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Mostowski’s collapsing function and
the closed unbounded filter

by

K. Jon Barwise (*) (Madison, Wisc.)

Abstract. We irlnpi'ovu a result of Lévy by showing that if P(z) is a = predicat.e
of set theory and if P (o) holds then P(b) holds for almost every countable approxi-
mation b of a. Applications to model theory are discussed.

§ 1. Introduction. Our purpose here is to use Mostowski’s collapsing
function ¢(#) to shed some light on an interesting Liwenheim-Skolem
phenomenon in infinitary logic recently discovered by D. Kue].ier [.4}.
For each countable s, ¢s(x) can be thought of as a countable approximation
o° of x. Using the notion of “almost all” given by the closed unbounded
filter we show that if P is a X predicate of set theory and P(z, y) holds
then P (2% y°) is true for almost all §. Several of Kueker’s res_ults follow
as well as Lévy’s result that if a 2 predicate .P(x) has a solution &, then
it has some hereditarily countable solution (namely o° for almost all s).

Tor applications to model theory it is most natural fox'- us to work
in a universe of set theory which allows the existence of individuals. The
universe of sets we have in mind can be ‘described as foﬂows. We are
given a collection M of individuals (atoms, urelements) which ean be
used to form sets.

Vr(0) == 0 = the empty set,
Vy(a-1) = the set of all subsets of Vafe)w M,
Var(A) = |} Vyyler) for limit 4,

a<d

Vg = U Vyla).

a

The union, in the last equation is taken over the class of all fordlmanls.
A sel on M i3, by definition, an element of V. The reader who feels un-

() We are grateful to members of the logic seminar i.1_1 Madison, Wisjconsmf ]x:rhe;:
we worked {7]11'01igh Kueker’s paper [4] together last spring (1972). Our research w
partially supported by Grant NSEF GP-27633.
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comfortable with individuals can simply assume there are none, i.e., that
M=0.
We use variables

p,q,r to range over M,
a,b,c to range over Vi, and

z,y,2 to range over M u Vi .

We use e for the membership relation on Vi, R, S, T for predicates on M
and P, @ for predicates on. M w V.

A set g is transitive if # ¢ y ¢ o implies @ ¢ ¢ for all », y. Individuals p
are not considered transitive. For any « there is a smallest transitive
set a such that z C a, called the tramsitive closure of a, TC(a). If # is an
individual p then TC(2)= 0. If o is a set then TO(z)=xv (| Jz)u
u (U U#) ... The support of a set a, Sp(a), is the set of individuals

in TC(a). The pure sets are those sets with empty support. We use || to
~ denote the cardinality of TC(a); a is hereditarily countable if |af < w,.

§ 2. The collapsing function. In Theorem 3 of Mostowski [8], it was
shown that for any well founded relation R there is a unique map ¢z of R
onto a transitive set satisfying

er(@) = {er(y): y R o}

for # in the field of R. This map cp is called the collapsing funmction, or
contraction function, for . When R is € ~ (s X s) for some set s, we write ¢
for ¢r. In this case, however, there is no reason to restriet the domain
of ¢ to 5. In our context with urelements we define xs(z ¢s(x)) for any «
by 2.1. ;

2.1. DEFINITION. For a fixed set s we define, for every ¥, an approxi-
mation #° of # by recursion on ¢ as follows:

L
p=5n,
o ={2': xesnal.

The reader unfamiliar with this function might want to read the collapsing
Jemma in § 1.6 of Mostowski [9], though we will not need that lemma
here. We need only the following.

2.2. LEMMA. Given sels o, s with s countable we have the following facts:

(@) If a is a set of individuals then of = g  s.

(b) The set a° is hereditarily countable.

(e} TC(a)Cs implies a° = a. ’
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(d) If a is transitive so is o®; hence if o is an ordinal then of is a count-
able ordinal.

(e) If s ~TC(a)= 8"~ TC(a) for some other s’ then o= a .

These facts are all easily verified; (b), (¢) and (e) by induction on .

§ 3. The closed unbounded filter. The following definition was-given in
Kueker [4] and Jech [3] for the case where 4 was an infinite ecardinal
but the results go through just as well in general.

8.1. DorINITION. Let A4 be a transitive set and let I be the set P, (4)
of all countable subsets of A. The closed unbounded filter D “on” A consists
of all X C I such that for some X°C X,

(a) every s €I i3 a subset of some s’ < X° and

(b) X° is closed under unions of countable chains.

3.2, Lemma. (Kueker [4], Jech [3]). Given A and D as in 3.1, we have
the following: .

‘ (a) D is a countably complete proper filter.
(0) If XyeD for all ae AyC A then the diagonal

Y= {s: seXy for all aedyns}
i D. :

(¢) A subset X C I isin D iff player I has o strategy for the two person
game Gx given by the rules: T and 1T allernately choose elements of A, T wins
if the set of their choices is in X, otherwise II wins (Kueker [4]).

(A hint for the harder half of (c): Given a strategy o = {Fn(2y v Tn)|
n< o} for X let X° be set of seX closed under the various Fy; then
3.1 (a), (b) are clear for X°.)

3.3, DurINTTION. Let @ be a predicate of sets and individuals. For
given @ ... ¥, in o transitive set 4, we say that @ (2] ...23) holds almost
everywhere (a.6.) if the set {s ¢ P, (4): @z} ...a})} is a member of the
closed unbounded filter on A.

The following lemma is a simple extension of a remark in Kueker [4],
but since it is basic to our theorem, we sketch a proof.

3.4. LuMmA. The notion of “almost everywhere” defined in 3.3 is inde-
pendent of the particular transitive set A. _

Proof, Let () be a 1 place predicate to simplﬁy notation, let
medy~ Ay, Ty=DP,(A;), D; the closed unbounded filter on A; and

Xy={seli Q(a°)}.

Assume X, ¢ D, and let us show X, e Dy. By Lemma ?-2 (c), player I has
a winning strategy o, for the game G, By Lemma 2.2 (e) we can assuf!fe
that this strategy only picks elements from 4, n 4, since TC(w) C Ay~ 4y,
1* ‘ :
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and the value of «° depend only on s ~ TC (). But then player I can use o, ‘

to get a winning strategy o, for Gx,. He simply ignores any move of II
outside A, ~ A,; replacing it by » and uses oy. Any s e I, which results
from such a play will agree with an s’ e X, at least on TC(2), in which
case #° — #¥ by 2.2 (¢). Thus I has a strategy for Gx, and X, <D, by
32(c). m

The results of the next section depend only on 3.2 and 3.4.

§ 4. The result. The language of set theory has a membership symbol e,
denoting ¢, an equality symbol = and symbols R, 8, T, ... for any re-
lations R, 8, T on M. The A,-formulas, defined in Lévy [6], form the
smallest clags @ containing the atomic formulas closed under:

(i) If ¢ is in @ s0 i8 — @,

(i) if @,y are in P so are (pAY), (@Vy),

(iii) if @ is in ® and %, v are any variables then Vu ¢ vp and Hu e vy
are in @. .

The X-formulas form the smallest class @ containing the 4,-formulag
and closed under (i), (iii) and (iv).

(iv) If @ is in @ and » is any variable then Hup is in @.

A predicate @ on Virv M is X if it is definable by a X formula of
the above language; it is 4 if it and its negation are both X. The reader
unfamiliar with X predicates should consult Lévy [6], p. 6 for basics and
§ 10 for examples and the theorem mentioned in the introduction.

4.1. THEOREM. Let @ be an n-ary X predicate. If Q(w ... ma) holds,
then Q (25 ... x3) holds a.e.

Since the closed unbounded filter is proper we have the following

consequence of the theorem.

4.2. COROLLARY. Let P be a A predicate. For all @y ... %n, P(®y ... Tn)
is true iff P (a3 ...25) is true for almost all s.

Extending some terminology of Kueker from classes of structures
to arbitrary predicates we say that P is closed downward if for each
Ly oo B With P(2y ... 22),

P(x} ... 23) holds a.e,

Thus, the theorem states that all X' predicates are closed downward.
Note that “x is uncountable”, whose negation is %, is not closed downward.

To prove the theorem first note that every A,-formula is equivalent
to one where all negations occur in front of atomic formulas. Atomic
predicates are trivially closed downward (if # ¢y then #° ¢ y* whenever
#es) and negated atomic predicates of individuals are also trivially
closed downward. The other negated atomic formulas fall under 4.3.

e
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4.3. LEMMA;. The predicates =y and 2 ¢y are closed downward.
Proof. We prove VaVyQ(z,y), where Q(»;y) is the conjunction of
x £y —>a° £y ae.
zvéy—>2°¢y° a.e.
yéo—>y ¢a ae.

by a double induction over e. Thus, given z,,y, we prove @ (@, ¥;) as-
suming ’

1) Veea,VyQ(z,y)
and
@) - VY € 4o (@, ¥) -

Case (i). Assume &, # ¥,. If either z, or 4, is an individual p then
x 7 y5 as long as p €5, SO We may assume both are sets. If there is an
@ ey, % ¢y, then @ (z,y,) by (1) so o* ¢ y5 a.e. whereas 2° e @.e., SO
x5 # ys a.e. If there is & y € Yo, ¥ ¢ % then we use (2) similarly.

Case (ii). Assume @, ¢ yo. If ¥, is an individual then «j¢ y§ for all s
50 we assume ¥, is a set. Now for each y ey, we have &, # ¥ and Q (%, ¥)

and hence the set Xy e D, where

Xy = {s: 0 # Y} -
By 3.2, the diagonal '
' Y={s:5¢ [ Xy}
yesQvo
is in D. Now let s ¢ Y be fixed. For every 4 s %, 8 € Xy, ie., x5 # Y%,
but yi= {y°: y €8y}, 80 @) ¢ y5. Thus a5¢ ys a.e.

Oase (iii). If y, ¢ %, the proof is similar to (ii). ®

The following result, with earlier remarks and 4.3, completeg the
proof of Theorem 4.1. It is of interest in its own right, though, since there
are predicates which are closed downward which are not X definable.

4.4. Provostrion. The predicates closed downward are closed- mzd.e'r
conjunction, disjunction, bounded quantification and wnbounded existential
quantification.

Proof. Conjunction follows from one propexty for filters (X,YeD
=X~ Y eD) and disjunction from the other (XCY,X eD=>‘Y sl?).
Existential quantification is routine by induetion, bour'lded ex1stent.19j1
follows from unbounded and Lemma 4.3. For bounded universal quantifi-
cation, let P(w, ... &, y) be closed downward and suppose

Vo eaP(®y ... @nyY) -
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We need to show that for almost all s we have
VyeaP(z ..o,y .
For yea let
Xy = {s: P(s} .05,y
(which is an element of D since P is closed downwards) and let ¥ be
the diagonal
Y={s: s¢ (| X}

rvesna

which is an element of D by 3.2 (b). We see that

se¥Y it Paf..2,y") forall yeans
80 we have, for se Y
Yy ea'P(af ... 5, 9)
since @' ={y*: yeans}. m

If one is willing to talk about infinitary predicates over Vi, then
we see that the predicates closed downward are also closed under count-
able conjunctions and arbitrary disjunctions; the second is trivial, the

first follows from the countable additivity of the closed unbounded filter, .

§ 5. Applications to infinitary logic. Let I be a first order language
with at most a countable (2) number of symbols. We think of these symbolg
a§ individuals (elements of M ), formulas are built up from them by set
theoretic principles and so are in Vy;. We assume the reader is familiar
with the infinitary langnages Ly, and L, If geL,, then ¢f = ¢ for
almost all s (for all s D TC(p) by Lemma, 2.2(c); it g eL,, then ¢*< L,
a.e. since Ly, is a 4 class and Ly g

; = {p e L, |lpll < %} To see more
clearly what ¢° means, for ¢ ¢ L, define ¢, for all s and all ¢ eI,
by recursion:

¢=¢ if ¢ is atomic,
(=0 = (),
(@ = @ g,
( /\ @) = . (g¥) .
jeJ jeJns

A simple inductive proof shows that @*

R = ¢/ for almost all s; i.c., that
our ¢° iy almost always equal to ¢° ag

defined in Kueker [4].

(*) This requirement on I co

uld be dr d replacing S -
Since I is countable, T — I* .o opped by replacing I by I at certain poins.
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An L-structure U is of the form (4,F> where 4 is a set of indi-
viduals (®) and I is a function which assigns to each symbol in I an inter-
pretation of the appropriate kind. Then, for almost all s, %°* is just the
substructure 2, of A with universe 4,= A ~s.

Theorem 4.1 and its corollary were inspired by two results in
Kueker [4], 5.1 and 5.2 below.

5.1. TaeorEM (Kueker). Let ¢ ¢ L, and let W be an L structure. Then

Ak if and only if

AWk ¢® a.e.

Proof. k is a 4 relation so the result follows from 4.2. @

The proof shows that the result holds for logics stronger than Le,-
Tn the terminology of [2], the result goes through with L., replaced by
any absolute logic I*. If I* is absolute and ¢ « L* then ¢* ¢ Lj, a.e. and

9 kg iff A E¢° ae. If @ e I} then ¢ = ¢° a.e. In particular these results

for the logics L* = L, and L} = L, which allow some infinite alter-
nations of quantifiers. This gives a very useful Lowenheim-Skolem result
when applied to the theory of inductive definitions as in Moschovakis [7];
see his § 8.D.

5.2. THROREM (Kueker). Let A, B be L-structures.

(2) U = oo B iff A == B° ae.

(b) U #op B iff A B ace.

Proof. The relation A =, B means that A and B are models of
the same sentences of Ly,. It is a 4 relation (see [1]). For countable
A, B, U=, Biff A=B. B

The reason for stating both (a) and (b) is that the closed unbounded
filter is not an ultrafilter so (b) does not follow immediately Jr‘_Yom ().

Let K be any class of L-structuves cloged under isomorplnsm a_nd
closed downward. Since Kueker [4], [5] give a number of interesting
model theoretic results for such K, it is useful to note the extreme ease

- with which such K can Dbe identified, given Theorem 4.1, Proposition 4.4

and just a little familiarity with 2 predicates. For example, we have the
following.

5.3. Provosirion. Let K, K' be a dass of L structures closed, m?der
isomorphism and closed downward. Then the classes of structures % defined
in the following are all closed downward.

(*) It one thinks of ¥ as given in advance then the rec_}_lﬁrements L ¥C M ai;ld
A C M seem odd. If, on the other hand, one thinks of I and 4 as given and then ormg A{—‘
for some M D LU A, then one sees that they are really not restrictions at all. It is jus
the usual mathematical practice; when working with some structure % = (4, ...> We
ignore .any structure on elements of A not given by U
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' 4] D. W. Kueker, Liwenheim-Skolem and interpolation theorems in infinitary lan-
(a) QIE B for somo B .6 I?, K [] guages, Bull. Amer. Math. Soc. 78 (1972), pp. 211-215.
(b) U 4s a homomorphic image of some B e K, [5] — Some Liwenheim-Skolem theorems, Preliminary report, Notices Amer. Math.
(c) A is a retract of some B e K, Soc. 19 (1972), p. A- E}O}). , _ " s 1965)
. . . ' [6]1 A.Lévy, A hierarchy of formulas in set theory, Memoirs Amer. Math. Soc. 57 .
(d) o s isomorphic to BX & for some B e I Ce K’ [77 Y. N. Moschovakis, Elementary Induction on Abstract Siructures, 1974.
(e) U is isomorphic to a direct sum > B; of B;e K, [8] A. Mostowski, An undecidable arithmetical statement, Fund. Math. 36 (1949),
jeJ
pp. 143-164. ‘
(£) A s a direct factor of some B ¢ K. [91 — Oonstructible Sets with Applications, 1969.
Proof. In each case the result follows by just writing down. the defi- [10] M. Nadel, Ph. D. Thesis, University of Wisconsin, 1971.

nition of the class and applying 4.1 and 4.4. For (d), to write one out,

h %[ . th . on OIBJSS it UNIVERSITY OF WISCONSIN, MADISON
we have ¥ in the giv

and
" STANFORD UNIVERSITY

0B, C[B « EAC e K'ATIA L BxC)] m

et et e e, s e

Regu par la Rédaction le 21. 2. 1973
‘We would like to conclude with an example a little less obvious than
the ones given in 5.3. One such comes from the class K, studied by Kueker
and defined by U ¢ K, ift

there is a finite set p, ... p, e 4 such i_;hat every g e¢.A is definable in
(U, Py ... pu) by & formula ¢(z) of L,.

5.4. PropostrioN. The class K, is A definable.

Proof. Simply writing out the above condition gives a X definition
of K,. It is not quite so obvious how to write 9 ¢ K, as a X condition.
To do it we use the following observation of Nadel [10]: If an element ¢
of a structure B is definable by some formula ¢(z) of L, then it is
definable by a formula ¢ eL(%);, where (B)* is the smallest admissible
set with B an element and Ligyr = Ly, ~ (B)*. We can now write
A ¢ K, iff :

Hx (2 is admissible A e wA for all finite sequences P, ... P, € A, there

18 a geA such that ¢ is not definable on (A, py ... p») by any for-
mula ¢ e z).

The part inside the parentheses is easily seen to be 4, m

From 5.4 and 4.2 we obtain Kueker’s result that U ¢ K, iff A% e K,
.., & result which Kueker puts to good use in [5].
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