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CoROIIARY 2. If T is a universal Horn theory and T, th? theory of
the infinite models of T is complete then every model of T is m:‘om'i,G c({mpaot.

Proof. All finite structures are atomic compact so it guffices to
consider the models of 7’. By the main theorem of [B] 1" is sl-catego?iqal.
By the corollary to Theorem 1 of [B], 1" is almost strongly minimal.
7 iy model complete by Lindstrom’s theorem and the result follows.

The situation regarding possible strengthenings of the last three
results is clarified by noticing that the last example in [4] has the following
properties. T is a VE %, -categorical Horn theory which is not almost
strongly minimal but each model of T is atomic compact.
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On limit numbers of real functions
by

Jacek Marek Jedrzejewski (£.6d7)

Abstract. In this work is given a general way of introducing of limit numbers
for real function of real variable. With every real number is comnected some family of
sets fulfilling two natural eonditions. They assure that for arbitrary funection at every
point » there exists at least one limit number and the set of all limit numbers at a point
% is closed. By adequate adjustment of the family 8 one can get usual limit numbers
or approximate limit numbers. The main results of the work are concerned with the
questions of: the set of points of B-asymmetry, connections between the ordinary
continuity and %B-continuity and 8 semicontinuity of wpper and lower B-functions
of Baire. ‘

Introduction. The aim -of this work is to generalize the notion of
limit numbers and approximate limit numbers and to find some pro-
perties of these generalized limit numbers. To obtain this it will be con-
venient to use the following definition: )

If f: R—>R and @, ¢ R, where R denotes the set of all real numbers,
then ¢ is called the limit number of f at , if and only if, for every ¢ >0,
@, is a point of accumulation of the set {w: |f(z)—gl< e}.

The starting point of my considerations is the following remark:
the family B of all sets having z, as a point of accumulation have the
following properties:

(1) every set including the set from B also belongs to B,
(2)y it ByuB,e®B, then B, ¢B or F, B,
(8) it B, B, then for every t>0 also By (w,—1t, #,+1) ¢ B.

There is a very similar situation in the case of approximate limit numbers.
Now B is the family of all sets for which =z, is not a point of dis-
persion.

The foregoing generalization will depend on making use of rather
arbitrary families of sets fulfilling only conditions (1)-(3). These con-
ditions seem to be natural, because the set of limit numbers of an arbitrary
functions at every point obtained by means of them is non empty and
closed. .

i8>
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1. DerNITON 1. Let BF be a non empty family of non empty
gets B C R such that

(4) it HeBY, then, for every ¢ >0, E~(0,1) e B,
(5) H,oB,eBf it and only if B, e B or B, e B,
For every set ECR and <R we shall write
Bta={y: \/E(z/=a+w)}, —H={y: —yel}.
ae.

Then the family B; is defined as
By = {B: —F B},
For every we R let

BF = {B: (H—a) Bf}, B;={0: (B—a)eB5},
and B,= 8 v B;. Now let B= | Ba.

xzeR ‘
DEFINITION 2. The number ¢ is called a B-limit number (a left-sided
B -limit number, a right-sided B-limit number) of @ function f ai & point
if for every ¢ >0 the set

‘ {o: |f(m)—g] <&}
belongs to B, (B, B respectively).
. The symbol 4- oo (— oo) will be called a B -limit number of f at a point %,
if for every real number 7
f@: fl@) >r}eB,, ({0 f@)<r}eBy -

To limit numbers defined in this way applies the main property of limit
numbers.

: TrrROREM 1. For every function f: B—R and every point x, ¢ & there
ewists ot least one B-limit number (left-sided B-limit number, right-sided
B-limit number) of the function f at the point 2.

Proof. For an arbitrary number ¢ > 0

(@0, @0+1) ~ {03 |f(@)] < oo} € B, .
According to (4) we infer that at least one of the sets
{o: fla) <0}, {o: f(@)>0} '

belongs to B, Let us suppose that the second of these sets is in B
Let In=[n,n+1] for every natural n. Then

o0

[0; 00) bl L_JI", .

n=0

icm°®
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Consider two cases:

(i) there exists an n, such that {#: f(2) e I,,} ¢ B},

(i) {w: f(@) e In} ¢ BE for every n.

If the second case is fulfilled, then - oo is & right-sided B-limit
number of f at the point z,.

Tf the first case is fulfilled, then at least one of the sets

{w: f(w) € [’”'u: Myt ﬂ} 3 {w: flx) e [no‘i‘%’ ”’0+1]}

belongs to B} . In this manner we obtain a descending sequence of closed
intervals {Ji} such that

(6) Wil =27%, {&: f(2)eJi} e B .

Let {g} = [\ Jx. Then for every number ¢ >0 there exists an index &
Fo=1

such that
{o: (&) edr} C {2 |f(@)—gl <}

The first of these sets belongs to BF; thus by (5) the second set also
belongs to B .
. Let the function h: R—R be defined in the following way:

h{x) = f(@y,—22) .

Then every right-sided $-limit number of the function % at the point
@y is o left-sided B -limit number of the function f at the point z,. So
there exists o left-gided B-limit number of f at #,. The unilateral B -limit
number is a $B-limit number; hence the proof is complete. .

Let Ly(f, ), (L&(f, #), Lg(f, ©)) denote the set of all B-limit numbers
(right-gided 9 -limit numbers, left-sided B -limit numbers, respectively)
of a function f at a point z.

TarorEM 2. For every function f: B—R and every « € R all sels Lif, @),
Ig(f, ), Ly(f, ®) are closed and

(M Lg(f, #) = L§(f, #) © Lg(f; @) -

Proot. Equality (7) is obvious in virtue of Definitions 1 and 2.
Let {g,} be a sequence such that i

gn e L§(f, m) and g=1limga,
N> -

where @, is & point of the set E. For every positive number there exists
a ¢y such that

@ |f(@)—gl < & D {@: |F(@)—gal < de} e BE,.
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Hence g e Li(f, ). The proof that the set Ly( f, %) is closed is similar,
From equality (7) we infer that the set Lg(f, %) is also closed.

The foregoing properties are the fundamental properties of limit
numbers and approximate limit numbers. This conception of the way
of introduction of B-limit numbers i therefore a natural generalization
of the way of introduction of limit numbers. If conditions (4) and (5)
are not fulfilled, then Theorems 1 and 2 are not valid.

From the definitions of the family B and of B-limit numbers we
immediately obtain.

TeEoREM 3. Let B and D be families fulfilling conditions (4) and (5).
Then for every function f: B—RB and © < B the inclusion Ly(f, ) C Ly(f, %)
holds if and only if BCD. :

DEFINITION 3. The number ¢ is called a B-limit of the function f
af -the point z, if {g} == Ly(f, @).

Unilateral B-limits are defined analogously. B-limits so defined
have the same properties as the usual limits.

Let B2 bes a family of sets defined as follows:

BeB: I R\H¢B,.
Then a B-limit of a function may also be defined in the following way.
_The number g is called a B-limit of the function f at the point », if,

for every number & >0, {#: |f(#)—g| < &} ¢ Bj,. The family B; has the
following properties: .

(8) 9¢%B;,

(9) it B e B} and B, C H,, then B, « B,
(10) it B, B, then for every t >0 also B, ~ (w—1, x4+1) ¢ BE,
(11) it B, B, e B, then T, ~ 7, ¢ BE.

Herfce. the family B} is a filter of subsets of the set R. This conception
of limit is equivalent to the conception of limit with the aid of a filter
@ael Bourbaki [2]). Using a family of filters one can define the set of
lumfn numbers of a function. Moreover, remark that if we have a family
of filters {§,}, .5 fulfilling the conditions
(12) - if B €F,, then B4 eFy,

.(13) if BeF,, then for every positive number ¢ also B~ (—&,1) eFo

then.vivith the aid of the family of filters {F,},.r the family B fulfilling
conditiions (4) and (5) can be defined. We define this family as follows:

By = {B: /\ (A~E #09)}).
AeFo

The family B obtained from the family B, coincides with the filter F,.

icm°
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Now we give some examples of families B.

Exavein 1. Let R be the family of sets for which 0 is a point
of right-sided accumulation. It is obvious that the family 9t defines
ordinary limit numbers and the 9-limit is a limit in the usual sense.

BxameLe 2. Let us consider the family %} of all sets for which 0 is
not a point of right-sided dispersion. Limit numbers with respect to this
family % are approximate limit numbers.

Examerl 3. Let M be the family of sets B such that, for all
numbers ¢ >0, | B~ (0,%)] >0, where |B| denotes the outer Lebesgue
meagure of a set H.

Exampre 4. The qualitative limit numbers are obtained from
a family © defined ag follows:-a set H belongs to the family GF if for
every ¢t >0 the set B ~ (0,1) is of the second category.

BxampiE 5. Let $ denote the family of all sets B such that a set
B~ (0,%) is non denumerable for an arbitrary number ¢ > 0.

Examprn 6. Let {ps} be the sequence of the prime numbers and
Pr={pz% P3% s P2™ ..} We shall say that a set ¥ belongs to the fa-
mily ®F if that set containg infinite subsequences of infinitely many
sequences Pr.

It is easy to remark that the above families fulfil conditions (4), (5).

Remark. It is easy to see that if there exists a set H ¢ B} such that

lim f (z) = g,

2>y, 2 X

then g e L(f, @,). The converse theorem is not true. Let A be the family
defined in Example 2 and let {B,} be a descending sequence of sets
having the upper density equal to 1/n at the point 0. Then a funetion f
defined as :

n~t for

2 for

2 € BEpN\FHyyq,

fla) = oe T,

has at the point 0 a limit number equal to 0, and, on the contrary, there
existy no set X such that D(H#,0) >0 and
lim f(z)=0.

a-rxo, 2B
However, we have the following
TarormM 4. Let f: B—R be an arbitrary function and 2,¢ B. Then
the conditions
(i) g € LF(f, 2),
(ii) there ewists a set B « B such that lm f(@) =4

2+, T€E . P
are equivalent if and only if the family B fulfils the following condition:
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(W) For every descending sequence of sels {En} such that Hy e B,
there exists a decreasing sequence {&,} converging to 0 and such that

U (En N [wn+17 wn)) € 233‘ M
n=1

Proof. Necessity. Let us suppose that condition. (W) is not fulfilled.
Then there exists a descending sequence of sets {H,} such that B, ¢ BF
o0

and, for every decreasing sequence {m,} converging to 0, U (En A [ @y, “n))
el
¢ B« Let us define a function f as follows:

nt

fla) =

for we E\By1q ,
2 for w¢H,.

Then, for all # « By, f(#) < n™%, and 0 is a limit number of f at the point 0.
On the contrary, there exists no set B fulfilling condition (ii). In fact

let us suppose that there is a set Fe B such that lim f(@) =0,
20, xe
Hence for all natural » there exist numbers #, > 0 such that for ¢ e B ~

~ (0, ta) the inequality f(z) < n™ holds. The sequence {t,} may be chosen
in such a way that, for alln, £, < 1,. For w ¢ B, (g1 ) 0ls0 fl@) < n~L
From the definition of function f it follows that

B~ [tn—!-l? t,) C B, ~ a1y ta)
and

B (07 tl) CnL;Jl(Eﬂ s [tn+17 tn)) ¢ 553-

This contradicts the choice of the set .

Suffieiency. By the foregoing considerations it is sufficient to
prove that condition (i) implies (ii).

Let f: RB—R be an arbitrary function and ¢ € L§(f, @), Then
Tn= {w: |f()—gl< ™"} e B
From condition (W) it follows that there exists a sequence {x,} such that

By < Bpyy < @, limay, = z, and
N—>00

B ==“le (‘E’ﬂ a [wn»i—l? wn)) € %;‘;0 .

It is easy to see that lim J(#) = ¢. This completes 'the prbof.

Xy, T B
As for B-limit numbers, we have the following
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ot

Remark. If there exists a set F e BY such that

Im  f(a)=y,

2y, 2€H

then g = (B) lim f(z).
2L—+Tp
The converse theorem is not true in the general case. In the cage
where for the family B we have the family % from Example 2 these two
couditions are equivalent. It is interesting to see in what cages this
equivalence holds. Let us remark that in the proof of Theorem 4 we need

" only those properties of the family % which the family 8* has also. These

are (8)-(10). Hence we obtain the following
THEOREM B. For a function f: R—R and x, <R the conditions
(1) g=(B)lim f(z),
2+

(i) there ewisls a set H e By, such that g= lim f(a),

x>y, T€E

~are equivalent if and only if the family B has the following. properiy

(W*) For every descending sequence of sets {By} such thai By < BF*,
n=1,2,.. there ewists a decreasing sequence {®,} converging to 0 and
such that

Ul(En la [wn+1? ﬁn)) € %;){-* .
N

2. DEPINITION 4. We shall say that the family B fulfils condition M
if for arbitrary sequences {@,} (of numbers) and {H,} (of sets) suech that

ma, =0,

Nn—+00

@n >0, H,eB,,

the set B = |J B, belongs to the family B .

If in thisnc:mdition the sequence of sets {#,} is replaced by a sequence
of intervals of the form (Wn—1tn, ¥n), (®n, Gn-t1s) O (Tp—tn, Tn-t1s), then
we shall say that the family B fulfils condition M.

It i easy to see that families 3, M, €, $ fulfil condiltion M and of
course M’ also, and the family % does not fulfil the condition M’ and M,
either.

For a function f the set {#: LE(f, #) # Lg(f, @)} is called the sel of
B-asymmetry of the function f. It is well known that the set of agymmetry
(in the usual sense) of an arbitrary funetion is at most denumerable
(see 'W. H. Young [7]). The set of approximate asymmetry need not_be
denumerable (sec L. Belowska [1]); however, it must be a set of the first
category and of Lebesgue measure 0 (M. Kulbacka [4]). In the general
case we have the following
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Tapores 6. If the family B fulfils condition M, then the set of B - asym.
metry of an arbitrary function f is ot most denumerable,

Proof. It suffices to show that the sot

4 = {o: Lg(f, oNIS(f, 2) = O}

is at most denumerable. ILiet @, e 4. Then there exists a poing
p e Lg(f, ®)\Lg(f, %). By Theorem. 2 there exists & number &, >0 such that
o If(w)—pl <

(p—soy D+ 20) N L(fr 2) = O, b} € Bk

Hence there exist three rational numbers @y, by, ¢, such that

By <D< Dyyy Oy >0g, {07 g << F (W) X bk (0, ) ¢ BE

From condition M it follows that, for different points @, @, ¢ 4, (@y,, by, 6,,)
# (Gyyy Dy 0z,). From this if follows that the set of B-asymmetry of
a bounded function is at most denumerable.

If f is an unbounded function, then let us consider o function defined
as follows:

@)
Y= @

For functions f and w the sets of B-asymmetry coincide. This
completes the proof.

T. Swigtkowski in [5] has also studied the set of asymmetry of
a function in the general case.

3. In this part of the paper we shall study the comnections between
the B-continuity and the continuity of functions in the ordinary sense.

DerINIToN 5. A function f is called B-continuous af a point w, it
F(@) = (B) lim § ().
=

aT—-xp
Of course, if a funcbion f is continuous at oy, then it is B-continuous
for every family B fulfilling conditions (4) and (B). Xt iy easy o see that
the converse theorem is not true. However, we have the following
_ ALmwwes 1. et o family B fulfils condition M. If @, is a point of % -con-
tinuity of a function f and, for every @ from some interval (wy— t, @e+1),
J(®) e Lg(f, ), then f is continuous af the point w, (in usual sense).
Proof. Let us suppose that f is not continuous ab 2,. There exist
a sequence {,} converging to x, and a number » > 0 such that for every n

(14) If (@) —F (@) = >0

icm
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Then there exists a sequence {k,} such that there exists a limit
lim f(#,) = Yo. Suppose that y, is a finite number. In the case of y,= 1 co
n-»00

the proof is gimilar. Liet ¢ be an arbitrary positive number. There exists
an ny such that for » > n, we have the following inequalities:

N = < s, [F(@p,) =10l < %e.

From the assumption it follows that
By, = {2 |f(@)—F(o,)| < }e}  Bay, -

The sot B = {z: |f(#)—y,| < &} includes a set |J 1, which belongs to B

n2ny
by virtue of condition M. Henee the set B also belongs to BF. In this
way we have obtained that y, e Iy(f, #,). This contradicts (14) and the
assumptions.

The following theorem is an immediate conssquencs of the above
lemma.

TapornM 7. If the family B fulfils condition M, then, for an arbitrary
Junction f: RB->R, the B-continuity of f in an interval (a, b) is equivalent
to the continuity of f in that interval.

Remark. Let B and D be two families fulfilling conditions (4) and (5).
We shall say that families B and D fulfil condition My, if for every set
B eDf and every family of ssts {#,},.n such that By e B, z<H, the
set ) Hy bolongs to the family By, and for every set B e BF and every

zell
family of sots {H.},.p such that By eDs, # ¢ B the set | JH, belongs
veE
to the family DF.

Theorem 7 ean be generalized in the following way:

If families B and D fulfil condition Mgy, then, for an arbitrary func-
tion f, B -continwity in an interval (@, b) is equivalent to the D - continuity
of f in this interval.

The proof of thiy fact is similar to the proof of Lamma 1.

Taronum 8. Lf, for arbitrary function f, B-continuity coincides with
continuity 4n an interval (a,b), then the family B fulfils condition M'.

Proof. Lot usg supposs that B does not fulfil condition M’. Then
there oxish sequences {m,} of numbers and {I,} of intervals of the form
(for example) (@, @n-+1s) such that

U In ¢ B5 -

Meal
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Moreover, one can assume that these intervaly arve pairwise disjoint. Let
the function f be defined as

2 2

-t for @ e (@n, Cnt 3],
tn tn
fl@ ——p——ty+2, for @@, 2ut-ta),
o tn
0 for  remaining o .

It is easy to see that the function f is B-continuous in J2 and, on the
contrary, it iy not continuous at the point 0.

4, Let ug write for a function fi BB

‘Fss(f: @) = minLy(f, ) , Dy(f, @) = maxLy(f, @) ,

my(f, @) = minLy(f, o),  My(f, o) = maxLy(f, @) ,

where Lg(f, x) = Ly(f, ) v {f(2)}-
DrrinirioNy 6. We ghall say that the function f is upper B-semi-
continuous (lower B-semicontinuous) at a point x, if

flo) = dulfy @) (Flo0) < palf, 20)) -

For the function f functions my and My are the lower and the upper
functions of Baire respectively. These functions are semicontinuons. Now
we shall study the properties of functions gy, ¢g, Mg and Mg.

For a set A(z)C R, where « ¢ B, we shall write

#(2) = {z} X 4 (),
K(pos 1) = {(®, y): Po = (@, Yo), |0~ ) < 7, ly—o| < #} .

Drrrvtrion 7. We shall say that o point p,== (ay, 9,) belongs to the

uppf)r topological B-limit of a family of sets {8} ex i for overy number
r >

{or we X, By K(p,y,r) # @B e B,

We shall denote the upper topological B -limit, of the family of set x
pper topological 9B -] of the family of sets {Z
by (B) 1s E,. ) Y el
zeX

Th.e notion of the upper topological B-limit of a family of sets pormits
us to give some characterization of sets of B-limit numbers in an analog-
ous form to that used in [3] for sets of ordinary limit numbers. As in [8],

1s B, denotes the usual upper topological limit of a family of sets.

e X
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TEMMA 2. For every bounded function f: R—R and x, ¢ R the inclusion
(18) T(wo) ~ 18 £x(f, #) CLy(f, 20) 5
<o

where T (@) = {(&, ¥): & =ae}, holds if and only if the family B fulfils
condition M.

Proof. In the fivst part of the proof let us assume that the family B
fulfils condition M. Let

(w0, Yo) € T (@) ~ 18 Ly(f, 2) .
x<xp
Then there exist two sequences {wn}, {ys} such that

Wn< Boy  Bu—>Bo, Yn—>Yo, Yn < L(f, o).

Let ¢ be an arbitrary positive number. There exists an index n, such
that for all » = n, we have

lon— ol <&, |ya—yl<}e, {o |f(@)—yal <3} By, .
According to condition M
= | {o: |f(®)—yal < e} € B,
N0

Hence the seb {w: |f(w)—9o| < &} containing the set F belongs to B
Thus (%, Yo) € Lg(f, %) ) N

Lot us suppose now that the family B does not fulfil condition M.
Then there exist two sequences {,} of numbers and {H,} of sets such that

o
<0, ap—>0, BpeBy and H= uU1E" ¢ By .

Tor the characteristic function of the set F (13) does mot hold. This
completes the proof. :

Tor sotg of ordinary limit numbers we have (in [3])

DR () 18 LS, @) = ET(F) %) -
2<o

For a family B # N this equality does not hold. However, one can obtain
a very similar equality for sets of & -limib numbers.

LA 3. If the family B fulfils condition Mg, then for every bounded
Jumction f the equality

§ (@) ~ (B) 18 L3(f, @) = Lg(f, 7o)

holds for every point m, € R.
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Proof. From the definition of %B-limit numbers and of the upper
topological B-limit of a family of sets it follows that

T} ~ (B) 18 {(@, f(w)} = Lg(f, @o) .
T<Ty
Now we shall show that the following inclusion is fulfilled:
(16) Ta) ~ (B) Is Ly(f, #) C L5(F, @) -
<20

Let py = (2, ¥o) € T(m) » (B) 18 £x(f, ). For every number r > 0
fgol

B = {z: K(po, r) ~ Ly(f, 7) # O} « B,

Let ¢ >0 be an arbitrary number. For ¢ F let y, ¢ Iy(f, #). Then
{h: |f(h)—ys| < e} € By and, moreover, for all @ ¢ B ~ (zy—t, @), where
t >0, we have |[ys;—1,| << }e. Hence

e 1f(B)— g, < 6}3”}%{7“ If(A)—ya| < }e} € B,

and y, € Lg(f, @). Then by virtue of (16) and the properties of the upper
topological B-limit of a family of sets we have

Flay) > (B) iS £3(f, @) = T (@) ~ [(B) m1<fi Ly(f, @) v (B) Is {(z, fla))}]

L<To

= F(z,) ~ (B) Is {(z, f(@))} = £5(f, @) -

<X

This ends the proof.

The following theorem is an immediate consequence of Lemma 2.

TEBOREM 9. For an arbitrary bounded function. f, the function gy is
lower semicontinuous if and only if the family B fulfils condition M.

TreoREM 10. For an arbitrary bounded function f, the funmction my is
lower B-semicontinuous if omd only if the family B fulfils conditions Migs -

Proof. Let us assume that the family B fulfils condition Myy.
Then from Lemma 3 it follows that

minL‘s(mm(f; ‘), “’0) = min Lg(f, 2,) = my(f, 2,) -

Hence it follows that mg is lower B - semicontinuous at every point #, ¢ E.
Now let us assume that, for every bounded function fy the funetion
My 18 lower B -semicontinuous, and let us suppose that the family B does

not fulfil condition Myg. There exist a set B e By and a family of sets
{B}zem such that :

B, eB; and FH,=|JH,¢DB;.
zell
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Let
. 0 for teBEN{0},
TO=11 to t ¢ B0} .

Then for 4, ¢ B ¢ By we have mg(f, @) = 0 and the only B-limit number
of function f at the point 0 is 1 = f(0). This contradiction endsthe proof.

From [6] it follows that the family % (Example 2) fulfils condi-
tion Myg . Then the functions me, My are approximately semicontinuous
for every bounded funetion.
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