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¥ of V is a strong deformation retract of ¥—{p}. Although our spaces
have nonsymmetric distance we define, following [5] and [9], an #-space
as a locally compact general metric space of eonstant topological dimension
where each point possesses arbitrarily small canonical neighborhoods.
Since the above theorem says that arbitrarily small positive balls are
canonical neighborhoods, we see that our spaces are also r-spaces.

6.3. Therefore all the results contained in the theory of r-spaces
(see [5], § 3), carry over. For example, the spheres K*(p,0), 0<< 0 < y(p),
are not contractible and the property of domain invariance holds in
our spaces. Many important results on conjugate points proved by Buse-
mann [see [5], pp. 14-20) depend only on these two properties and hence
they ¢ Iry over to our spaces. Since his methods generalize, we omit
the details.

This paper constituted a part of my Ph. D. thesis written at the
University of Southern California. I am grateful to Professor H. Busemann
for his guidance, encouragement and suggestions throughout the prepa-
ration of the thesis. The work was partially supported by the National
Science Foundation of the United States. I thank also Professor H. 8.
M. Coxeter and the National Research Council of Canada for support at
the University of Toronto. '
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Weakly smooth dendroids
by
Lewis Lum (Eugene, Oregon)

Abstract. Let X be a dendroid. For each point in X let 7, denote the function
from X into 2% given by n,(x) = [p, ], where 2% is the space of all nonempty closed
subsets of X with the Vietoris topology and [p, x] is the unique irreducible continuum
from p to z. Observe that X is smooth if for somep, 5, is & homeomorphism of X onto
its image D(X, p). The converse is also true. The space D(X, p) is studied for non-
smooth dendroids. Define X to be weakly smooth if there exists a point p such that
D(X, p) is a compact subset of 2%, Order-theoretic characterizations of weakly smooth
dendroids are obtained.

1. Introduction. Throughout this paper coniinuum will mean a eom-
pact connected metric space containing more than one point. A continuum
is hereditarily unicoherent if the intersection of any two of its subcontinua
is connected. The weak cut point order on a hereditarily unicoherent
continnum X with respect to p, <p, i8 defined by # <,y if and only
if z € [p, y], where [p, 5] denotes the intersection of all subcontinna of X
containing p» and y. A dendroid is an arcwise connected hereditarily
unicoherent continuum. If X is a dendroid, then <, is a partial order
and [p, y] is an are for all y e X. For any point p in a dendroid X denote
by D(X, p) the set of all ares in X of the form [p, 2]. We view D(X, p)
as a subspace of 2%, where 2% denotes the space of nmonempty closed
subsets of X with the Vietoris topology [6].

Charatonik and Eberhart [1] investigate smooth dendroids (Defi-
nition 1). Here the more general notion of weakly smooth dendroids is
introduced: A dendroid X is said to be weakly smooth if D(X, p) is a com-
pact subset of 2% for some p ¢ X.

The work is divided into three sections. The first section deals with
the structure of D(X,p) and with two partial order characterizations
of weakly smooth dendroids similar to those of smooth dendroids {Theo-
rem 2). In the second section these results are applied to obtain necessary
and sufficient conditions for a dendroid to be smooth and for a dendroid
to be a dendrite (= locally connected dendroid). We discuss necessary
and sufficient conditions for hereditarily unicoherent continua to be
arcwise connected in the final section.
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2. Weakly smooth dendroids, In what follows assume X is a dendroid.
Tor any point p ¢ X denote by D(X, p) the subspace of 2% consisting of

all subeontinua of the form [p, 4], where @ ¢ X. Let 7, denote the natural .

function from X onto D(X, p) defined by #4»(2) = [p, #]. Hereafter we
will write # for #,. Note that # is one-to-one.

Before we begin our discussion of D(X, p) we need a result about
smooth dendroids.

DermvITION. A dendroid X is smooth if there exists a point p e X,
called an initial point of X, such that given any sequence #, in X with
limw, = @, it follows that Lim[p,2a]= [p, %] (for the definitions of
00 N->00
gi, Ls, and Lim see [4], pp. 335-339).

THEOREM 1. A point p e X is an initial point if and only if the func-
tion 7 18 continuous, and hence a homeomorplism.

Proof. Since X is compact and x i3 one-to-one and onto, it follows
that % is continnous if and only if 4 is a homeomorphism. Moreover, the
statement that # is continuous is precisely the statement that p is an
initial point of X.

CoROLLARY 1.1. A point p e X is an initial point of X if and only
if n is upper semicontinuous.

Proof. By Theorem 2 ([6], p. 62) 7 is always lower semicontinuous.

THEOREM 2. The space D(X,p) is arcwise connected for any point
p € X. In particular, for any x < X, the set n([p, #]) is an arc in D(X, p)
with endpoints [p,p] and [p, @]

Proof. The result follows from Theorem 1 since p is an initial point
of the smooth dendroid [p, #].

The partial order, <p, on X induces a partial order, <, on D(X, p)
defined by [p, 2] <[p,y] if and only if #<,y. This partial order on
D(X, p) is always closed (Theorem 3) even though <, may not be a closed
partial order on X.

TEHEOREM 3. For any point p € X the space D(X, p) is metrizable and
the induced partial order on D(X, p) is closed.

Proof. It is well known that 2% is a metric space with closed partial
order, 7, given by ArB if and only if 4 C B. Thus, (X, p) inherits both
the metric and the elosed partial order. Clearly, the order on D(X, p)
induced by = coincides with the order <.
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It is not necessarily true, as we shall see, that D(X, p) is a closed
subset of 2%. Since 2% is a compact Hausdorff space, D(X, p) is closed
in 2% if and only if D(X, p) is compact. It follows from Theorem 1 that
if X is a smooth dendroid, then D(X, p) is compact for some p ¢ X. These
remarks motivate the following definition.
DEFINITION. A dendroid X is weakly smooth if there exists a poinb

. peX, called a weak initial point of X, such that D(X, p) is compact.

In this terminology every smooth dendroid with initial point p is
weakly smooth with weak initial point p. We construet a weakly smooth
dendroid which is not smooth in Example 1. There exists a dendroid
(Example 3) which is not weakly smooth.

Exaweie 1. In the plane define X;=Tv [] 4, and ¥, =Tvu

a=—1

v |J B, where:

n=—1

T=1[0,11x{0},

and for n=0,1,2, ..

A—1 = B—1 = {O}X [O: 11,

1
tn={Zhxr0,11,

=1.2)

=1.1) (1,1)

0,0) (1,0

Fig. 1

Now let X =X, v X, and Y= Y, v ¥X,, where X, (X,) is the reflection
of X; (¥,) about the point p = (0, 1) (see Figures 1 and 2, respectively).
Clearly, X is a non-smooth dendroid. On the other hand, it is not hard
to verify that D(X, p) is homeomorphic to ¥, which is compact.
The following lemma is & corollary to Theorem 1 ([3], p. 680).
LemuA 1. A dendroid X is smooth with initial point p ¢ X if and only
if the partial order <, is closed.
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{-1,2) (0,2)

{-1,1) .

(0,0) (1,0)

Fig. 2

The next theorem gives an analogous characterization of weakly

smooth dendroids. ) _
TEEOREM 4. If p is a point in the dendroid X, then the following
statements are equivalent:

(i) Given any two sequences an and by in X with nlilgan=ao,

limby, = by, and an <pbn for each n, it follows that ay<p by oF by <p &.
e N I3 .

(ii)y Given any comvergent sequence b, in X, it follows that ”]:.:; [p, %n]
= [p, «] for some v eX.

(iii) The point p e X is a weak initial point of X.

Proof. (i) implies (ii). Let @x be a convergent sequence in X.
It is known that Li[p, #,] = A is a non-degenerate subcontinuum of X.

It follows from (iﬁﬁat A is a <p-totally ordered subset of X, Since p ¢ 4
and 4 is a totally ordered subcontinuum of X, 4 must be of the form
[p, «], for some % e X. .
(i) implies (iii). Let [p,#.] be a convergent sequence of points
in D(X, p). Then Lim[p, #,] = 4 is a non-degenerate subeontinuum of X,
N N->00

Choose in X a convergent subsequence, #,,, of the sequence @. By (ii)
there exists a point # « X such that Li[p, #n,]= [p,«]. Thus,
ko0
A= Tim[p, o] = Li[p, @] = [p,#].
n—>00 -k—o0

That is, D(X, p) is a closed subset of 2%
(iii) implies (i). Let a, and b, be two sequences in X satisfying the
hypotheses of (i). Let [p, bs] be a convergent subsequence of the se-
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quence [p, bx] in D(X, p) (see [9], Theorem 7.1, p. 11). Since D(X, p) is

a closed subset of 2%, Lim[p, by] = [p,s], for some zeX. It follows
koo

immediately that a, <jp b, or b, <p ay.

Charatonik and Eberhart ([1], Corollary 6, p. 299) have shown the
property of being a smooth dendroid is hereditary to subcontinua. This
result generalizes to weakly smooth dendroids.

TEEOREM 5. Hach subcontinuum of a weakly smooth dendroid is a weakly
smooth dendroid.

Proof. Let ¥ be a subcontinmum of the dendroid X with weak
initial point p. It is well known that ¥ is a dendroid. Let ge Y be the
zero of Y with respect to the partial order <p on X (see [8], Lemma 2,
D. 923). We show ¢ is a weak initial point of Y. Let z, be a convergent
sequence of points in ¥. Since p is a weak initial point of X there exists
a point # ¢ X such that Li[p, z,]= [, «]. Since ¢ is the zero of ¥ and

MO

zn € ¥, it follows that
[P, #n]=1[p, q1v [g; za]

and [q, 2,]C ¥, for each n. Whence

) [P, #]=1[p, g1 Li [g, @]
TE—> 00
and Li[g,#,]C ¥. Now since
Nn—>0

[7, 4] ﬁniio[q, 2] = {q}

it is straightforward to verify that @ ¢ ¥ and
Lilg, @] =1[q,a].
00

That is, ¢ is a weak initial point of ¥.

THEOREM 6. Let X be a dendroid and let p ¢ X. If ¥ 12 a subcontinuuwm
of X and q e Y is the zero of ¥ with respect to <p, then D(XY, q) is homeo-
morphic to n(¥)CD(X, p).

Proof. Define the funetion f from 2% x 2% onto 2% by j{e: 99 5)
= K v L. By Corollary 4a ([4], p. 116) f is continuous. If & denotes the
restriction of f to the subspace D(Y, ¢) x {[p, ¢]}, then h is & homeo-
morphism into D(X, p).

CoroLLARY 6.1. In the notation of Theorem 6 if p is a weak initial
point of X, then n(X) is a subcontinuum of D(X, p).

3. Applications to smooth dendroids and dendrites. The first application
gives an affirmative answer to a question posed by Sam B. Nadler, Jr. He
asked: If a dendroid X is homeomorphic to’ D(X, p) for some peX,
is X a smooth dendroid¥ .

8 — Fun nta M

ticae, T. LXXXIII
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TarorEM 7. A dendroid X is smooth if and only if there exists a poini
peX such that X is homeomorphic to D(X, p).

Proof. If X is homeomorphic to D(X, ), then D(X, p) is a smoqth
dendroid by Theorem 3 and Lemma 1. But then X is a smooth dendroid.
The converse is Theorem 1. .

Tn Theorem 7 one might conjecture if X is homeomorphic to D(X, p),
then p is an initial point of X. This ig not necessarily true as the example
Dbelow shows.

Exampre 2. Let X, and ¥; be as in Example 1. For n = 0,1,2,..
define homeomorphisms %, (k) from X; (¥,) into the plane by:

2n—1 1—2

Rl 9) = <———2n_1 +ﬁ’ y) and (2, y) = (—T—}-é—”’ y) .

TLet X denote the closure in the plane of | J (fu(Xy) v ka Y,)) (see Figure 3).
=0

e
Tt-can be shown that X is a dendroid which is homeomorphic to D(X, p)y
where p = (0,1), but p is not an initial point of X.Note that the set of
initial points of X consists of all points except those of the form (w, y)

on—1
where ¢ = — = (n=0,1,2,..) and y > 0.
©.1)
| ‘ ‘l I \ i
(-2.00 -1.0) 0.0) a0 2.0
‘ Fig. 3

Koch and Krule [3] have shown that a dendroid is locally connected
at each of its initial points. Hence if every point of X is an initial point,
then X is a dendrite (see [1], pp. 298-209). Although the first statement
does not hold if “initial point” is replaced by “weak initial point” (in
Example 1, X is not locally connected at p = (0, 1)), the latter does hold
(Theorem 8). )

TarorEM 8. If X is a dendroid, then X is a dendrite if and only if
every point of X is a weak initial point.

Proof. If X fails to be locally connected, then there exists a pairwise
digjoint sequence, ¥y (n=0,1,2,..), of non-degenerate subcontinua
of X satistying Lim ¥, = ¥, ([9], Theorem 12.1, p. 18). Let ¢ and 7 be

>

icm°

Weakly smooth dendroids 117

distinet points in ¥,, then [gq,7]C ¥,. Since LimY,= ¥, there are
R0
points g, and 7., for = 1,2, .., such that

limgy=¢ and Imr,=r.

Let p, be a cutpoint of [g, 7]. B is easy to see that

Doelg,gn] Or  pyelr,mal,
for each n (otherwise X contains a simple closed curve). Whence, for
infinitely many #,
Poeld; gal

or, for infinitely many =,
Poelr, ]

Without loss of generality we assume the latter. Passing to a subsequence,
if necessary, we can further assume p,e[r,r,], for cach n. Let p be
a cutpoint of [p,, r]. It is easy to verify that for each n,

Poelp, ],
and hence,

[P, r1C Li[p,7a] .

Now by hypothesis p is a weak initial point of X, so there exists a point
ro € X such that

Li{p, ra]l=1[p,7].
But then,
[20, Y1C [, 70]

which contradiets the definition of p. Therefore X is locally connected
and henee X is a dendrite. The converse is easy.

CorOLLARY 8.1. Let X be a weakly smooth dendroid with weak initial
point p. If D(X,p) is homeomorphic to D(X, q) for all g X, then X is
a dendrite.

In Corollary 8.1 it is necessary that X be a weakly smooth dendroid.

Exampr 3. Let X be the dendroid illustrated in the Figure 4. It ig
not difficult to see that X contains no weak initial points and D (X, p) is
homeomorphic to D(X, ¢) for all p, g e X. (See also Figure 1 ([1], p. 305)).
Example 3 is due to D. Paulowich.

8%
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=

Fig. 4

4. Arcs in hereditarily unicoherent continua. Throughout this. section-X
will denote a hereditarily unicoherent continuum (not necess:%rlly m:cmse
connected). For each point p ¢ X define 7, and D(X,p) as in Section 1.
Tn this setting [p, #] need not be an arc, 7 need not be one-to-one, aJn’d
the weak cutpoint order, <, may not be a partial order. In fact, 7, 18

one-to-one if and only if <, is a partial order.
TrEomEM 9. A hereditarily unicoherent continuum X is arcwise con-
necled (i.e., X is a dendroid) if and only if 5y s one-to-one for all peX.

Proof, If X is a dend.rdid, then <, is a partial order for all e X.
For the converse, fix a point ¢ ¢ X. It suffices to show [, ¢] is a continuum
with exactly two non-cutpoints. To that end, choose any ze[p, q] and

note that
p,elviz, g=1[p,d.
TUsing the fact that 7y and 7, are one-to-one it is straightforward to
verify that
[p, ] ~ o, q]= {2}
Now since
([0, 4TI, ) v ([0, g1—[p, 2)) = (D, g1— {2} »

2 is a cutpoint of [p, g]. Together with the fact that [p, g] contains at
least two non-cutpoints, the above shows that [p,d] has exactly two
non-cutpoints. .

Theorem 9 is not true if we assume only 7, is one-to-one for some p.

1
ExavprE 4. Lett X be the sin; curve:

X={(w, sin;)‘ 0<w<1}u{(0,y)[ -1<y<1}.
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It is apparent that X is a hereditarily unicoherent continuum which is
not a dendroid. Note that the points for which %, is one-to-one are those
of the form (0,y) for —1<y<1.

If Y= X v Z, where Z is the reflection of X about the line # =1,
then Y is a hereditarily unicoherent continuum for which 7, is one-to-one
for mo p. :

The following is a consequence of Corollary 1 ([2], p. 726). See also
({71, p. 375).

TrEOREM 10. If X is a hereditarily unicohereni continuum and p ¢ X
s such that <, is a closed partial order, then X is arcwise connecled and
hence X is a smooth dendroid.

Theorem 10 enables us to generalize Theorems 1 and 7.

TeEOREM 11. If X is a hereditarily unicoherent continuum, then the
following statements are equivalent:

(i) X is a smooth dendroid.

(i) There exists a point p € X such that n, is one-lo-one and upper
semicontinuous.

(iii) There ewists a point p € X such that 7y is one-lto-one and X is
homeomorphic to D(X, p).

Proof. (i) implies (ii) follows from Theorem 1. From Theorem 2
([5], p- 62) we infer (ii) implies (iii). Now assume there exists a point
p e X such that #p is one-to-ome and X is homeomorphic to D(X, p).
Then <, is a partial order on X and D(X, p) is a hereditarily unicoherent
continuum. It follows that the induced partial order on D(X, p) coincides
with the weak cutpoint order, <,,;, with respect to [p, p]. Moreover,
sinee Theorem 3 does not depend on X being arcwise connected <p,y is
a closed partial order on D(X, p). We infer from Theorem 10 that D(X, p)
is a smooth dendroid. Consequently, (iii) implies X is a smooth den-
droid.
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Theorien abelscher Gruppen mit
einem einstelligen Pradikat

yon

Andreas Baudisch (Berlin)

Zusammenfassung. Mit Hilfe der Methode der Modellinterpretierbarkeit wird fol-
gendes Theorem hewiesen:

Theorem. Sei K eine Klasse abelscher Gruppen, deren Mdchtigkeiten nichi endiich
beschrinkt sind (2. B. kann K aus einer einzigen unendlichen abelschen Gruppe bestehen),
ferner sei Kp die Klasse aller abelschen Gruppen <A, P) mit einstelligem Pridikat P,
A €K, sowie K5 die Klasse aller abelschen Gruppen <4, P>, A e K, wobei P ein endliches
einstelliges Pradikat ist. Dann sind die elementaren Theorien ThEp und ThEK} rekursiv
unentscheidbar.

1. Das Resultat. Es hat sich herausgestellt, dafl die in der Sprache {-+)
formalisierten elementaren Theorien der wichtigsten Klassen abelscher
Gruppen rekursiv entscheidbar sind, speziell die Theorie der Klasse aller
abelschen Gruppen. Die grundlegende Arbeit auf diesem Gebiet wurde
1954 von W. Szmielew verdffentlicht [7]. Die Situation verdndert sich
radikal, wenn die zugrundegelegte Sprache erweitert wird. In dieser
Arbeit wird die um ein einstelliges Pradikatensymbol P erweiterte Sprache
der abelschen Gruppen betrachtet. Ist K eine Klasse abelscher Gruppen,
so daB die Michtigkeiten der Gruppen aus K endlich beschriankt sind,
so ist nicht nur die elementare Theorie Th K, sondern auch ThKp ent-
scheidbar, wobei K » die Klasse aller Strukturen {4, P) ist, in denen 4 eine
abelsche Gruppe aus K und P ein einstelliges Priadikat in 4 ist. Das
Hauptresultat ist nun, daB diese Fille gewissermafBen die einzigen hin-
sichtlich der rekursiven Entscheidbarkeit sind, d.h., es gilt das folgende

TrEoREM. Sei K eine Klasse abelscher Gruppen, deren Mdchtighkeiten
nicht endlich beschrinkt sind (2.B. kann K aus einer einzigen unendlichen
abelschen Gruppe bestehen), ferner sei Kp die Klasse aller abelschen Gruppen
CA, P mit einstelligem Pridikat P, A € K, sowie Kp die Klasse aller abel-
schen Gruppen (A, P>, A eK, wobei P ein endliches einstelliges Pridikat
ist. Dann sind die elementaren Theorien ThKp und ThK}", rekursiv unent-
scheidbar.

Hierans folgt unmittelbar das folgende Korollar:
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