C 0. Evidently, one can find an (s-2)-element subset #
of {vs; sew}; then o= 0 and fu(®) e {ty, ..., %,{}, hence fu(a)<o,
which proves (2n).

2.4. COROLLARY (TSS). If there is a support v and & one-one mapping
e<pt of P(P(a)) onto a then there is a o C a such that for o* = P(a)—
—P(a— o) we have o* £ pp 0.

; Prooif. Let a support © be fixed. Then in the sense of Supp(r) we
have (1) and P(P(a)) # a; hence, by 2.3, we have ¢* £p o in the sense
of Supp (z), which implies ¢* £ppo.

Remark. We see that by 2.4 we can prove e.g, in (TS, AS) that
D-degrees and DD-degrees do not coincide.

Since each semiset similar to a support is a support we can speak
on su;pport. degrees. The degree of all non-empty sets is the trivial support
‘degree; existence of non-trivial support degrees is guaranteed by various

axioms, e.g. by (AS). We ask whether there is a degree that is not a sup-
‘port degree.

2.5. Lemya (T8S,). If P(P(a)) & w8, then there is a o Ca that is nol
a support. ‘ -

icm
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Proof. By 1.1, we must assure P(a—oc) £po or, equivalently,
P(a—o) £pp d*. S0 we have the following conditions (z, as above,
{fdneo is o list of exp(P(a), P(a))):

(1a) 0 % @n, ,

(22) (HzCa)(zno=0 = fa(®) ~o=0).

Let {Fo}sco 0O the list of conditions. We construct two disjoint infinite
semisets o+, ¢~ C a such that each o such that ¢+ C 0, 0 ~ 6~ = 0 satisfies
our conditions. At each step we put finitely nﬁ-any elements into o%
and o~. of denotes the finite set of elements put into o* before step s,
similarly for o7 . (1) is assured as in the proof of 2.3. To assure (2,) = 75
we look for the first  C « such that # & o and fu(2) £ o7; if we have

“guch @, we let ot~ 5= 0 and o* ~ f(#) # 0. If there is no such x we

do nothing at step s. We show that (2,) is assured in this case. If zC a
and 2 has more elements than of then fu(») C o7. In particular, take
an #C o~ with more elements than o7. This & satisfies (2,).

2.6. COROLLARY (TSS). If there is a support v and a 1-1-mapping
0 <p7t of a onlo P(P(a)) then there is a o C a which is not a support.

2.7. Remark. (1) Cf 2.12 below. )

(2) Tf 0 C a is not a support then there is a ¢* CP(a) which is not
a disjoint support and hence P(a)— o* £p o*. This contrasts with R-de-
grees since if 4° denotes the complement of A (4 a set of natural numbers)
then A%<z A. One could say that D-degrees should be compared with
red-degrees rather than with R-degrees; but cf. 2.14 below.

2.8. Discussion. We want to compare D -degrees with (-degrees
of Set theory. In this case we can even agk if (-degrees (of semisets)
are reasonably definable in the theory of semisets. Since our TSS, is fully
conservatively extensible to TS, Mcly, (M), we have a T$S-formula 7, <¢ 7,
such that ’ '

TS, Melg, (M) F (1, <c 7,)° = 72 e M[F],

where M[zF'] = Cstr([M, t[’]) is the smallest model class containing M (as
a subelass) and =¥ (as element) (cf. [7] Seet. III — 6). One readily proves
in 185, that <¢ is a quasi-ordering and other reasonable things. By 1.3,
7, <¢ 7, can be expressed in two equivalent forms, namely;

(Vo)(TSupp (o) >, <i7) and (Ho) (TSupp (o) & 7, <G %)
where 7, <% 7, is & normal formula with three free variables 7;, 0, Ta.
This enables us to define <¢ reasonably also in (TSS, BS) (and hence e.g.
in T5$,). We are lead to the following definition 2.9; Lemma 2.10 shows
that our definition is reasonable.

2.9. DEFINITION (TSS, BS). #, <c 7 = (Vo)(Supp(0o) & 7y, m<p 0.~
> <L T, (<G T, is the formula deseribed in 2.8). :

2 — Fundamenta Mathematicae, T. LXXXII )


Artur


18 P. Héjek

2.10. LA (TS, BS). If oy, op are supports and if 7y, 7, <p oy, o,
then © <% 7, =< . (4And; consequentily, ©<qgv, is equivalent io
(Eo) {Supp(s) & 11, a<p 0 &7y <G )

Proof. By (BS), take a support o such that o1, 03 <p o; we prove
our assertion for o, and ¢ mstead of o7 and o,. Let oy <p o be fizxed and
consider the following theories: "

18§, = (TsS, Supp(s,) & Supp(6) & 6, <p o)
(the theory of semisets in question),
15, = (18, Mcl(M), Supp®™ ("), V = M[a"], Suppet(?“)(&l ), N=M[ol])

(the theory of sets in question).
In the following diagram arrows 2 and 4 are faithful models and,
by [7] 6313, the diagram commutes:

Supp(o; o'
188, TSupp (s,) J’;LL TS5, TSupp (o), Supp (o,) [—os | 155,
StM) | 4
2 | StV
TS, Mel (M)
SHM)( O 5
Supp (or) P -1 T8,
V=M(s?)
By the definition of <¢, we have
TS, (1 <g %)% = 5, e M[5,]
and
TS, b (7, <G 1) SPPOVHSOD = (o L < 7, ) SO0 %R

=(ne M["z])met(m =7y € M[1,]

(the last .equivalence holds because relative constructibility is a notion
absolute in MGt(N)); 50 we have

5, F 5 <G )5 ™ = (<@ )G“pp("l)*emm .

By the faithfulness of arrow 2 and by absoluteness of normal formmulas
in the support model, we obtain

TS5, TSupp (o), Supp (o,) b (1, <& w) = (1, <7 7)) = (71 <G 7) 5
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which implies

TSS_q Fri<g ) = (n<§ ) (arrow 1 and absoluteness) .

This completes the proof. .

Obviously, 7, <p 7, implies 7; <¢ 7, (in each reasonable theory); we
are now able to show that the converse in general does not hold.

2.11. LEMMA (TS5, V=1L). If 2™ & n, then there are 7, Ca and =,
sueh that 1, <gt; but 7, £ 7. B

Proof. We work in the conservative extension of TS§,, V=1L to
set theory obtained by 1.3, i.e. in TS, ({o"” C L)(T Supp” (¢7)). Let o" be
a support for ¥V over L (cf. ["] 6316); then V = L[¢"] by [7] 6311. By 2
thereisa 2 CL sueh that 7T is not a support. Put M = L{a1 1; by [7] 6320
there is a support 12 for M over L, hence J‘I - LoD, 2 =5 -0, =P <§ 1:,‘,3
but necessarily 5 3 70 since otherwise 7 would be a support.

2.12. Remark. (1) I was told another example by B. Balcar: work
in TS and suppose that there is a support for V over L on the collapsing
algebra (Collo)‘:' Hence V= L[rf,]] for a support =2 which is a 1-1 mapping
of 8T onto Y. Then there satlCox () which is an ordering of o of the
type ¥ and snch that rl =5 0. But 72 cannot be a support for V over L
(hence, 7' =5 L' is impossible), since otherwise an analysis of [1] would
show that there is a Boolean support for V over L which is a [complete
ultrafilter on an algebra satisfying the countable chain condition],
which would imply absoluteness of cardinals, contradiction. Balcar’s
example is better than ours since its assumption (2% & w,) is weaker
than ours (22° & x,) but we stress the method of proof rather than the
result.

(2) One can formulate a corollary to 2.11 analogously to 2.4 and 2.6.

(3) The following lemma shows that +; in 2.11 cannot be a support,
i.e. there can be a semiset whose C-degree is bigger than its D-degree
but the C-degree of each support coincides with its D-degree.

2.13. LMy (T8S, BS) If ¢ is a support then (Vi)(t1<p0 = t<p 0)-

Proof. In (ISS,) it follows hy [7] 6315; the provability in (TSS,)
implies the provability in (TSS, BS) by our definition of <.

214. Remark. (1) The last theorem shows that if one wants to
compare <, with =z and <p with <.y (cf. 2.7) then one has the
following difference: in (T$S, BS) we have

(Vo) (Ho =
2.13, but in Recursion theory one easily shows

(VA2 0N (@B <z A)(B #ea 4) -
(Put ne B = ¢I,,n) e@ & A([I,](n)) = 0; denotation as in [3].)

2%

¢ 0) (V1) (t<<po =7 <¢ 0)

by
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(2) As far as existence of maximal degrees is concerned one sees’

immediately that in TSS, one has a largest degree (namely the degree of
any total support) aud that in TS, there is no maximal degree.

§ 3. Lower and upper bounds. Obviously, each pair of D-degrees has
a supremum (the supremum of dgp(s) and dgn(e) is ng(({O} X o) U
o ({1} x o))

Our aim is to prove the following

3.1. TamorEM (T8S,). If 22" R N, then there are supporis o,m whose
D-degrees have no infimum. .

3.9. COROLLARY (T88). If there is a support v such that there is o 1-1
mapping of 22 onto &, dependent on v then there is a pair of support D-de-
grees without an infimum. In particular, (AS) implies the ewistence of a pair
of D-degrees without infimum. )

Our proof of 3.1 will be a transfer of the proof of the Kleene-Post- -

Spector theorem in [5] Sect. 9 (pp. 43-45) and will also yield an example
of an ascending countable sequence of D-degrees without a suprernum.

We need some preliminaries.

3.3. Recall the notion of a separatively ordered set ([7] 2439) and
of a complete ultrafilter on a separatively ordered set ([7] 4247). By
[7] 2442, 4239 and 4250, separatively ordered sets are just bases of com-
plete Boolean algebras and complete ultrafilters on a separatively ordered
set are just restrictions of complete ultrafilters on the corresponding
Boolean algebra. Recall the definition [7] 2521 of the product by O b,
of two separatively orvdered sets and the (slightly different) definition
[7] 2515 of the product [] b of a system of separatively ordered sets (over

ZES

the ideal of all finite subsets of s).

3.4. LeymmA (T8S). Let by, b, be separatively ordered sets with greatest
elements; a semiset o is a complete ulirafilier on b, O b, iff there are o, C b,
and 0, C by such that i is o complete ultrafilter on by (i=1,2) and,
(Vo) (t<p 0, &7 is dense on b, .—7 ~ g # 0).

This is a reformulation of Solovay’s [6] 2.3; the proof in TSS is & rou-
tine reformulation of Solovay’s proof and is left to the reader.

3.5. In the sequel, b denotes the usual base of the Cantor algebra, ie.
b= {f; Un(f) &D(f) C » &D(f) finite & W (f) C {0, 1})

and )

F<g=D(CD(f) &(Vz e D(9))(f's<g')

(ef. [7] 6101). (The greatest element of b is the empty function 0.) Let b
be b— {0} and put by = b for n ¢ w. Put b” = []b; (n > 0) and b° = [] bs.
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(It can be shown that each " and b® is isomorphic to b.) By [7] 2522,
p™+! is isomorphie to b® © b. The ordering b has evidently the following
homogeneity property:

3.6. Limana (18S). If o is a complete ultrafilter on b and if w b then
there is an automorphism p of b such that p''o > u.

We prove our 3.1 in the following form:

3.7. LA (T8S,). If P(P(o)) =
such that

(%)

o then there are supporis o, 7= on b

“(EE) (Vo) (r<pé =.T<po &T<p7).

Proof. By [7] 5321, there is a complete ultrafilter ¢ on b®. Note
that (under a suitable representation) each bn and b" are substructures
of b°. Put op= g° » b and o"= g ~b"; then g, is a complete ultra-
filter on by, o® is a complete ultrafilter on " and o™t is isomorphic (and

hence similar) to ¢"X gn. Furthermore, we have the following:
() i<n=o<pd® (A<, n<0).
We construct supports (complete ultrafilters) o,z on b” such that

(Vhew)(g"<po & ¢" < =)

)
and

(if)

(VT)(T<D6&T$D57-'—>(H”€ w)(r<pe”)-

Evidently, (i) and (i) imply (%) by (++). Note that the quantifier (V)
in (i) can be restricted to subsemisets of P (b”) by 2.1; evidently, b = .
Hence we have to satisfy the following conditions:

(Arr) T=10= 7y w—>(En e 0) (v <p )
(ry, 7, antimonotone relations on P(b”) X b°),
(2) Gng#EO£TNG

(g dense in 5°).

Let {¢,}s, Do a list of all the conditions. We construct o and = in
countably many steps; the sth step will assure ¢s. In step s we define
automorphisms f; and gs of & and elements s, vs € b® (markers) such
that putting o, = f.' 0y, 7, = gs 055 0° = 7° =, 1= ¢%X 0, BTt =X
xas, 0=|jo and mw={Jn* then {U}scor {Vs)seo 8T€ descending se-
quences of elements of 0%, use o and vs e for each s and o, = satisfy our
conditions.

We now describe the construction. Let FIP(z) mean that = has thg
finite intersection property, i.e. vC b* and for each finite set e C v there
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is & u e b” with (V2 e €)(u < #). We first describe the choice of u, and o,
and then the choice of f; and gs. .

(i) Definition of us and vs.

(a) ¢ is (1,,,). )

Case 1. There are w <wu,_; and v < v,_; such that FIP(¢°u {u}),
FIP(n° v {v}) and there is an « such that either

z ery'{u} & (Vw < o) (@ ¢ 1;'{w})
or
zery{v} & (Vo < u)(z ¢ ' {w}) .

Say, v, =1v_,= 1.,.) Then we pick such u and v (using a list of b)
-and pub u; = 4 and v; = ». i ,

Case 2. Otherwise. Pub us = u,_, and v = v,_,. .

(b) ¢ is (2,). Pick a u, < u,_, such that us < w for some w e g; pick
a 95 analogously. :

(i) Definition of fi,gs. Leb us e b* for some % >s; then us can
be represented as (uf, ul, u®) where w0 e Uy uteb; and w2 e b = b, +1 O
- Obx. FIP (0" {u}) implies u® € o°. By 3.6, pick an automorphism f;
of b; such that f;'e, > u'. If we put o, = f'o, then we have FIP(0° X o5 v
v {us}). We find g, similarly. (We use a list of automorphisms of b and
hence again use the assumption PP(0) & .) '

We have wse o and v; e w for each 5. We show that our conditions
-are satisfied. First, let ¢; be (1,,,) and let 7 = 7;'0 = r;'w. Then we have
Case 2 for thie step s. We prove

wer = (Fu<u, ,)FIP(c° v {u}) &z e 7y {u) .

The implication — is trivial. Convergely, let z « r;'{u} for a u < us_; such
that m(ﬁ v {u}) and suppose = ¢r'c. Then ¢ n'n and, by [7] 4301,
there is a v ¢z such that (Ve < ) (r;’{w} # ©). We can suppose v < » 1
an.nd hence we have Case 1, which is a contradiction. Hence our 7 is &;
finable from o° by a normal formula and since ¢® is a support we obtain
T{DUTZ =p ¢°. This shows that ¢, 15 satistied.

Finally, if ¢ is (2,) then ¢ is satisfied since w4, ¢ o and Us < w for

some w ¢ g; this means that g~ o # 0. Similarly for i -
pletes the proof. : Y S0 This eom

§ 4. Applications to Set theory. We use the extensibility of 1SS, to a set
the(?ry to obtain some results in TS concerning model-clagses. Recall that
:EM is a model-class with B1 (MelEl(M)) it M is a model-class such that

or each z ¢ M there is a f ¢ M which is a bijection of # onto some ordinal
number. V is the greatest model-class and L is the least model-class;
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L is a model-class with E1. (Hence if V = L there is only one model-class.)
For the sake of simplicity we restrict ourselves to supports over L.
Theorem 3.1 has the following

4.1. COROLLARY (TS). If V has a support o@ over L and if sF ~
then there are supports o=, z% over L such that L{o"] ~ L{z"] is not a model-
class with E1.

Proof. Let ¢” and =" be as in 3.1 (where we additionally assume
V=L). Put M;=L["], M,=L[z"]. If M, ~ M, were a model-class
with E1 then, by [7] 6320, M, ~ M, would have a support &7 over L,
ie. M, ~ M,=L[£"] for some £7 CL. This & would be the infimum
of ¢" and =" (since by 2.13 (V%) (" <F 6° = v7 <2 67) and the same
holds for =™ and for £5).

4.2. Remark. Consequently, if TS is consistent then one cannot
prove in TS that the intersection of two model-classes with E1 is a model-
class with E1. (Since (T85,, V=1L, %, = »,) is consistent relative to TS
by [7] 5218 and 6123.) One has the following problem: can we prove in TS
that the intersection of two model-classes is & model-class? In particular,
in the situation of 4.1, is M; ~ M, a model-class (necessarily without E1)?
I have not suecceeded to solve this problem. Nevertheless, an analysis
of the situation just mentioned shows that M, ~ M, contains a model-
class without E1 as a subelass. (The gnestion is whether it is a proper
subelass.) So we obtain as a by-product a demonstration of the inde-
pendence of the axiom of choice; this independence is known by Cohen’s
proof and hence the result is by no means new; but the method of proof
could be of some interest since we do not use any symmetry arguments.
I note here that Theorem 4.4 was independently proved by B. Balear;
Balear constructed the same model-class using my proof of 3.7,

4.3. Leamma (1), If N, is a model-class for each new and if n<m

implies Nn C Np for each n, me o then | Ny, is not a model-class.
n

Proof. Let p, denote the set of all sets of rank <a. Put N = | Na.
If & were a model-class then, by [7] 3225, we would have p, ~ N ¢ N for
each a. Then there would be an n such that p, ~ N e ¥, for almost all g;
this would imply ¥ = N,, which is a contradiction. :

4.4. THROREM (TS). If V has a support p CL over L and if 8& =~ 8,
then there is a model-class K without axiom of choice.

Proof. Let o, =, on, @ta, ¢", " be as in 3.7 and put N, = L[¢"]
= L[a"], M; = L[¢] and M, = L[z]. Then the classes N, form a strictly
increasing sequence of model-classes (with Bl) and N = {_ ¥, is a sub-
class of M; ~ M,. For each #, let [o,] = {r; (&f e L) (f automorphism of
bE & v = f"'o,}) and similarly for [m,]. By [7] 4327, [on] = [m] for each n.
Hence {[Gn]}nsa) € Ml i —Zk[‘z Put K = L[{[U7l]}nem] (i‘e' K = Cstr ({[Gﬂ}}nem);
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K is the least model-class containing {[64]},., a8 element). Then K C 1,

AM, and NCEK. We show that "Mely, (K). Suppose the eo—J:_Ltre:;‘ﬁ
Then K contains a selector for {[onl},en, i-6. there are 7, € [0] such thyf.;
{tn}nea € K. The system {7}, i8 representable as a subset = of I, (ag :
exact functor see [7] 1408) and is in M, ~ M,. Consequently r<Dn
and v <3 # and hence there is an n such.that v ¢ ¥,. But {{o ]}, ;D i
and hence K C N, which contradicts to & C K. eS0T

4.5. Remark. (1) The set {{on]},., Can be re
4.5. o presented as a sequenc
of disjoint sets of subsets of w and hence one has a countable disj(%)intede
gystem of sets of reals without a selector.

(2) X is the least model-class with ¥ as a subclass and we have
N #K by 43. Is K= M, ~ M,;? Can one obtain K as a “symmetric
submodel of a support extension of 1.”? :

(3) An analysis shows that the assumption “V has a set support

over L” in 4.4 can be weakened to the Godel’ i
hotes (5 o 170, el’s form of the axiom of
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Elementary interpretations of negationless arithmetic

by
E. G. K. Lépez-Escobar (College Park, Maryland)

Abstract. Some systems of negationless arithmetic (in the spirit, if not the form
of Griss’ negationless mathematics) are introduced and their relation to intuitionism
are considered.

§ 1. The negationless mathematics of G. F. C. Griss

1.1. Few would disagree with Griss’ criterion that all the well-
formed parts of a meaningful formula should also be meaningful. Un-
fortunately there is plepty of room for disagreement on the meaning of
“meaningful”. Although it may well be impossible to determine what
Griss had in mind, two aspects of this interpretation are (more or less)
evident: namely that for a formula to have meaning it is necessary that
it have a constructive interpretation and that it be satisfiable.

If one accepts such a condition on the notion of meaningful and
still adheres to the principle that all the well-formed parts of a meaningful
formula should also be meaningful, then one finds that the propositional
connectives “or”, “if ... then” and “it is not the case that” cause a lot
of problems. For example the sentence

0=0v0=1

could not possibly have any meaning for Griss, sinee if it had then so
would 0= 1 and the latter could not have any meaning for him since
it is not satisfiable.

The connective “—>” is even more problematic. Already the im-
predicative aspect of the intuitionistic interpretation of “—” leaves much
to be desired, and if to the intuitionistic interpretation one adds Griss’
criterion, the formulae such as

0=1+1=1 and 0=0-0=1
are banighed from mathematics. What is worst still is that a sentence

of the form Vi.Az may have meaning and yet An may be meaningless
for certain numerals n, for example let Az = (= 0—>2=0).
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