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Semi-Boolean algebras and their applications
to intuitionistic logic with dual operations
by
Cecylia Rauszer (*) (Warszawa)

Abstract. The presented paper consists of two parts. Part one is devoted to the
theory of semi-Boolean algebras. These algebras are msed in an algebraic treatment,
of intuitionistic logic with two additional connectives =, —. This logic is called H-B
logic and it is examined in the second part. In order to develop semi-Boolean algebras akind
of lattice—to be called bi-topological Boolean algebras — is introduced and investigated.
For the above algebras representation theorems are formulated and prove. For semi-
Boolean algebras with infinite joins and meets a representation theorem analogous
to the Rasiowa-Sikorski lemma is also proved. In the second part the H-B logic is
examined. The main results of that part are the proofs of the completeness theorem;
the deduction theorem and a theorem which explain the connections between intuition-
istic propositional tautologies and tautologies of the propositional caleulus of the
H-B logic.

Lattice theory plays an important role in the algebra of logic. The
connections between Boolean algebras and classical logic are well known.
Analogous connections hold between pseudo-Boolean algebras — which
are represented by algebras of open subsets of a topological space — and
intuitionistic logic. Dual algebras to the pseudo-Boolean algebras are
Brouwerian algebras (see [5]). They are isomorphic to algebras of closed
subsets of a topological space. Brouwerian algebras can also be used for
an algebraic interpretation of intuitionistic logic. ’

In this paper a class of laftices to be called semi-Boolean algebras
is introduced and examined. Semi-Boolean algebras can be used in an
algebraic treatment of intuitionistic logic with two additional con-
nectives =, [~ which are dual to the intuitionistic implication and to
the intuitionistic negation, respectively. This logic is called the H-B’
logic. Semi-Boolean algebras play an analogous role for the above men-
tioned logic to that played by Boolean algebras for classical logie.

This paper consists of two parts. Part I is devoted to the theory of
semi-Boolean algebras. In order to develop this theory a kind of lattice —

(*) This paper constitutes a part of the doctoral disserfation represented at the
Warsaw University Institute of Mathematics in February 1971. The author wishes to
thank Professor Helena Rasiowa for her valuable advice help in the preparation of
the paper. i
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to be called bi-topological Boolean algebras — is also examined. There
is established a relation between these algebras and semi-Boolean al-
gebras analogous to that which holds between topological Boolean al-
gebras (closure algebras) on the one hand and semi-Boolean algebras on
the other hand. The main results of this part are certain representation
theorems for these algebras. An example of a semi-Boolean algebra is
given in § 6. In that example the construction of the Cantor discontinuum
is used. Semi-Boolean algebras with infinite joins and meets are considered
‘in.§ 7. For those algebras a representation theorem which i a weaker
analogue of the Rasiowa-Sikorski lemma. for Boolean algebras is formulated
and proved.

In the second part the propositional calculi of the H-B logic are
investigated. The set of axioms for that logic contains some axioms of
intuitionistic propositional calculus and some formulas which characterize
the operations = and [~. Two rules of inference are adopted, namely

a
e’

The main results of the second part are the proofs of the completeness
theorem and the deduction theorem. A theorem which explain the con-
nections between intuitionistic propositional tautologies and tautologies
of the propositional caleulus of H-B logic is proved in § 10. An analogous
theorem for the formalized theories of the H-B logic is not true. This
follows from the properties of semi-Boolean algebras with infinite joins
and meets. Formalized theories of the H-B logic will be considered in
a separate paper.

modus ponens and the rule (r)

§ 1. Definition and some properties of semi-Boolean algebras. We shall say
that an abstract algebra A = (4, v, n, =, =) is a semi-Boolean algebra
provided that

(i) (4,v, n, =) is a relatively pseudo-complement lattice,
(ii) — is a binary operation which satisfies the following condition:

a~b<z if and onlyif a<busz for any a,b,zed.

The operation + will be called the pseudo-difference. This operation is
dual to the relative pseudo-complement =-.

Semi-Boolean algebras can be characterized by a simple set of axioms.
Namely,

11. An abstract algebra W= (4,vw,n, =, =) is a semi-Boolean
algebra if and only if it satisfies the following awioms

L) evb=bdbua,
) (avbve=av(dbue),
L) (and)ub=0b,

anb=bna,
(@nd)ne=an(bno),
(avd)na=a,

icm°
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L) bu(a=by=avb, an(e=>b)=anb,

L) (a=dva=a, (a=b) b =1, 7

L) (@=0v(d=e)=(aub)=c, (a=b)n(a=c)=a=(bnc),

1) (a+a)ywb=5b, (a=a)~b=1b, :
The proof of 1.1 is by an easy verification. m

We say that every semi-Boolean algebra ¥ = (4, U, ~, =, =) has
‘the zero element

1) A=a+a, acd

and the unit element

(2) V=a=a, acd.

1.2. In every semi-Boolean algebra

a=b=Y if and only if a <b; if and only if a=b=V,
a=y=V, A=a=/A,

V=2b=b, a-A=a,

if @ <a, then a,=>b < a,=b and a;—b < a,~ b,
if by < b, then a=b, < a=>b, and a—b, < a=>by,
b<a=b, a=b<a,

(a=c) n(b=¢c) = (a v b)=>¢,

(10)  (e=~a) v (c=b)=c+(and),

(11)  a=(b=¢)= (a nb)=c=b=(a=c),

(12) (e=b)~a=c—(awb)=(c—a)=b,

(13)  (a=b) < (b=0)=(a=q),

(14) (a=~¢)=(a=b) < b—-c.

=1 O O = W

8
9

This theorem follows from the properties of ‘the operations =
and —. &

An element ¢ e A is said to be the ~-complement of an element a in A
if ¢ is the greatest element such that a mne¢= 4. In the semi-Boolean
algebra A every element has the ~-complement, namely

" (15) o= a=/

is the ~-complement of an element @ in .

An element ¢ € 4 is said to be the U-complement of an element a in U
if ¢ is the least element such that @ v ¢= /. In the semi-Boolean algebra A
every element has the u-complement, namely

(16) : Fa=V-=-a

is the w-complement of an element a in 9L

Hence the definition of a semi-Boolean algebra given above is equiva-
lent to the following one: An abstract algebra (4,u,n, =, =,7], ")
15+
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will be called a semi-Boolean algebra provided that (4, v, N, =>,']). is
a pseudo-Boolean algebra [2] and (4, v, r\,‘—'-, [M)is a Bro.uweman
algebra [1]. We list the fundamental properties of the operations =,

=77 and [~ in semi-Boolean algebrag in the form of the following
H

theorem:
1.3. In every semi-Boolean algebra the following conditions are satisfied
(A7) f a<bthen "< Tlaand [d<[ a
(18) an Tla=/A, avl a=V,
19) A=V, TW=4, T A=V, V=4
(20) a< 17le, [ Te<a,
21 1T Tle=Tla, [rre=[a
(22) Wevb)= Tlan Tla, Tavub)<TanTb,
(23) Tlav "I Wand), [avlb= M (anb),
(@4 Tevb<a=b, a-b<anlb,
(28) . a=b< Th=>"la, [a ~b<b-a,
(26) Tle<T a, :
27) "re<a,
(28) T Tra< 17e,
(29) a=b < (a=h),
(30) a—=Db) < a=D,
81)  (a=b) < Ca=Ib,
(82)  Th="la< Ti(b=a),
(33) TIraev Irb< M (avb),
(34) Tran b= "I[ (anb),
(38) T (e=d)< T a="1"b.

The proofs of (17)-(25) are either know_n or obvious (see [1] and [2]).
Proof of (26). By (18) we have

Tla=TlanV="lan(avila)= Tlanaev Tlanla= "lav [ a.

Thus (26) holds.
(27) follows from (20) and (26).
(28) follows from (20).

Proof of (29). We prove that a-—["(a=>b) < b. Hence, by (3) and
(12) follows (29). By (24), (20) and (I;) we have
' 4T (@sb)<anT T (amb)<an(a=mb=anb<b.
Proof of (30) is similar to the proof of (29).
(31) follows from the definition of =, (22) and (24).
(32) follows from the definition of =, (22) and (24).
Proofs of (33) and (34) follow from (22) and (26).
(85) follows from the definition of =, (34) and (1,). =
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§ 2. Filters in semi-Bolean algebras. Let % = (4, v, n, =, =, —}, )
will be a semi-Boolean algebra. A non-empty set ¥ of elements of a semi-
Boolean algebra U is said to be a semi-Boolean filter (henceforth abbrevi-
ated to [ -filter) in A provided that, V is a filter and the following
condition is satisfied: for every ae 4
(£) if aeV then “Taeb.

The set eomposed of the element i only is an example of a I -filter.

Let a, be an element of A. The set of all elements = ¢ 4 for whicli there
2n

exists a positive integer n such that ~[™... [ a, < @ is another example
of a T)[-filter. This filter will be called the 1 -filter generated by a,.
M

In the sequel we shall denote by T,a the element —j[... [ a. For every
non-empty set 4, of elements in A there exists a least —|[-filter ¥ con-
taining A,. Namely the —][ -filter ¥ is the intersection of all I - filters
containing A,. The least —)[-filter V is said to be filier generated by
the set A,.

2.1. The I -filier generated by a non-empty set A, of a semi-Boolean
algebra A is the set of all elements x € A for which there ewist positive integers
Ny oo N SUCH that

ITponanl . <a for some a,..a,¢A,.

The proof is by an easy verification. n

2.2. For any fimed elemeni aye A and a ~I["-filter V in U the set of
all elements « for which there ewists a positive integer n such that Trpa e < @
Jor any element ¢ €V is the least ~|["-filter containing a, and V.

This follows easily from 2.1. m

A TI[-filter is said to be mazimal in A provided it is proper and it

is not any proper subset of a proper T -filter in U. It is easy to
prove that

2.3. For every proper [ -filter V in U there ewists a mazimal
I -filter V* in U such that V is contained in V*. W

2.4. In a semi-Boolean algebra, each prime —1[”-filter V is mawimal.
A T -filter V is prime: if avbeV then aeV or be v.)

Suppose that ¥ is a prime ][ -filter and V is not maximal. Let
4 g Vi, i.e. suppose there exists an element b such that b ¢ V and b eVy,

where V; is a proper [ -filter. By 1.3 (18) V=bu [ beV. Hence
[Tb eV because V¥ is a prime ~][ -filter and b ¢ V. Thus [b eV, and on
account of condition (f) we infer that " ["beV, and rbels.
By 1.3 (17) and (28) we have ~]71["beVF,. Hence [ b~ 171D
= AeV, and V, is not a proper [ -filter. This proves that V is a ma-
ximal [ -filter. m T -
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The theorem converse to 2.4 is not true. As an example we consider
) V . .
the finite Boolean algebra « 5. The set {V/}is a unique proper i - filter
v .

in this semi-Boolean algebra. It is a maximal [ -filter but it is not
prime because a v b e {/} but neither a ¢ {V} nor b ¢ {V}.

A ") -tilter 7 is said to be a semi-prime [ -filter provided: if for
every positive integer n, Tna v T,beV then aeV or bel.

9.5. In a semi-Boolean algebra %, each mawimal —\[-filler is o semi-
prime [ -filter.

Suppose that ¥ is not a semi-prime I -filter, i.e. that for every
positive integer n Tpa v TubeV bub ad¢V and b¢V. Let V, be the
—-filter generated by a and ¥, i.e. let ¥, be the set of all # for which
there exists positive integer n, such that T, ane¢< 2, for some ce V.
We observe that b ¢ ;. In fact the hypothesis b ¢ ¥, implies that T,
~e < b for any positive-integer n, and for an element ¢ e V. Thus by
1.3(27)

b=T,ancwb = (TyawT,b)n(bv c).

Sinee T,aw T,beV and bwceV we infer that b eV, in contradiction
to our assumptions. Obviously ¥ C P, and V # V. Thus the 7 [~ -filter V is
not maximal. +

A T -filter ¥ is said to be irreducible in U if it iy not a product of
two [ -filters in ¥ different from V.

2.6. Bvery irreducible [ - filter in a semi-Boolean algebra is a semi
prime T1[ - filter.

Suppose that ¥ is an irreducible —J[-filter and for every positive
integer n, Tpa v TybeV and a¢ P and b¢V. Let V, be the —][ -filter
generated by « and V, i.e. Vi the set of all elements & for which there
exists a positive integer n,, such that T,a~¢ <o for some ¢el.
Let 7, be the —|[ -filter generated by b and V, i.e. V, is the set of all
elements o for which there exists positive integer n, such that T,b ~
N, < o for some c,e V. We shall prove that V= P, ~V,. Indeed,
PCV, TV, It y ¢V, and y € V, then there exist a positive integers n., n,
such that T,e~e <y and T,bn~e <y for any ¢, c¢eV. Hence
T,ancvT,bne <y. This implies that

(Tmaw Tub)ne, e, <y  where  m = max(ng, ny) .

Thus y e V since Tnaw TnbeV and ¢ ~ ¢ e V. In consequence, V is nob
an- irl_."educible 1 -filter. m .

Let V be & TI -filter in a semi-Boolean algebra U= (4,v, n,
=, =, 7], ). For any elements a,b e A we shall write
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1) a<,b ifandonlyif a=bePF,
and
{2) a~b(modl) if and only if a=bel and b=acl.

Relation (1) is a quasi-ordering in A4, i.e. <, is reflexive and transitive.
Relation (2) is an equivalence relation. We consider the set AV of all
equivalence classes of the relation ~. Elements in 4/V will be denoted
by |a,]1(w € A). Relation (1) in 4 determines an ordering relation (*) < in Alr,.
namely

{3) : la] < [b] if and only if a=bel.
‘We recall that every semi-Boolean algebra is a pseudo-Boolean algebra
and every [ -filter is a filter, thus

2.7. The algebra (4]V, o, n,=,71) is a pseudo-Boolean algebra. The
algebra (A[V, v, n,=,77) is non-degenerate if and only if V is a proper
T - filter. m

2.8. For every T\ -filter V in a semi-Boolean algebra A = (4, v, r,

=, =,7, ") the equivalence relation ~ defined by (2) is a congruence in
this algebra. The algebra ' = (A[V,u, n,=, =, 7], ") where

(4) la|v [b] = lavb],
{5) laf b= land],
(6) la]= [b] = la=b],
{7) la]—1b] = [a—=b],
8) Tllal = [Ta},
{9) Clal=[al.

18 a semi-Boolean algebra. The algebra W is non-degenerate if and only
if V is a proper T|[ -filter.

On account of 2.7 it is sufficient to show that conditions (7) and (9)
are fulfilled.

To prove (7) it suffices to show that for any a,b,ze¢ 4

la=b| < |x| if and only if |a| < [@]vw]b].

Suppose that |a| < |z| v [b|=|xw b|, then a= (xwd)=. By the
assumption V is a 7 -filter, thus ~]i—(a;=> (x w b)) e V. By (29), (26), (17)
and (30) we infer that

A {e=(zvb) < a-(bva)= "(e=b)=z<(a=b) <=z.

(1) A binary relation < defined in a set A is said to be an ordering if it is reflexive,
antisymmetric and transitive.
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Hence (a~b) < 2 eV ie. |a=b| < |#|. On the other hand, if |a=b| <,
then by (4) and (1)

ol < & v b] = |(@=b) U bl = Ja-=b] v [B] < |a| v |BI.

Thig proves (7). Condition (9) follows immediately from the definition
of ™ and (7). ®

It is easy to see that ‘

2.9. A T -filter V in a semii-Boolean algebra W= (A, v, n,=, *)
is mamimal if and only if AV has exactly two elements. m

An ideal 4 is said to be a semi-Boolean ideal (7 -ideal) provided
that for any ae A if aed then [~ 7laed. The notion of [ 7]-ideal is
dual to that of & ~][ -filter. The theory of semi-Boolean algebras can
be considered by using the notion of a [~ -ideal.

§ 3. Bi-topological Boolean algebras. We shall say that an abstract
algebra B = (B, v, n, >, —, 3, 0) is a bi-topological Boolean algebra if
(B,wv,n, >, —) is a Boolean algebra, and J and C are an interior and
a clogure operations respectively, such that the following condition
is satisfied
(%) Jo= Cla, COa=3Ca for every acB.

The operations J and € will be called the conjugate operations over B when
they satisfy (#). An element a ¢ B is said to be J-open (C-closed) when
Ja=a (Ca=a). We have geen that in every bi-topological Boolean
algebra an element & iy J-open if and only if it is C-closed.

By a topological space we shall understand a system <X, 3> ({(X, 0))
where the set X is non-empty and J is an interior operation (C is a closure
operation). If the systems (X, J) and (X, () are any topological spaces,
then the system (X, J, 0) will be called a bi-topological space. Let ByX)
denoté the -class of all subset of X. If for every Y e B(X), B(X) C By(X)

(#%) 1Y = O3Y 3§ 0Y =307,

then we shall say that the operations J and O are conjugate over B(X).
If (X, 3, 0 is a bi-topological space, B(X) is a field of subset of X and
the operations J and € are conjugate over B(X), then the algebra
‘-B=(Q3(X), U, n,—, 3, G) as well as each of itg subalgebras will be
called a bi-topological field of sets (move exactly: a bi-topological fidld of
subset of X). i

An example of a bi-topological field of sets can be constructed in
the following way. Let (X, <) be an arbitrary ordered set, i.e. let the
relation < be an ordering in the set X. Let W () for any # ¢ X denote
the set of all ¥ e X such that ¥ < o, ie.

1) Wz)={yeX: y<u}.
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Let B(X) be the class of all subsets of X. We define an interior operation 3
and a closure operation C in the following way:

@) ¥=_J W),
ey for any ¥ « B(X)
3) 0= U W), v g
rcUi(z)

The systems (X, 3> and <X, 0> are topological spaces. Thus the
system (X, J, O) is a bi-topological space. It is easy to prove that the
operations J and € defined above are conjugate over B(X). The algebra
(B(X), v, ny, —, 3, C)— where B(X) is the class of all subsets of the
ordered set (X, <), the operations v, n and — are set-theoretical union,
intersection and complementation respectively, J is the interior defined
by (2) and C is the closure operation defined by (8) —is an example of
a bi-topological field of sets.

3.1. For every bi-topological Boolean algebra B there exists a bi-topo-
logical field of sets P and an isomorphism of B onto P.

Let B = (B, v, n, >, —, 3* C*) be a bi-topological Boolean algebra.
Let us denote by X the set of all prime filters V of a Boolean algebra
Bo= (B, v, ~, -, —), and for every a<B let h(a) denote the set of
all V ¢ X such that a € V. It follows from [4] that the Stone space <X, I) —
where the interior operation I is determined by assuming the class
{h(a)}4ep a8 & subbagis—is a compact (%) totally disconnected Haus-
dorff space. Moreover, the class {i(a)},.p is the field of all both open
and closed subsets of the topological space (X, I> and & is an isomorphism
of B, onto P’ = (B(X), v, n, —) where B(X)= {h(a)}sez- Now, 2 new
interior operation and a new closure operation in X will be defined in
the following way:
(4) 3¥= {J Ma),

Ma)C¥
agz%‘a

(8) CY= [\ hib),
Ych®)
b=C*

It will be shown that the operations defined above are conjugate over

B (X), i.e. that the condition (#+) is satistied. Let ¥ ¢ B(X), i.e. Y= h{x)

for some @ ¢ B. By the definition of the operation J we have
IX =3h(z) =" |J h(a).

h(a)Ch{z)
a=3%a

for every YCX.

(*) A topological space (X, I is said to be compact if for every indexed set {4;};iep
of open subsets the equation X = | 4 implies the existence of a finite set Ty C T' such
tel

that X = | 4..
teDo
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Since % is an isomorphism of the Boolean algebra B, onto P the condition
h{a) C h(x) is equivalent to & < » for any a, ¢ B. Since we have a = ¥*g,
the last inequality is equivalent to the followmg one a <3z, ie. to

h(a) C h(3*z). Thus
@)= U h(a)=

R(Q)CR(I*
Mo e

h(a) = h(3*z).

In the same way it could be shown that
Oh(z) = h(C*w) .
Since the operation J* and C* are conjugate over B, it is true that

IY = Th(z) = h(3*) = h(0*V*z) = Cih(z) = C4Y
and
CY = Oh(2) = h(C*y) = h(3*0*x) = 30h(2) = ICY.

This proves that condition () is satisfied. The algebra P = (B(X),
U, n, —, 3, 0) is the required bi-topological field of sets and J is the
isomorphism of the bi-topological Boolean algebra B onto . W

§ 4. The connection between semi-Boolean algebras and- bi-topological
Boolean algebras. For any bi-topological Boolean algebra B = (B, v, n
-, —, 3, C) we shall denote by G4(B) the set of all 3-open elements in B,
By condition () § 3 the elements of G4(B) are simultaneously J-open
and C-closed.

41. The algebra (Gy(B),v,n, =, ~)—where Gy(B) is the set of -

all J-open elements of a bi-topological Boolean algebra B = (B,v, n, —,
—, 3, 0)—is a semi-Boolean algebra. For all a, b € Gy(B)

o ' a=b=3(—aub),
{2) a=~b=C(an—0).

To prove (1) it suffices to show that e~ < b if and only if
#<I(—aub) for any a,b, xe G4B). In fact, the condition ¢~z <b
I3 equivalent to # << —a v b, where sign — denotes the complement in
the bi-topological Boolean algebra 8. Since » is J-open the last inequality
is equivalent t0 z < J(— a u b), which proves (1). Condition (2) we prove
similarly. On account of the definition of - we have to prove that, for
any a,b,zeGyB), a<buz it and only if 0(a~ —b) < . The con-
dition a < b v is equivalent to a » —b < . Since x ¢ G4(B), we infer
that « is (-closed. Thus, the last inequality is equivalent to C(a n —b)
< «. This proves (2). m

Theorem 4.1 yields an important example of semi-Boolean algebras.
‘We shall prove that every semi-Boolean algebra 9 is of the form

Semi-Boolean algebras and their applications 229

{G4(B), v, m, =, —) where B is the set of elements of a bi-topologiaal
Boolean algebra B = (B,wv,n, =, —, 1, (); more precisely.

4.2 For every semi-Boolean algebra W = (4, v, ~, =, =) there exists
a bi-topological Boolean algebra B = (B,v, n, =, —, 3, C) such that
A = G4(B).

Let % = (4,u,n, =, =) be an arbitrary semi-Boolean algebra.
It is well known that there exists a Boolean algebra (B, v, n, =, —)
such that

a) (4, v, n) is a sublatice (B,w, ) the zero (unit) element of
{4, v, n) is the zero (unit) element of (B, v, n),

b) every element b ¢ B is of the form

1) b= (@,—a) N .. (@, ay)
where ay, a, ...,y 4, € A. The symbol — denotes the Boolean relative
complement,

¢) every element b ¢ B is of the form
2y b= (@—a) v .. (@G,—ay)

where a,, al, ..., 4, a; € A, the symbol — denotes the Boolean difference,
ie. a;—aj=a; n —a; for every j=1,..,n.
We observe that for arbitrary a, a’ e A

a=a <a—>a and a—a& <a-—a'.
It is easy to prove that for any a, aj, ..., G, a, € A the inequality
(a,—a;) O oo (an—>a:,) < o—a
implies
(ay=a}) .. 0 (G, =) < a=>a
and the inequality
a—a' < (4 —a) v .. v (@,—ay)
implies
a-a’ < (@ = ay) v . (@, ay) .
‘We define an interior operation J and the closure operation € in a Boolean
algebra (B, v, n, =, —) as follows: for every beB
{3) 3b = (a,=0) M ... n{a,=ay,),
{4) : b= (a,~a)) v ... v (a,~ay) .

Tt follows from the above notions that 3 and C do not depend on the
representation of the element b in the forms (1) and (2'). Obviously, the
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operations J and ¢ defined by (8) and (4) are the interior operation and
the closure operation, respectively. In particular,

(5). Jbed and Obed for DeB,
(6) B=b and Cb=0b for bed.

We prove that the operations J and C are conjugate over B, i.. that
condition () is satisfied. Suppose that b ¢ B, then by (5) 3 € 4 and b ¢ 4.
Thus, by (6) we have that (3b = Jb and 30b == Cb. Conditions (5) and (6)
imply immediately the equation .4 = G4(B). This proves that the algebra
(B, v, n, =, —,1,0) is the required bi-topological Boolean algebra. m

§ 5. Semi-fields of sets. We recall that every semi-Boolean algebra ig
of the form (G4(B), v, N, =, =), Where (G4B), v, ) is the lattice of
all 3-open elements of a bi-topological Boolean algebra (B, v, n, =, —,
3, €). The operations J, ¢ are defined by (1) and (2) § 4. If B= B(X),
i.e. if B ig a bi-topological field of sets of the bi-topological space (X, J, ¢)
such that the operations J and O are conjugate over B then the algebra
€= (4(B(X)), v, 0, =, -'—] and each of its subalgebra will be called
a semi-field of seis (more exactly: a semi-field of subsets of X). The following
theorem eéxplains the connection between semi-Boolean algebras and
8 semi-field of sets.

5.1. For every semi-Boolean algebra U there exists a semi-field of sets €
and an isomorphism of A onto .

Let A= (4,v,n, =, =) be an arbitrary semi-Boolean algebra.
Let us denote by X the set of all prime filtres V of the lattice (4, v, n)
anq for every a ¢ A let h(a) denote the set of all ¥ e X such that a e 4.
Let & be the class of all h(a), a e A, ie. R= {h(a)}yes

Let us define an interior operation J and a closure operation ¢ in X in
the following way: for every Y C X

1Y = hL)jxh(a) , 0Y= [ k().
7122);17 7}}@;(3}
The system (X,J, 0) is a bi-topological space. Let B(X) be the field
fyf subsets of X generated by R and such that the following condition
is satisfied "
if  YeB(X) then I¥YeR and (Y eR.

We observe that the operations J and ¢ defined above are conjugate
over B(X), le. that condition (%) is fulfilled. Indeed, suppose that
Y e B(X). Then JY ¢« R and €Y ¢ R. On account of the definition of the
operations J and € we have CJ¥Y = JY and J0Y = (Y. Thus the algebra
(BX), vy A, —, 1, 0) is a bi-topological field of subsets of the bi-
topological space (X,J, 0). The class of all 5-open elements in B(X)
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coincides with R, ie. G4(B(X))=R. In consequence, the algebra €
= (R,v, N, =, =), where the operations v, ~ are the set-theoretical
union and intersection, respeetively, and the operations = and - are
defined as follows: for every ¥, Z e G4(B (X))

@ Y=Z=3(X-Y)v 2,
(2) Y+Z=0(¥~(X-2),
is a semi-field of sets.
Tt will be proved that the mapping k is the required isomorphism

of the semi-Boolean algebra 9 onfo the semi-field of sefs €. It is well
known that the mapping & is one-fo-one and

(3) h(a v b)= h(a) v k() ,

(4) T(a ~b) == h(a) ~h(b).

Tt is sufficient to prove that the following conditions are satisfied:
(8) h(a=-b) = h(a)=>h(d),

for every a,be

(8) h(a=b)= Rk{a)=h(d),

On account of (1) and (2) we have to show that

(N h(a=b) = I{(X—h(a) v 1(b)},

(8) h(a=b) = O(h(a) ~(X—h(B))).

Condition (7) follows from [5]. )
Clearly condition (8) is equivalent to the following two conditions: -

(9) h(a) ~ X—h(b) C h(a=D),
(10) it . h(a)~X—h(b)Ch(e) then h(a=b)Ch(o).

By (L) §1 wehaveaw b=>bv (a--D). Hence h{a) v h(b) = h(b) v h(a=b).
This implies that h(a) » X—h(b) C h(a--b) which proves 9).

Tet us suppose that, for some ce A, h(a)n X—n(b) Ch(c). Thus
(@) C h{e) v h(b) = h(c v b). It is easy fo show that i

h{z) Ch(y) if and only if R{z=y)= ag.
Thus and by (12) § 1 we obtain h{a--b) C h(c) which proves condition (10).

We infer from (3), (4), (5) and (6) that & is the required isomorphism of A
onto €, which completes the proof of 5.1. m

§ 6. (X, R)-topological semi-Boolean algebras. The aim of this section
is to give a method of the construction of semi-Boolean algebras and
a certain representation theorem of these algebras.
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Let (X, Iy be an arbitrary compact topological space and let B(X)
be a field of all both open and closed subsets of the topological space
(X,I>. Let ® be an arbitrary ring of sets such that the field B(X) ig
generated by R and the following conditions are satisfied:

(i) the empty set @ e R,

(i) X e,

(iii) it Z e B(X) then | J4 and | B belong to B(X).
AeR BeR
ACZ ZcB

Let J be an interior operation in X defined as follows

AdeR

(1) JY= |J A for every YCX.
i acy

The system (X, J) is a topological space.
Let C be a closure operation in the set X defined as follows

(2) Y= (B forevery YCX.
BeR
YcB

The system (X, (> is a topological space. Thus the system (X, J, ¢) is
a bi-topological space. We observe that if 4 ¢ R then JA = A and (4.= A
ie. the elements of the ring R are both J-open and O-closed.

61. If AeB(X)then JAeR and CA e R.

In fact, if A e B(X) then by (iii) and the definition of the interior
operation J it is true that JA is simultaneously an open and a closed subset
of a compact space <X, I). Hence 34 is a finite union of the elements

of the ring R, ie. J4 ¢ R. In the same way it could be shown that
CAecR. m

Thus the following theorem holds:

6.2. The field B(X) is a bi-topological field of sets. m

Thus by an easy verification we obtain the next theorem:

6.3. The algebra R= (R,v, ~, =, =) where R is the ring defined
above, the operations v, ~ are the set-theoretical union amd intersection
respectively, and the operations =, -~ are defined by (1) and (2), § B,
respectively, is a semi-Boolean algebra. m

Bvery semi-Boolean algebra of this kind is said to be an (X, R)-to-
pological semi-Boolean algebra. To illustrate the notion of a (X, R)-
topological semi-Boolean algebra let us consider the case in which X is
the Cantor discontinuum [3], i.e. X is the Cartesian product U¥, where U is
the set consisting of the integers 0 and 1 only, and ¥ is a non-empty seb.
By definition, X is the set of all mappings » = {Ua}qex SUCh that u,= 0
or u,=1, ael. Let A% (a ¢.B) be the set of all u ¢ X such that = 1.
Denote by D the class of all sets A® and their set-theoretical complements.
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Let B(X) be the field of subsets of X generated by D. It is known that
B(X) is the field of all both open and closed subsets of the topological
space (X, I), where I is the interior operation in X determined by the
class D assumed as a subbasis. Now, let & be a ring of the sets which
belong to the class {4%,.z and be such that conditions (i) and (ii) are
satisfied. It is easy to see that the field B(X) is generated by the ring R,
ie. if ¥C B(X) then

(3) Y= rk] (A% v ..v A% w B u ... U Bfin)

i=1
where for every i,j: A% e R, B is a set-theoretical complement of
some A%e R (ie. X—BY e R) and ay # f,.

Let J be an interior operation defined by (1), and let € be a closure
operation defined by (2). It will be shown that if ¥ ¢ B(X)i.e.if ¥ is of
form (3), then

: x

(4) =) (A% 0u...ud%),
(8) 0Y = CJ (X—B) A .. ~ (X— BPim)) .

i=1
We prove condition (4). The proof of (5) is similar. Obviously, if ¥ =@
or ¥ = X, condition (4) is satistied. Let ¥ @ and ¥ # X. On aceount
of the definition of the interior operation it is sufficient to show that
if ¥ is of the form (3) then the following equation is fulfilled:

k
(6) Ud =N (4% v .. A%).
AdeR i=1
Acy

It easy to see that
k k
N (A%v..uvd4mCY and N (Ao .. v A%n) e R .

i=1 i=1

Thus it is sufficient to show that

%
(7) it ZeRand ZCY then ZC{)(A%u..uvA%).
i=1

!
Let us suppose that ZeR and ZC Y. Hence Z= |J (4% ... n AM).

p=1
Obviously, for every ¢ and p we have the conclusion
(8) A AT C A% U .ow A% o B L BPim

We observe that for every ¢ and p there exists a j =1, ..., s such that
v, € {@y; vy g}, i.6. there exist j=1,..,s8 and t=1,..,n such that
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A?s; = A%, Suppose the contrary, i.e. that for all j =.1, s 8y Yy
¢ {035 ey Ag)e Lot U= {U}oep DO D mapping such that for fixed ¢ and p

Uy = wee == U, = Upy = woe = Uiy, = 1
and

uﬂ‘lz .-.=’uu,,"= 0.

Thus » belongs to A ~ ... ~ Afssbubu ¢ A% v ... v A% U B LU l_gﬂ‘m‘
This is impossible on account of (8). Hence for every ¢ and p there exist j
and ¢ such that

Ama A A7 C A= A% C A . 0 A,
Consequently
. 41 ke
U (AP~ o~ AVe) C ﬂ (A% v .. v Alin) ..
p=1 f=1

This proves that condition (7) is fulfilled, and that R is a ring satisfying
conditions (i)-(iii). By Theorem 6.2 we infer that (R,v,n, =, =) —
where R is the ring defined above and the operations w, ~, ==, are
defined as usual —is an (X, R)-topological semi-Boolean algebra.

6.4, For every semi-Boolean algebra A= (A, v, ~, =, =) there emists
an (X, R)-topological semi-Boolean algebra R= (R, v; n, =, =) and an
isomorphism h of A onto R.

By Theorem 4.2 we can agsume that A = Gy.(B) WhereEB is the set
of all elements of a bi-topological Boolean algebra B = (B, v, n, >, —,
3*,0%. Let (X,Iy be the Stone space of the Boolean algebra B,
= (B, v, n,—). Let § and € be new interior and closure operations in
the set X which are defined by (1) and (2). It follows from 3.1 that these
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operations are conjugate over the Stone field B(X) = {h(a)},p5. Let R be

the class of all h(a) such that a eV for a e Gy(B). Suppose that ¥ ¢ &,
then Y ==h(x) for some z=1I%= 0"veGsu(B). Thus J¥Y=Y and
0Y =Y ie. the elements of R are simultaneously J-open and C-closed.
It is easy to see that if ¥)e B(X) then J¥ ¢ R and OY ¢ R. From 6.3 it
follows that the algebra R=(R,v, n, =, =), where v, ~ are the
set-theoretical union and intersection, respectively, and =, = are defined
by (1) and (2) § 5, is an (X, R)-topological semi-Boolean algebra. We
shall now prove that :the mapping h is the required isomorphism of A
onto R. It is sufficient to prove that

h(a=b) = h(a)=>n(d),

for
h(a=b)="n(a)=-h(d),

a,bed.

By the definition of the operation = in R we have h(a)=-h(b)
= (((X—h(a))uh(b)). On the other hand, h{a=b)= h(T*(—a v b))
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where the signs —, u, J* denote a complement, a join and an interior
operation in the bi-topological Boolean algebra, B, respectivly. Thus

h.(a=>b) = h{I(—au b)) = 3h(—a v b)
= I((X—n(a)) v (b)) = h(a)=h(b).

The proof of the equation & (a--b) = I(a)=h(b) is similar. This completes
the proof of 6.4. m )

§ 7. Infinite joins and meets in semi-Boolean algebras. In this section we
shall consider the semi-Boolean algebras with infinite joins and meets.
Our aim is to give a representation theorem analogous to the Rasiowa-
Sikorski lemma.

First, let us prove that the infinite distributive laws are satistied
in this algebras.

7.1. Let A= (4,v,n, =, =) be a semi-Boolean algebra. If an in-
finite join )b, ewists in U, then for every o e A the join | Ja ~ b, also
el

. . teT
exists in A and

(1) anUbi=Janb.
tel' tel
If an infinite meet () by ewisls in U then for every a ¢ A the meet M (aw by
teT

. . < teT
also exists in W and

(2) aumbtzm(“Ubt)'

. teT teT .
The first part of 7.1 is fulfilled in every pseudo-Boolean algebra [2].
Thaus it is satisfied in semi-Boolean algebra 9. We prove the second part

of (2). Let us assume that b= b, exists. We have b < b;, for every
teT

teT. Thus a wb<<awbs, teT. Suppose that there exists ¢ smeh that
¢<<a vy, teT. The last inequality is equivalent to ¢--a < b; and this
implies ¢-~a < b. Thus ¢ < a v b, which completes the proof of (2). m

7.2. In every semi-Boolean algebra U= (A, v, n, =, =)

4

(3) mUa<s Mo,
e el

(4) T a= M,
teq ter

(5) AN e< U as,
tefd te®

(6)

N Jas,
ter teT
(b+a) <b~() &),

tel

(7) N
tel
16 — Fundamenta Mathematicae LXXXIII
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(8) b= (U ar) <QT (b=ai),

) kﬂmbt:—a < QT(bﬁ;a) ,

(o) (lEJTbt);a = {Lejz’(bt—'«a) :

(11) (tEJTaz)*(U b < (@b,
(12) ) az);(QTbt) < itsz(aa—'—bt),
(13) b;wﬁ < (QT a)=b,

(14) b;(tfjra't) = ,E)T(b""‘”)

provided all the joins and meels exist in A

The simple prove of 7.2 is omitted. m

73. Let B= (B,v,n,—~,—,3,0) be a bi-topological Boolean al-
gebra. Denote by A= (4, v, n, =, =) @ semi-Boolean algebra such that

A = Gy(B). For every t ¢ T let az e A. Then the meel N ¥a; emists if and only
el

if the meet (\Bay ewists and
tel

(15) N¥as = "as.

tel tel

Similarly, the join | JYa; exists if and only if the join IL%’BM exists
teT €

(16) Uuat = Umaz .
ter ter
Suppose that a = [ %a; exists and that d < a; for every te T, deB.
tel

Then Cd < Ca; = a for every ¢t ¢ T. Hence Cd <. a and consequently d < a,

which proves that @ = ("\®a;. Conversely, suppose that a = tﬂl By exigts.
teT e

The meet of any number of O-closed elements being C-closed we have
a e A, which implies o = |_%a;.
tel

The proof of (16) is similar. m
Let A= (4, v, n, =, =) be a semi-Boolean algebra and let (Q) be
2 set of infinite joins and meets in :

g == Uua’s; (S‘GS),

teTs
Q)
bo=%h, (sed).
teTq
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We shall say that an isomorphism % from a semi-Boolean algebra ¥ into
& semi-Boolean algebra B =(B,u, =, =) IS a Q-isomorphism
provided it preserves all the infinite joins and meets in (Q); i.e. if

(17) h(%)'———lt.fh(as,) (5ed),
(18) h(bs)=tﬂT”Sh(bs,) (sed).

7.4. For every semi-Boolean algebra 9 — (A, vy oy =, =), if the
set (Q) is @ most enumerdble, i.c. if the sets § and §' are at most enumerable,
then there exist a semi-field of sets € and a Q -isomorphism from A onto €
such that the infinite joins and meeis on the right-hand sides of the equations
(17) and (18) coincide with the sei-theoretical wnions and intersections®
respectively.

Let A= (4,v,n, =, =), be a semi-Boolean algebra. On account
of 3.1 we can assume that 4 =— G5.(B) where B is the set of all elements
of a bi-topological Boolean algebra B = (B, v, , =, —, 3%, C%). Denote
by By=(B,v,n, -, —) the Boolean algebra of B. It is known [3]
that there exists a Boolean Q-isomorphism h of the Boolean algebra B,
into the field B(X) of all subsets of space X. We define an interior ope-
ration J in X and a closure operation ¢ in X as follows:

XY= ) Ia), CY= N k).
Ma)c¥ YChD)
a=J*a ' b=C*

These operations are conjugate over h(B). Thus the algebra (h(B), v,
~, —, 3, C) is a bi-topological field of subsets of X, and if @, b € A then

(19) h{aw b) = h{a) v h(D),
(20) k(e ~b)=hia) ~ (D),
(1) h(—a)= X—h(a),
(22) h{3*a) = 3h(a),

(23) ‘ k(C*a)= Ch(a).

Let G4(h(B)) denote the class of all 3-open elements of 1(B). The algeb{_é}
C= (G:,(h(B)), U, n, =y, -'—) where the operations =, — are defined as
follows for every a,be 4

h(a)=h(b)=3((X—1(a)) © h(B)],

1(a)=1(b) = C(h(a) » X—h(b))

18 a semi-field of sets of the bi-topological space <X, J, (>. We shall

Prove that the mapping h is the required @-isomorphism of the semi-
16*
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‘ i-field G that a,be 4.
lgebra 9 onto the semi-field of sets €. Suppose th b
]{I?;]i?sle?’;p?ifs that a=3*a, b= 3"b. Thus from (19) and (22) we infer
that h(a) w h(b) e Gy(h(B)). Similarly, we prove that the right-hand side
of (20) belongs to Gy(h(B)). Now we show that if 4, b e A then

(24) h(a=b) = h(a)="h(b),
(25) h(a=b) = h(a)=h(b),

where the signs =>, - on the right-hand sides of (24) and (25) denote the
relative peendo-complement and pseudo-difference in €. On account of
the definition of = and — in @, (22), (23) and from 4.1 we bhave

h(a=b) = h{3*(—a © b)) = 3((X—h(a)) v k(D)) = h(a) = (D)

and
hla=b) = h(O*(a A —b)) = O(h(a) A (X—«h(b))) = h(a)=-h(D).

Now, it is sufficient to prove that the equations corregponding to (17)
and (18) — where the sets § and S’ are at most enumerable and the

infinite joins | J®a: and meets (\®a: on the right-hand sides of these
teT tel' . . . .
equations coinecide with the set-theoretical unions and intersections,

respectively — are satisfied. Suppose that a, = tL%’“a_,,, and for every
€

teT,, a,,¢A. By 7.3 we can write that a, = LLJF’B%,. Since % is a Boolean
’ tels .

Q-isomorphism of the Boolean algebra B, = (B,v,n, -, —) into the

field B(X) of all subsets of X, we infer that h(a,) = tg h(a,,;) where

€Ty .
the sign | J denotes the set-theoretical union. It remains to show that

U h(a,,) is an J-open element in h(B), i.e. that H' h(as,g) € G5(h(B)).
ey i €Ty

This follows immediately from the fact, that for every se S and t¢T,,

h{a,,) is an J- open set. Thus the condition (17) is satistied. Let b, = Q”‘bs,,
and for every teT,, b,,e A. By 7.3 we obtain b, = (;‘Bbs,,. Thus h(b,)
€

= () k(b,,), where the sign (| denotes the set-theoretical intersection
teTs

and h is a Boolean @ -isomorphism of B, into $B(X). The ini;ersection of
any number of C-closed elements is O-closed. Thus we have ‘ﬂmh(bs,:)

€ G4(h(B)), which completes the proof of 7.4. m

§ 8. Finite semi-Boolean algebras. ‘

81. Let B=(B,v,n,—>,—, 3, 0% be a bilopological Boolean
algebra, let A, be a finite subset of B and let B' = (B', v, n, =, —) be ﬂw;
Boolean algebra generated by A,. Then there exist am interior operation 3 in B
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and a closure operation C in B’ such that condition (*) is satisfied, and for
every aeB
1) if  Tacd, then Fo=1a )

@) if C'acd, then C*a= Oa.

The algebra B’ contains at most 2¥ elements, where ¢
elements in A,.

Let Gya(4,) denote the class of all J-open elements in B which belong
o 4,. Obviously the elements of Gy.(4,) are C-closed. Tt i well known
that there exists an interior operation J in B’ such that the algebra B’
may be considered as a topological Boolean algebra with the interior

operation J, an property (1) is satisfied. Namely, the operation J is defined
by the formula

is the number of

Ja= | b (ac B.
beGye(4g)
b<a

Now let the closure operation ¢ be defined in B’ in the following way:

On= () @ (aeB).
deGyu(do)
b<d

It is easy to see that the operations J and € are conjugate over B’ and (2)
is fulfilled. The proof the second part of 8.1 is known. m

8.2. Let A= (A,v,n, =, =) be a semi-Boolean algebra, and let
Ay C A be o finite set containing » elements. Then there exists o finite semi-
Boolean algebra¥'=(4', v, A, =, =) containing at most 2% elements such that
Ved, ned', A;C A" and for every a,b,c Ag= Ay (A, 1)

(a) if ¢ is the join of a, b in U, then ¢ is the join of a,bin A,

() if ¢ is the meet of @, b in WA, then ¢ is the meet of a,b in A,

(¢) if ¢ is the pseudo-complement of & relative to b in A, then ¢ is the
pseudo-complement of a relative to b in ',

(4) if e is the pseudo-difference a and b in %, then ¢ is the pseudo-dif-
ference a and b in W

This follows immediately from 4.2 and 8.1. m :

8.3. Bwery finite topological Boolean algebra can be extended fo bi-
topological Boolean algebra.

Let 8 = (B, v, n, —+, —, J) be a tinite topological Boolean algebra.
A closure operation ¢ in B I8 defined as follows: for every a B
o= ) ¢.

ase
c=Ja

It is easy to see that CJa = Jo and 3Ca = Ca, i.e. the operations J and C
are conjugate over B. m
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8.4. Every finite pseudo-Boolean algebra can be extended to a semi-

Boolean algebra.

This statement follows immediately from 8.3, 4.2 and from. the fact [1]
that every pseudo-Boolean algebra is of the form (Gy(B), v, ~, =,7),
where Gy(B) is the seti of J-open elements of a topological Boolean algebra
(B, v, n, =, —, ) and the operations = and 7 are defined as follows:

amb=3(—dub), Tla=3(—a)

for any a, b e G4(B). B
§ 9. Definition and some properties of the propositional calculi of the H-B
logic. By the alphabet of a propositional caleulus we shall understand
any ordered system
A={V,L, Ly, U}

where V, Ly, Ly, U are disjoint sets, the set V is infinite and elements
in V are called propositional variables and denote by @, b, ¢; ...; L, contains
two elements denoted by ~] and [~ and called the Heyling negation sign
and the Brouwerian negation sign, respectively; L, contains four elements
denoted by v, A, =, — and ecalled the disjunction sign, the conjunction
s'igh, the implication sign, and the emplication sign, respectively; the
set U contains only two elements denoted by (,) and called parentheses in A.

The class F of formulas is the smallest class of expressions of this
gystem, which contains all the variables and satisties the following con-
ditions:

(i) if « is a formula, then so are Tla and [ a,

(i) if a and B are arbitrary formulas, then so are

(av ), (@anp), a(=B), (a=B).

By the formalized language of the propositional caleulus or the

formalized language of zero order we shall understand the pair
L={4,F;.

Let the set 4, of axioms consists of all formulas of the form:
A (@=p)=(B=n=(a=p),
(A)  fa=(avB))
(A5)  (B=(av B),
A (ta=n={B=n=(avp=7)),
Ay  ((an p=d,
(A ((an p)=B),
A (r=a=(r=p=k=(anp))
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(A9 (le=(B=p)=((an p)=y),
A (e~ py=y)=(a=(p=y)),
(A)  (a=(p v (a=p)),
An)  ((e=p=(T1p="Ta)),
(&) ((@=B)=T"(a=p)),
(A)  ((la=p)=y)={a=(8 v ),
(Ay) (‘[(a;ﬁ)=>(a=>/3)),
(Ayg)  (la=(y=y)="Ta),
(Ag)  (Ta=(a=(p=yp),
A (r=9=a=rad,
() (Ca={y=p)=d)),

where a, f,y are any formulas in L.
By a consequence operation in £ we will
: 3 understand a mapping
E a ] . pping C
of 2% to 27 such that for any F, CF, C(T,) is the smallest set eon‘caininga &
and F; and closed under of the rules of inference: modus ponens a,n({

a
T
) ===,
where « is any formuls in €.
The deductive system
§={L,C}

will be called the propositional caleulus of the Heyting-Brouwwer logic based
on the language £ or briefly the propositional calculus of the H-B logic
A formula « is said to be derivable in § provided it is in C(d). .

;By the formalized theories of zero order based on the language (for
brevity theories) we shall nnderstand the gystem

T={L, C, #},

Wwhere 4 is a set of formulas. Formulas in C(+) are called theorems of the

theory T. The theory T is consistent if there exists a formula which. ig
not a theorem of T.

. Let (F,ufr\, =, =, 71, ") be the algebra of formulas of the
anguage £. It is known that the relation ~ defined as

1) fxzﬂ'if and only if formulas (a=f) and (§=-a) are both theorems
inTis a congruence relation in the algebra (F, v, n, =, =, 7, 7).

‘We shall denote the quotient algebra by (), i.e. U(T) = (Fl~, U, N,
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=, =, 71, 7). Elements in A(T) will be denoted by. lledl for o e F. The
relation < defined as follows: for any formulas a, § in F

(2) el < Bl if and only if (« =f) is a theorem in T is an ordering re-
lation in Ff~s.

0.1. The algebra A(T) is a semi-Boolean algebra. Moreover, for any
formulas a, 8

3)  ldo gl = e Al
(4 lla] ~ 181 = it~ B
®) llall = 1181l = (a=B),
(6) N llll-= 118l = (e B,
(7) ; la) = 1| el
(8) Ml = ol -

A formula o is a theorem in T if and only if the element ||of is the unit V
of U(X). The theory T is consistent if and only if the semi-Boolean algebra
W(T) is non-degenerate.

The proofs of (3), (4) and (5) are known [2]. We prove (6). Let |lof
and ||f] be any elements in (T). The formula (a:»((a‘—'—ﬂ) uﬁ))) is
a theorem because it is of the form (Ay). By (2) and (3) we can write
fledl < (e 8) w BI-

Now we shall prove that, for every element |y in A(Z),

it ol <[pl iyl then (a=p) <Iyll-

Suppose that [l < |8 v lyll; then by (2) and (3) the formula (a=>(8 v ¥))
is a theorem. By the rule (r) the formula Tr(a-:.»(ﬁ w y)) ig a theorem.
The férmula (((a—‘—(ﬂ )= (a=(B v y))\) =>(—1 M (a=>(g v p)="1(a~
(B y)))), is also a theorem since it is of the form (A,). Thus by (A;,) and by
applying modus ponens twice the formula ™ (a; (pv y)) is & theorem in I.
The formula ((((a-'— B)=v) =>(a—'— (Bv y))) »( e (v y)) = "‘|((a~—'— B) = V)))
is a theorem because it is of the form (A,;). Using (Ay) and applying
modus ponens twice we find that the formula ~{(a= f)—=y) is a theorem.
On account of (4,,) we infer that the formula (”] ((a=p)=7)={(a—=p) =>y))
is a theorem. Thus by modus ponens we have that the formula ((a~-p) =7}
is a theorem in I, i.e. that |[(a— B)| < |yll, which completes the proof of
condition (6). Identity (7) and (8) follows directly from (Ass), (Aye), (Ar)

and (Ay) and the definition of the operations —} and [~ in a gemi-Boolean
algebra. '

° ©
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The simple proof of the last part of 9.1 is omitted. B

Let A= (4, v, n, =, =) be a non-degenerate semi-Boolean algebra,
and, as usual, let 7 denote the set of all formulas. Bvery formula ¢ in F
uniquely determines a mapping ay: A”— 4, where V is the set of all
propositional variables. Every element v= {v,},. of the Cartesian
product AY, i.e. every mapping v: V-4, is called a valuation in 9.
Sometimes we shall take as U the algebra A(X) of a formalized theory
T = (£, C, #&). Then the valunation

o = {llall}aer

in A(X) is called the canonical valuation for T. In particular, for every
formula, )
gy (0°) = [led]
where o iy 2 canonical valuation.
A valuation v € A is said to be a model for a set A of formulas if

ay(v) =1V = for every formula a in UA.

If #4 congsists of one formula only, then the valuation o is said to be
a model for a formula a if ay(v) = V. A valnation v is said to be a model
for a theory T = (£, C, +t) provided v is the model for the set 4 of axioms
of T. Every model in the two-element Boolean algebra is said to be
semantic. A formula « is said to be valid in a semi-Boolean algebra U if
every valuation v e A7 is a model for a, i.e. if the mapping ay is identically
equal to the unit i of A. We then write ay=1V. A formula is said to be
a H-B logic propositional taulology if it iy valid in every semi-Boolean
algebra. We shall write that a formula o is a tautology instead of writing
that it is & H-B logic propositional tautology if this does not lead to
confusion.

Since a pseudo-Boolean algebra is a semi-Boolean algebra, the last
definition fmmediately implies that

9.2. Every intwitionistic propositional tautology (3) is o tautology. W

The next theorem is an immediate consequence of the above de-
finitions and of some properties of semi-Boolean algebras (see 1.2 and 1.3).

9.3. Every derivable formula is a tautology. m

The theorem converse to 9.3 is also true and it will be proved in § 10.
Now we prove the following theorem

9.4. The H-B propositional caloulus is consisient if and only if the
formulas o and [~ a are not both tawtologies for any formula a.

() A formula ¢ is said to be an intuitionisiic propositional tautology if it is valid
in every pseudo-Boolean algebra.
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Tirst we observe that the formulas of the form
@) (e~ Tla)=>p),
{10) ) (TMa="a)
are tautologies in S. Indeed, by 9.2 a formula of form (9) is a tautology
in 8. Let v be a valuation in a semi-Boolean algebra %. Using 1.3 (26) we
have (Tla=T" a)y(v) = Tlay(v) =" ay(v) = V, ie. that the a formula of
form (10) is a tautology in §. .

Now, We suppose that 8 is consistent, i.e. that there exists a formula
which is not a tautology in §. Let the formulas « and [« be tautologies
in 8. By the rule (r) “]Ta and ~I[ [« are tautologies in 8. Replacing
[Ta by « in (10) we infer that a formula of the form (T[T a=["["a) is
a tautology. By (Ay) the formula (T a="a)=>(71 Ta="1"1a)
is a tautology in 8. Thus, by applying modus ponens twice we infer that
the formula 7771 a is a tautology. Replacing 71" a by « in (9) and by
modus ponens and (4A,), we find that every formula of the form (T«
=("]7 a=>p)) is a tautology in'§. Thus we find that every formula g
in £ is a tautology in § in contradiction to our assumption. On the other
hand, the proof is obvious. m

On account of this theorem we infer that for no formula o are the
formulas « and Ta both tautologies in 8. Indeed, we suppose that exists
a formula «, such that ¢ and “Ja arve tautologies in 8. By (10) we infer
that ["a is a tautology and this contradicts 9.4.

§ 10. The completeness theorem. Theorem 9.3 states that every deri-
vable formula is a tautology. The converse statement is also true, namely
10.1. A formula a in £ is a teutology if and only if it is derivable in
the H-B logic.
This theorem is called the completeness theorem for H-B propositional
caleuli and it is part of the following theorem:
10.2. For every formula o in €, the following conditions are equivalent:
(i) @ is derivable in §,
(i) a is a tautology,
(i) a is valid in every semi-Boolean algebra of all 3-open sets of a bi-
topological field of subsets of a bi-topological space <X, 3, ¢,
(iv) ayes){(1®) = 1V where ©° is a canonical valuation for S,
(V) a is valid in every finite semi-Boolean algebra,
(vi) a is valid in every semi-Boolean algebra with at most 2% elements,
where v is the number of all subformulas of the formula a.
Condition (i) implies (ii) by 9.3. Clearly (ii) implies (iii) because every
-semi-Boolean algebra is isomorphic with a semi-field of subsets of a bi-
topological space (X,J, 0> (see 5.1). In particular the algebra A(S) is
isomorphic with a serm-ﬁeld of sets. Thus the condition (iii) implies (iv).

©
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Now, we shall prove that the condition (iv) implies (i). Suppose that
a formula o is not derivable in 8. Hence, by § 9 the element |lef] of A(S)
is not the unit element, i.e. ayg (%) # /. We have proved that the con-
ditions (i)-(iv) are equivalent. Clearly (ii) implies (v) and (v) implies (vi).
To complete the proof of 10.2 it suffices to show that (vi) implies (iv).
Suppose that (iv) does not hold for a formula a, i.e. that ayg(®?) = [jof| # V.
Let the formula a contain r subformulas and let 4, be the set consisting
of all ||8]| such that f is a subformula of a. It follows from 8.2 that there
exigts o finite semi-Boolean algebra % = (4,u, A, =, - containing at
most 2% elements and such that 4,C 4 and 111e operations in 9 are
extensions of operations in Aj= 4, u (4, ).
Let » be a valuation of é in QI defined as follows:

v for any propositional variable which does not oceur in a,

Ya = v%=|lall for any propositional variable ¢ in a.

We can prove by induction on the length of subformula 8 of the formula «
that By(v) = (Bl € 45. The simple proof is omitted. In particular we infer
that ag(v) = |lof| # V/, i.e. that condition (vi) does not hold for «. Thus
condition (vi) implies (iv). In consequence, condition (i)-(vi) are equiva-
lent. =

10.3. Tor any formulas a, f,y the following formulas are tautologies:

1 (TMava),

@) (T (enTa)

3) (TMa=" Tla),

(4) (I"F“a=—\—la),

6)  ((a=B)=(an H)

6) (Mra="a),

(7)) (I a=>I"I'"I'“a)

8)  ((a=p)=(a=B)=T (f=y),
@ (a=p)y=(TITB=a)

(10) (("m~~ = (a=>" ﬁ))

1) ((a=p)=("la=I"B),

(12) (r(a=>ﬂ r"a=>r B) ),

(13)  ((Tla="18) = "Wa=B)),

14 (7 r“au“lr‘ﬂ (”||”auﬂ))
(15) (e~ 18 = (1@~ B
(16) (AT (@ f)y=(T1Tan 71T,
AN (Tav MBy=(anp),
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(18) ([(anp=(Tav [P

19) (Favp=(Tan TH)

(20) (7 a=>ﬁ)=(”! Fa="10p),

(21) ((a=B)=(Ta=TB))

@2 (r=(a uﬁ) (7= p)~a)),

(23) (a—-ﬂ)= /3=>a)

This theorem follows from 1.2, 1. 3 and from the definition of tauto-
logy in 8. ®.

10.4. The following formulas are not lamtologies
(24) (a=TTa),

(25) (a=T1T"a),

@26) (b~ a)=(a=D)),

(27) ((a=>b)=> (b= a))

(28) ((Cb=>Ta)= (a=b)),

(29)  ((TCa=b)=(b=a),

(30) ((Fan TH)=l(av b))

(31) (@a=b)=(b=T"a)),

where a, b are dsze'rem propositional variables.

Tn order to prove that a formula from among those mentioned in 10.4
is not a tautology it suffices to find a semi-Boolean algebra U and a valu-
ation v in 9 such that ag{v) # V. As an algebra % we shall take here the
(X, R)-topological semi-Boolean algebra which was considered page 232.
As the example we show that the formula « of the form (28) is not a tauto-
logy. Indeed the formmula o contains two propositional variables o and b.
Thus ay(v) depends only on the values v, and vp. Let vp= At zund
pp= X—Al. On account of the definition of the operation = and = in
an (X, R)-topological seri-Boolean algebra we have

(b= Ta) = (a=b))g(v) = I(—3(— 0 (—vp) v O(—2d)) u:l(—vauvb))
=3~ 3{0(43) v O(—42) v I(—4r v —42))
= 3= 3{—41 U X) U F(—4Y)
=J(~1X v @)= §0)=@

ie.
(Fh=Ta)=(a=bw) # /. m

The following theorem explaing the connection between tautologies
and intuitionistic propositional tautologies.

10.5. If formula a does mot contain the commectives emplication and
Browwerian negation, then a is a tautology if and only if it is an intuitionistic
propositional tautology.
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Suppose that a does not contain the connections - and ™ and it
is not an intuitionistic propositional tautology. On account of the in-
tuitionistic analogue of Theorem 10.2 [2] there exists a finite pseudo-
Boolean algebra A= (4,v,n, =,7) and & valuation o such that
ag(v) # V. By 8.4 the algebra ‘Ji czm be extended to a finite semi-Boolean
algebra %= (4,+v, n, =, =), Thus we can interpret the valuation v as
a valuation in . Hence .ay(v) # V, i.e. a is not valid in the finite semi-
Boolean algebra. By 10.2 we infer that a is not a tautology. Thus the
necessity is proved. The sufficiency follows from the theory 9.1. m

§ 11. Consistency and the existence of models. This section containg
theorems concerning connections between the consistency of a theory
T = (£, C, #) and the existence of models in semi- Boolean algebras.

11.1. If a is a theorem of a theory T = (L, C, &) then every model
for T in any semi-Boolean algebra U is a model for a.

The simple proof of this theorem is omitted. m

A model v e A7 of a theory T = (£, C, #) i3 said to be adequate for T
provided, for every formula e in £, o is & theorem in ¥ if and only if v is
a model for a. .

11.2. For any theory T =

(1) T s consistent,

(il) there ewxists a model for T,

(iii) there exists an adequate model for T,

(iv) there ewists an adequate model for T in a semi-Boolean algebra of
all 3-open sets of a bi-topological field of subsets of a bi-topological space
<X! J’ 0)7

(v) there exists a semantic model for T.

(£, C, #£) the following conditions are equivalent:

Oondition (i) implies (iii). In fact, it T is consistent then by 9.1 the
algebra A(F) is a non-degenerate semi-Boolean algebra. Let +° be the
canonical valuation, i.e. let vy = ||a|] € A(B) for a e V. Thus aye(v°) =l
for any a in 7. By 9.1 we infer that ayg(e") =V if and only if € C().
Thig proves that ¢° is an adequate model for T. '

Olearly (iii) implies (ii). We prove that (i) implies (i). Let » be a model
for T in & semi-Boolean algebra . If the formulas « and [ a are both
theorems in T, then by 11.1 ay(v) =V and ([~ a)y(v) = . Hence V=4
which does not hold in any non-degenerate semi-Boolean algebra. Thus
(i)-(iii) are equivalent. It follows from 5.1 that (iii) is equivalent to (iv).
We shall prove that (i) implies (v). Suppose that T is consistent. By 9.1
the semi-Boolean algebra 9 (ZT) is non-degenerate. It is easy to see that
there exists a maximal ~}~-filter ¥ in A(T). Let & be the natural homo-
morphism from 2(T) onto the two-element Boolean algebra Uy = W(D)F.
The valuation v == he?, where 1 iy the canonical valuation in (Z)'is
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a semantic model. In fact, for every formula ay,(v) = h(ayg(e%)) = h(|q).
Hence ay,(v) = h(llo]) = b{V) =V, L.e. v is a semantic model for T. This
proves that (i) implies (v). Olearly (v) implies (ii), which completes the
proof of 11.2. m

Now we formulate conditions which are necessary and sufficient for
any formula to be a theorem of a theory .

11.3. For-any formula ain a consistent theory X of zero order the following
conditions are equivalent: :

(i) « 28 a theorem of I,

(ii} every model for T is a model for a,

(ili) every model for T is a semi-Boolean algebra of all I-open sels of
a bi-topological field of subsets of a bi-topological space <X, 3, O is a model
for a,

(Iv) aym)(v®) = V for the canonical valuation o°.

The proof of 11.3 is by easy verification. m

§ 12, Deduction theorems. ®

12.1. A formula § is a theorem in a theory T' = (L, C, £ w [a]) if and
only if there emists a positive integer n such that formula ((Tna)»ﬂ) i
a theorem in the theory T = (L, C, #).

If there exists a positive integer # such that the formula ((Tn a)=f)
is & theorem in I, then it is also a theorem in ¥’. The formula o ig an
axiom in I'. Using the rule (r) #-times we find that the formula (T, a) is
a theorem in theory T'. By modus ponens formula g is a theorem in T,

To prove the remaining part of 12.1 we suppose that for every positive
integer n the formula {(Tha)=8) is not a theorem in ¥. By 9.1 we infer
that the inequality Tnlla||=s||f]| # v is satistied in a semi-Boolean algebra
A(T). Let V be a ~][ -filter generated by |||, i.e. let ¥ be the set of all
elements ||y in % (T) for which there exists a positive integer n, such that
T, lloll < ||yll. The filter ¥ is proper since 18]l ¢ 7. Indeed, the hypothesis
IBl « 7 implies that there exists a positive integer m, such that T, el
< ||pll, and this proves that the formula (T,0) = B) is a theorem in I,
in contradiction to our assumption. Thus the quotient algebra Ao= A(T)/V,
is a semi-Boolean algebra and the mapping h: .

hloM) = 1sn - (18l € A(T))

is an isomorphism from 9(T) onto Ay. Let o be the canonieal valuation
inY(T). We find that for every formula the identity Y[ (0)) = B (pyey(0%)
is satistied.

Now, if y is & formula in 4, then Pam(?®) = I/ and consequently
Pa,(0°) = R{V) = V, where the lagt sign |/ is the unit element in A ().
If y is the formula ¢, then the element il belongs to.the [ -filter ¥
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and yy,(he) = ay,(1") = h(V) =, where the last sign  is the unit
element in %,. This proves that the valuation A in 9, is & model for the
theory T but not for f. Tndeed fy,(n?) = h{Byey() = h(Jf]) — . On
acecount of 11.1 formula f is not a theorem in 37, m

12.2. 4 formula B is a theorem in a theory T — (£, C, &) (where 4 is
a non-empty set of formulas) if and only if there cwist positive integers
m

My wvey T SUCh that the implication () (T,,ai)=p) where a, for i = 1,.0,m
i=1
are axioms in A&, s a lautology.

The simple proof of this theorem is omitted. m
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