

Normality in function spaces

by

R. Pol (Warszawa)

Abstract. In this note we characterize metrizable spaces for which the function space $I^{\mathbf{X}}$ is normal, Lindelöf, or has the k-property. We give also some related examples.

This paper concerns the normality, the Lindelöf property and the k-property of the space I^X of continuous mappings of a metrizable space X into a segment I. In part one we shall formulate two theorems characterizing metrizable spaces X for which I^X is a normal space or a Lindelöf space (Theorem 1) and spaces for which I^X is a k-space (Theorem 2). Part two is devoted to the proof of Theorem 1, part three contains a certain generalization of that theorem, and part four gives examples related to the above facts. In part five we shall prove Theorem 2.

We adopt the terminology and notation of [3] and [4]. In particular, the word "mapping" and the symbol $f\colon X\to Y$ always denote a continuous function from X to Y. For topological spaces X and Y the symbol Y^X will be used to denote the space of continuous mappings of space X into Y considered with a compact-open topology. If Y is a metrizable space, the base of the space Y^X is formed by the sets

$$M(f, Z, \varepsilon) = \{ f' \in Y^X | \varrho(f(z), f'(z)) < \varepsilon \text{ for } z \in Z \}$$

where $f \in Y^X$, $Z \subset X$ is compact, $\varepsilon > 0$, and ϱ is a fixed metric on Y ([3], T. 8.2.3). The symbol σY^X will denote the set $\{f|f\colon X \to Y\}$ with a topology of pointwise convergence. The symbol $Y^{|X|}$ will denote the product of \overline{X} copies of the space Y indexed by the set X; the mapping $f \in Y^X$ will also be regarded as an element of $Y^{|X|}$. By $D(\mathfrak{m})$ we shall denote a discrete space of power \mathfrak{m} , by N—natural numbers, by Q—rational numbers, by I—the segment [0,1], by T—the unit complex circle, by R—real numbers.

- 1. Theorem 1. For a metrizable space X the following statements are equivalent:
 - (i) I^X is normal,
 - (i)' σI^X is normal,
 - (ii) X^d is separable, (iii) for any compact metrizable space K, the space K^X is Lindelöf.
- 11 Fundamenta Mathematicae, T. LXXXIV

147

As can be seen from the examples in part four, the assumption of metrizability in the above theorem is essential.

THEOREM 2. For a paracompact space X satisfying the first axiom of countability the following statements are equivalent:

(i) IX is a k-space,

(ii) $X = D(m) \oplus X_0$, where X_0 is a locally compact Lindelöf space,

(iii) for any compact metrizable space K, the space $K^{\mathbf{X}}$ is paracompact and complete in the sense of Čech.

The example quoted in part five shows that the assumptions on the space X are essential.

Remark. Theorem 2 does not hold for σI^X . Consider the rational numbers Q: the space σI^Q is metrizable but Q does not satisfy (ii) and σI^Q is not complete.

2. We begin the proof of Theorem 1 with a simple lemma.

LEMMA 1. If the derivative of a paracompact space X satisfying the first axiom of countability is not Lindelöf, then I^X and σI^X contain the space $N^{\aleph 1}$ as a closed set.

Proof. We shall restrict ourselves to the space I^X ; the proof for σI^X is identical. Suppose that X^d is not Lindelöf. Then there exists a family, discrete in the space X, of closed sets $\{F_s|\ s\in S\}$ such that $\overline{S}=\mathbf{x}_1$ and Int $F_s \cap X^d \ni x_s$. Let

$$A_s = \{ f \in I^{\mathbb{X}} | \ f | (X \diagdown F_s) = 0 \} \quad \text{ and } \quad A = \{ f \in I^{\mathbb{X}} | \ f | (X \diagdown \bigcup_{s \in S} F_s) = 0 \}.$$

Then $A = \underset{s \in S}{\mathbf{P}} A_s$, and since A is a closed subset of $I^{\mathbf{X}}$, it is sufficient to

prove that every A_s contains a discrete countable closed subset (cf. [3], Ex. 3.3.E). Let us fix s and let $x_n \in \text{Int} F_s$, $x_n \neq x_m \neq x_s$ for $m \neq n$ and $x_n \to x_s$. Let us choose a function $f_n \in A_s$ such that

$$f_n(x_m) = \left\{ egin{array}{ll} 0, & m > n \ , \ 1, & m \leqslant n \ , \end{array}
ight. f_n(x_s) = 0 \ .$$

The set $\{f_n | n=1, 2, ...\}$ is discrete and closed in the space A_{δ} .

The implications (i), (i)' \Rightarrow (ii) follow from Lemma 1 and from the fact that N^{N_1} is not normal ([3] P. 2. T).

For proving Theorem 1 it is sufficient to prove the implication (ii) \Rightarrow (iii) (the remaining ones follow a fortiori); this implication results from Proposition 1 given below.

To begin with, define a class $\mathfrak A$ of all regular topological spaces X such that there exists a COSMIC space E ([7], Def. 10.1) and upper

semi-continuous set-valued function Φ ([4], § 18) from E into the family of compact, non-empty subsets of the space X and

$$(1) \qquad \qquad (\Phi(x)| \ x \in E\} = X.$$

This class has the following properties:

- (2) A is κ₀-multiplicative, hereditary with respect to closed subspaces and closed with respect to the continuous images,
- (3) COSMIC spaces belong to A,
- (4) if $X \in \mathfrak{A}$, then X is Lindelöf.

Proposition 1. Let X be a metrizable space with a separable derivative. Then for any compact metrizable space K the space K^X and σK^X belong to $\mathfrak A$. Thus a countable product of the space K^X or σK^X and a product of this space by any separable, metrizable space is a Lindelöf space.

Let X be a metrizable space with a separable derivative. From (2) and (4) it follows that it is sufficient to show $K^X \in \mathfrak{A}$. This fact, as will be shown later, can easily be reduced to the following lemma.

LEMMA 2. Let
$$I_0(X) = \{f \in I^X | f | X^d = 0\}$$
. Then $I_0(X) \in \mathfrak{A}$.

Proof. Adopt the notation $X^d=X_0$, $I_k=[0,1/k]$, k=1,2,... Establish a metric ϱ on the space X for which the diameter of X is less than 1, and a retraction $r\colon X \to X_0$ ([5], T. O.). For $\varphi \in I^{X_0}$ such that $\varphi(x)>0$ for $x\in X_0$ define a set

(5)
$$W(\varphi) = \{x \in X | \varrho(x, r(x)) < \varphi(r(x))\}.$$

Then set $W(\varphi)$ is a open-and-closed neighbourhood of X_0 , and if $\varphi_1 \geqslant \varphi_2 > 0$, then $W(\varphi_1) \supset W(\varphi_2)$. As E let us take a subspace of the product $I_1^{X_0} \times I_2^{X_0}$... consisting of sequences $a = (a_i)$ such that $a_1 = 1 \geqslant a_2 \geqslant ... > 0$. For $a \in E$ the following sequence of open-and-closed sets is defined:

$$(6) W(\alpha_1) = X \supset W(\alpha_2) \supset ... \supset X_0.$$

Assume $X_i(a) = W(a_i) \setminus W(a_{i+1})$, for i = 1, 2, ... Then

(7)
$$\bigcup_{i=1}^{\infty} X_i(\alpha) = X \backslash X_0, \quad X_i(\alpha) \cap X_j(\alpha) = \emptyset, \quad \text{for} \quad i \neq j$$

and it follows that we can define the function F(a) as

(8)
$$F(a)(x) = \begin{cases} 1/k & \text{for } x \in X_k(a) \\ 0 & \text{for } x \in X_0 \end{cases}$$

Assume:

(9)
$$\Phi(\alpha) = \{ u \in I^{|X|} | u(x) \leqslant F(\alpha)(x), \text{ for } x \in X \}.$$

The openness of $W(a_i)$ and the definition of F(a) imply that

$$\Phi(\alpha) \subset I_0(X) .$$

We shall prove that

(11)
$$| | \{ \Phi(a) | a \in E \} = I_0(X),$$

(12)
$$\Phi(a)$$
 is compact for $a \in E$,

(13)
$$\Phi$$
 is upper semi-continuous.

Let $f \in I_0(X)$ and assume that $L_i = f^{-1}(I_i)$, i = 1, 2, ... We shall define by induction a sequence $a_1, a_2, ...$ such that $a = (a_i) \in E$ and $W(a_i) \subset L_i$. For $a_1 = 1$ we have $W(a_1) = X = L_i$. Assume that $a_1, ..., a_k$ have already been defined and let $\beta(x) = \varrho(x, X \setminus L_{k+1})$, for $x \in X_0$ and $a_{k+1} = (1/k+1)\min(\beta, a_k)$. Then $a_{k+1} \in I_{k+1}^{X_0}$, $a_{k+1} > 0$, and $W(a_{k+1}) \subset W(\beta)$. It is sufficient to show that $W(\beta) \subset L_{k+1}$. Take $x \in W(\beta)$; then $\varrho(x, r(x)) < \varrho(r(x), X \setminus L_{k+1})$, i.e. $x \in L_{k+1}$. Now for the a defined above and for $x \in X_k(a)$ we have $x \in W_k(a) \subset L_k$; hence $f(x) \le 1/k = F(a)(x)$, and thus $f \in \mathcal{P}(a)$, which concludes the proof of (11).

Let us now fix $a = (a_i) \in E$ and, for every $a = (a_i) \in I_1^{X_1(a)} \times I_2^{X_2(a)} \times \dots = A$, put

$$D(a)(x) = \begin{cases} 0, & x \in X_0, \\ a_i(x), & x \in X_i(\alpha). \end{cases}$$

We shall show that D is a continuous mapping of the compact space A onto $\Phi(a)$, which proves (12). Let f = D(a), let $M(f, Z, \varepsilon)$ be a neighbourhood of f and let $2/k < \varepsilon$. Assume that $Z_i = Z \cap X_i(a)$,

$$\textit{U} = \textit{M}(\textit{a}_{1},\textit{Z}_{1},\varepsilon) \times \ldots \times \textit{M}(\textit{a}_{k-1},\textit{Z}_{k-1},\varepsilon) \times I_{k}^{\textit{X}_{k}(\textit{a})} \times \ldots$$

Let $a' = (a'_i) \in U$ and $z \in Z$. If $z \in W(a_k)$, then

$$|D(a')(z)-f(z)| \leqslant 2/k < \varepsilon$$
,

and if $z \in X_i(a)$ for i < k, then

$$|D(a')(z)-f(z)|=|a_i'(z)-a_i(z)|<\varepsilon.$$

Thus $D(U) \subset M(f, Z, \varepsilon)$.

We shall now prove (13). Let $U \subset I^X$ be an open set and, for a certain $a = (a_i) \in E$, let $\Phi(a) \subset U$ hold. Using (12), let us choose $f_1, \ldots, f_p \in \Phi(a)$ and their neighbourhoods $M(f_i, Z_i, \varepsilon_i)$, $i = 1, \ldots, p$ so as to have

$$(14) \quad \varPhi(a) \subset \bigcup_{i=1}^p M(f_i,Z_i,\varepsilon_i) \quad \text{ and } \quad M(f_i,Z_i,2\varepsilon_i) \subset U, \quad i=1,...,p\,.$$

Let $Z = \bigcup_{i=1}^{p} Z_i$, $\varepsilon = \min\{\varepsilon_i | i \leq p\}$. The set $C_k = Z \cap W(\alpha_k)$ is compact and for $z \in C_k$ we have $\alpha_k(r(z)) - \varrho(z, r(z)) > 0$; hence

(15) there exists a $\delta_k > 0$ such that $a_k(r(z)) - \varrho(z, r(z)) > \delta_k$ for $z \in C_k$. Let $2/k_0 < \varepsilon$, $\delta = \min\{\delta_i | i \le k_0\}$, Z' = r(Z). Let us take a neighbourhood of α of the form

$$(16) V = (M(a_1, Z', \delta) \times ... \times M(a_{k_0}, Z', \delta) \times I_{k_0+1}^{\mathbf{X_0}} \times ...) \cap E.$$

We shall first show that

(17) if
$$\alpha' \in V$$
, $z \in Z$, and $F(\alpha')(z) > F(\alpha)(z)$, then $F(\alpha')(z) - F(\alpha)(z) < \varepsilon$.

Let $\alpha' \in V$ and $i \leq k_0$; then $W(\alpha_i) \cap Z \subset W(\alpha_i')$. Indeed, if $z \in W(\alpha_i) \cap Z = C_i$, we have, by (15), $\alpha_i(r(z)) - \delta > \varrho(z, r(z))$, and since $r(z) \in Z'$, we have, by (16), $\alpha_i(r(z)) - \delta < \alpha_i'(r(z))$, i.e. $\alpha_i'(r(z)) > \varrho(z, r(z))$ and thus $z \in W(\alpha_i')$. Now let $z \in Z$. If $z \in W(\alpha_{k_0})$, then $z \in W(\alpha_{k_0}')$, and thus

$$|F(a)(z)-F(a')(z)|\leqslant F(a)(z)+F(a')(z)\leqslant 2/k_0<\varepsilon;$$

on the other hand, if $z \notin W(a_{k_0})$, then $z \in X_k(a)$ for $k < k_0$, and thus $z \in W(a_k) \cap Z \subset W(a_k')$ whence $F(a')(z) \le 1/k = F(a)(z)$.

We shall now prove that for $a' \in V$ we have $\Phi(a') \subset U$, which will complete the proof of (13). Let $f' \in \Phi(a')$, $f'' = \min\{f', F(a)\}$. Thus $f'' \in \Phi(a)$, i.e. $f'' \in M(f_{i_0}, Z_{i_0}, \varepsilon_{i_0})$ for $i_0 \leq p$ (from (14)). Let $z \in Z$. If f'(z) > F(a)(z), then $F(a')(z) \geq f'(z) > F(a)(z)$, whence

$$|f'(z)-f''(z)| = |f'(z)-F(a)(z)| \le F(a')(z)-F(a)(z) < \varepsilon$$

by (17). On the other hand, if $f'(z) \leq F(a)(z)$, then |f'(z) - f''(z)| = 0. Thus we always have $|f'(z) - f''(z)| < \varepsilon$, whence, for $z \in Z_{in}$,

$$|f'(z) - f_{i_0}(z)| \leqslant |f'(z) - f''(z)| + |f''(z) - f_{i_0}(z)| < 2\varepsilon_{i_0},$$

which, by (14), gives $f' \in U$.

The lemma now follows from (11), (12), (13) and from the fact that the space E is COSMIC ([7], Proposition 10.3).

We shall now derive Proposition 1 from the lemma. Let $T_0(X) = \{f \in T^X | f | X_0 = 1\}$, and let $h: T \to I^2$ be a homeomorphism of T onto the perimeter of a square such that h(1) = (0, 0). Then $\varphi(f) = h \circ f$ is a homeomorphic embedding of the space $T_0(X)$ onto the closed subset of $I_0(X) \times I_0(X)$, whence, by (2) and Lemma 2, we have $T_0(X) \in \mathfrak{A}$. For $(f_1, f_2) \in T_0(X) \times T^{X_0}$ put $\varphi'(f_1, f_2) = f_1 \cdot \frac{1}{f_0 \circ r}$; then $\varphi': T_0(X) \times T^{X_0} \to T^X$.

By (2), (4) and the fact that T^{X_0} is COSMIC, we have $T^X \in \mathfrak{A}$. From the

exponential law ([8], Theorem 2) we have $(T^{\aleph_0})^{\mathfrak{X}} = (T^{\mathfrak{X}})^{\aleph_0} \in \mathfrak{A}$, and since K is embedded in T^{\aleph_0} as a closed subspace, $K^{\mathfrak{X}}$ is homeomorphic with a closed subspace of $(T^{\aleph_0})^{\mathfrak{X}}$; hence it is an element of \mathfrak{A} .

3. Let X, Y, Z be topological spaces and $p: X \to Y$. For $f \in Z^Y$ let us assume $p^*(f) = f \circ p$. Then: p^* embeds σZ^Y homeomorphically in σZ^X ; if p is a compact-covering mapping ([7], § 7), then p^* embeds Z^Y homeomorphically in Z^X ; if p is a quotient mapping, then $p^*(Z^Y)$ is a closed set in σZ^X , and thus also in Z^X .

LEMMA 3. A regular space with a point-countable base and a separable derivative is a compact-covering image of a metrizable space with a separable derivative.

Proof. Let X be a regular space with a point-countable base \mathfrak{B} . Put $X^d = X_0$. We shall begin by constructing a pseudometric d continuous on X such that d(x,y) < 1 for $x, y \in X$ and

(18) if $d(x_n, x_0) \to 0$ and $x_0 \in X_0$, then $x_n \to x_0$.

We shall use the classical construction of Urysohn [10]. Let $\mathfrak{U}=\{(V,W)|\ V,W\in\mathfrak{B},\ \overline{V}\subset W,\ X_0\cap V\neq\emptyset\}$. Then $\overline{\mathfrak{U}}\leqslant \aleph_0$ and let $(V_1,W_1),(V_2,W_2),...$ be a sequence of elements from $\mathfrak{U}.$ Since X_0 satisfies the second axiom of countability, it can easily be seen that X is paracompact, whence there exist functions $f_i\colon X\to I$ such that $f_i|\overline{V}_i=0,$ $f_i|(X\setminus W_i)=1$. The pseudometric $d(x,y)=\frac{1}{2}\sum_{i=1}^{\infty}2^{-i}|f_i(x)-f_i(y)|$ satisfies (18). Let $\mathfrak{m}=\overline{X}$ and let $J^*(\mathfrak{m})$ be a subspace of the hedgehog $J(\mathfrak{m})$ (the definition and the notations used in the sequel are taken from ([3], E. 4.1.3)) consisting of points $q_{s,n}=(s,1/n)$ $n=1,2,...,s\in S$, and the point $q_0=(s,0)$. Let ϱ^* be a standard metric on $J(\mathfrak{m})$. In the product $E=X_0\times J^*(\mathfrak{m})$ we shall introduce a metric by a formula ([3], E. 4.1.4.):

$$\varrho((x,q),(x',q')) = \begin{cases} \varrho^*(q,q') & \text{for } x = x', \\ \varrho^*(q,q_0) + \varrho^*(q',q_0) + d(x,x') & \text{for } x \neq x'. \end{cases}$$

The derivative of E is homeomorphic with X_0 , and thus it is separable. Let us introduce the following notation: for $A \subset X$ let

$$K(A, \varepsilon) = \{x \in X | d(x, A) < \varepsilon\};$$

 $A_n(x) = K(x, 1/n) \setminus K(x, 1/n + 1) \setminus X_0,$
 $B_n(x) = \{(x, q_{s,n}) | s \in S\}, \quad x \in X_0, n = 1, 2, ...$

For $x \in X_0$ and $n \in N$ we shall choose a function $p_{x,n}$ in the following way:

$$p_{x,n}: B_n(x) \xrightarrow{\text{onto}} A_n(x) \quad \text{if} \quad A_n(x) \neq \emptyset$$

and

$$p_{x,n}: B_n(x) \to \{x\}$$
 if $A_n(x) = \emptyset$.

Define the function $p\colon\thinspace E \underset{\mathrm{onto}}{\to} X$ by the formula

$$p((x,q)) = \begin{cases} p_{x,n}(q) & \text{for} \quad q \in B_n(x), \\ x & \text{for} \quad q = q_0. \end{cases}$$

We shall verify that p is continuous and compact-covering. Continuity follows from the fact that for $u_0 = (x,q_0) \in E^d$ and u = (x',q) we have $d(p(u_0),p(u)) \leq \varrho(u_0,u)$; hence if $u_n \in E$ and $u_n \to u_0$ then $d(p(u_0),p(u_n))\to 0$ and by (18) also $p(u_n)\to p(u_0)$. Now let $Z\subset X$ be a compact set. Put $Z_0=Z\cap X_0,\ Z_n=Z\cap (K(Z_0,1/n)\backslash K(Z_0,1/n+1))$. The set Z_n is finite. For every $z\in Z_n$ choose $z'\in Z_0$ such that $z\in K(z',1/n)$ and $\widetilde{z}\in B_n(z')$ such that $p(\widetilde{z})=z$. Let $\widetilde{Z}=\{\widetilde{z}|\ z\in Z_n,\ n=1,2,\ldots\}\cup (Z_0\times\{q_0\})$. The set $\widetilde{Z}\backslash\{u\in E|\ \varrho(u,Z_0\times\{q_0\})<1/n\}$ is finite and the set $Z_0\times\{q_0\}$ is compact; hence \widetilde{Z} is compact and $p(\widetilde{Z})=Z$.

Lemma 3, Proposition 1, the fact that the compact-covering mapping onto a first countable Hausdorff space is quotient ([1], Lemma 11.2) and the initial remarks in this part imply

PROPOSITION 2. If X is a regular space with a point-countable base and a separable derivative and K is a compact metrizable space, then $K^{\mathbf{X}}$ is a Lindelöf space (more precisely: $K^{\mathbf{X}} \in \mathfrak{A}$).

Remark. Proposition 2 and Lemma 1 imply that the assumptions of Theorem 1 can be weakened to paracompactness and the existence of a point-countable base.

4. We shall now give three examples related to our situations.

EXAMPLE 1. Let K be a segment [0,1) with the topology of the right-hand arrow ([3], E. 1.2.1). We shall show that the spaces I^K and σI^K are not normal.

For $x \in [0, 1]$ let us define a function $f_x \in I^K$ by the formula

$$f_x(t) = \left\{ egin{array}{lll} 1 & ext{for} & t \geqslant x \,, \ 0 & ext{for} & t < x \,. \end{array}
ight.$$

It can easily be seen that the mapping $\varphi(x) = f_{(1-x)}$ is a homeomorphism of the space K onto the closed subspace of the space $I^K(\sigma I^K)$. Since $K = K \oplus K$, we have $I^K = I^K \times I^K$ ($\sigma I^K = \sigma I^K \times \sigma I^K$), and so both these spaces contain, as a closed subspace, the space $K \times K$, which is not normal ([3], E. 2.3.2.).

EXAMPLE 2. ([2], Proposition 5). Let \mathfrak{F} be a filter on a space $D(\mathbf{s}_1)$ consisting of sets with denumerable complements. Let $A(\mathfrak{F}) = D(\mathbf{s}_1) \cup$

 $\cup \{ \mathfrak{F} \}$ be a topological space connected with \mathfrak{F} . Then $T^{A(\mathfrak{F})} = \sigma T^{A(\mathfrak{F})}$ is homeomorphic with the Σ -product of s_1 -copies of the space T, and thus it is normal but not Lindelöf.

EXAMPLE 3. For $t \in R$ let

152

$$V(t,n) = \{x \in R \times R \mid |x - (t \pm 1/n, 0)| < 1/n\} \cup \{t, 0\}.$$

In $R \times R$, let us take, as the base of neighbourhoods of points (t, 0) the sets V(t, n), n = 1, 2, ..., and as the base of neighbourhoods at the remaining points, Euclidean balls. We obtain the well-known COSMIC space (cf. [6]). Let us denote by A the subspace $I \times I$ of that space. Let $B = \{(Q \times Q) \cup I\} \cap A$ be a subspace A, and let B_I ([3], E. 5.1.2) be a space in which the neighbourhoods of points belonging to I are such as in B and the points from $B \setminus I$ are isolated.

We shall prove that

the spaces I^A and $I^{(B_I)}$ are not normal, (19)

the space σI^A is Lindelöf. (20)

To begin with, let us observe that the spaces I^A and I^{B_I} are both separable, because A and B_7 can be mapped in a one-to-one way into a plane ([11], Theorem 5). For the proof of (19) it is sufficient to show that both of them contain a closed discrete set of power 2 % (see [3], E. 1.5.2).

Let $F(t) = A \setminus V(t, 1)$ for $t \in I$. Define a function $f_t \in I^A$ so as to have

$$f_t(x) = \left\{ egin{array}{ll} 1 & ext{ for } & x \in F(t) \;, \ 0 & ext{ for } & x \in I \;. \end{array}
ight.$$

Since F(t) and I are closed and disjoint in the Lindelöf space A, such functions exist.

Let $r: I^A \to I^{(B_I)}$ be a restriction $r(f) = f \mid B$ to the set B. Since B is dense in A, the mapping r is one-to-one. Let $f'_t = r(f_t)$, $F = \{f'_t | t \in I\}$ $Cr(I^A)$. It suffices to show that F is closed and discrete in the space $I^{(B_I)}$. Let $f \in I^{(B_I)}$ and $f \in \overline{F}$. Then f(I) = 0, and thus $V = f^{-1}[0, \frac{1}{2})$ is a neighbourhood of I. There exist $t_1, ..., t_p \in I$ and $n_1, ..., n_p \in N$ such that $I \subset (\bigcup V(t_i, n_i)) \cap B \subset V$. For every $i \leqslant p$ choose a compact set $Z_i \subset B \cap I$

 $\cap V(t_i, n_i)$ such that if $t \in V(t_i, n_i) \cap I$ and $t \in \{t_i, t_i - 2/n_i, t_i + 2/n_i\} = C_i$, then $F(t) \cap Z_i \neq \emptyset$ (we can take as Z_i the suitable sequences tending to the points of C_i).

Let $Z = \bigcup_{i=1}^{\infty} Z_i$, $U = M(f, Z, \frac{1}{2})$. If $f_i \in U$, for a certain $i \leq p$ the point t belongs to the set $V(t_i, n_i) \cap I$, and since for $z \in Z_i$ we have $f_i(z)$ $\leq |f(z)-f_i(z)|+f(z)<1$, we obtain $Z_i \cap F(t)=\emptyset$ and it follows that

 $t \in C_i$. Hence $U \cap F \subset \{f_i | t \in \bigcup_{i=1}^p C_i\}$ is a finite set, i.e. F is closed and discrete. Property (20) follows from the fact that there exist κ_0 -space Eand a quotient mapping E onto A ([7], Example 12.7), and thus, in accordance with the remark at the beginning of section 3, the space $\sigma I^{\mathcal{A}}$ is contained topologically as a closed subspace in the Lindelöf space σI^E ([7], Theorem 9.3).

5. We shall begin the proof of Theorem 2 by showing the implication (i) > (ii). First we shall prove that

X is locally compact. (21)

Assume that it is not and let $x_0 \in X$ be a point which has no compact neighbourhood. Let $V_1' \supset \overline{V}_2' \supset V_2'$... be a base in x_0 and let $P_i' = \overline{V}_i' \setminus \overline{V}_{i+1}'$. Since none of the sets V_i' is compact, there exists a sequence $k_1 < k_2 < ...$ such that P'_{k_i} is not compact and $k_{i+1} > k_i + 1$. Put $P_i = P'_{k_i}$, $\nabla_i = V'_{k_i}$ Then $\{P_i\}_{i=1}^{\infty}$ is a sequence of closed, non-compact subsets of $X, \{V_i\}_{i=1}^{\infty}$ is a descending base in x₀ and

(22)
$$P_i \subset \overline{V}_i \quad \text{and} \quad P_i \cap \overline{V}_{i+1} = \emptyset$$
.

The paracompactness of X implies that P_i contains a discrete closed subspace of power x_0 whose elements can be arranged in a sequence x_i , j=1,2,... From (22) it follows that there exists a family $\{V_{j,i}\}_{j=1}^{\infty}$ open in X and such that

(23) $x_{i,i} \in V_{i,i}$, $V_{i,i} \cap \overline{V}_{i+1} = \emptyset$, $\{V_{i,i}\}_{i=1}^{\infty}$ is discrete in X.

For $p, q \in N$ such that $q > p \ge 1$ let us choose an $f_{q,n} \in I^X$ so as to have

We shall show that for $A = \{f_{a,p} | q > p \ge 1\}$ the following condition is satisfied:

if $K \subset I^X$ is compact, then $K \cap A$ is finite. (25)

Let us first observe that

there exists a p_0 such that if $p \ge p_0$ and q > p, then $f_{q,p} \in K$.

Otherwise we would be able to choose a sequence $p_1 < q_1 < p_2 < q_2 < ...$ such that $f_{q_i, p_i} \in K$. Let

$$Z = \{x_{q_i, p_i}, x_{q_i, q_i} | \ i = 1, 2, \ldots\} \cup \{x_{\mathbf{0}}\} \ .$$

From (22) it follows that Z is compact, and thus Ascoli's theorem ([3], T. 8.2.5) implies that there exists an $r \in N$ such that if z', $z'' \in Z \cap \overline{V}_r$ $\text{ and } f \in K, \text{ then } |f(z') - f(z'')| < 1. \text{ But } q_r > p_r \geqslant r, \text{ whence } x_{q_r,p_r}, x_{q_r,q_r}$

 $\epsilon \, \overline{V}_r \cap Z, \text{ and also } |f_{q_r,p_r}(x_{q_r,p_r}) - f_{q_r,p_r}(x_{q_r,q_r})| = 1. \text{ Since } f_{q_r,p_r} \epsilon \, K, \text{ we get}$ a contradiction.

We shall now prove that

154

there exists a q_0 such that if $q \ge q_0$, and q > p, then $f_{\sigma, n} \in K$. Let $Z' = \{x_{i,i} | j \leqslant i\} \cup \{x_0\}$. We infer from (22) that Z' is compact and, again by Ascoli's theorem, it follows that there exists a qo such that for $z', z'' \in \overline{V}_{q_0} \cap Z'$ and $f \in K$ we have $|f(z') - f(z'')| < 1/p_0$ where p_0 satisfies fies (26). The q_0 chosen in this way satisfies (27), since otherwise there would exist a $q \geqslant q_0$ and p < q such that $f_{\sigma, p} \in K$. Then $x_{\sigma, \sigma} \in \overline{V}_{\sigma_0} \cap Z'$, $x_0 \in \overline{V}_{q_0} \cap Z'$, and by (24),

$$|f_{q,p}(x_{q,q})-f_{q,p}(x_0)|=f_{q,p}(x_0)\geqslant 1/p\geqslant 1/p_0$$
 ,

which gives a contradiction.

From (27) immediately follows (25), because the set $\{f_{q,p} | p < q < q_0\}$ is finite. We shall show that $f_0 = 0$ belongs to $\overline{A} \setminus A$, which by (25) contradicts the assumption that I^X is a k-space.

For a compact $Z \subset X$ and $\varepsilon > 0$ let us choose $1/p_0 < \varepsilon$. From (23) it follows that for $j \geqslant j_0$ holds $Z \cap V_{j,p_0} = \emptyset$. Take $q_0 = p_0 + j_0$. Then $f_{q_0, p_0} \in A$, and for $z \in Z$ we have $z \notin V_{q_0, p_0}$, and thus, in accordance with (24), $f_{q_0,p_0}(z) \leqslant 1/p_0 < \varepsilon$. This concludes the proof of (21).

Lemma 1 implies that X^d is a Lindelöf space; otherwise the space N^{\aleph_1} , which is not a k-space ([3a], Problem 7. J), would be embedded in I^X as a closed subspace. It follows from (21) that there exists a set X_0 , openand-closed in X, which is a Lindelöf space, so that $X_0 \supset X^d$. The required decomposition is $X = X_0 \cup (X \setminus X_0)$.

The remaining implications necessary to conclude the proof of Theorem 2 follow from the fact that $K^{(X_0 \oplus D(m))} = K^{X_0} \times K^m$ is a product of a space metrizable in a complete manner by a compact space, and hence it is paracompact and complete in the sense of Čech ([3]), and from the fact that spaces complete in the sense of Čech are k-spaces ([1], III, \S 2, Corollary 1).

EXAMPLE 4. The assumption that X is first countable cannot be omitted in Theorem 2. The space $I^{A(5)}$ from Example 2 is a k-space ([9], Theorem 2.1) but it is neither complete in the sense of Čech nor paracompact, and $A(\mathfrak{F})$ is not locally compact.

I wish to express my gratitude to Professor R. Engelking for valuable discussions.

References

- [1] А. В. Архангельский, Бикомпактные множества и топология пространств, Труды Моск. матем. о-ва 13 (1965), рр. 3-55.
- [2] H. H. Corson, Normality in subsets of product spaces, Amer. J. Math. 81 (1959), pp. 785-796.

- 131 R. Engelking, Outline of General Topology, Amsterdam 1968.
- [3a] J. L. Kelley, General Topology, New York 1957.
- [4] K. Kuratowski, Topology, Vol. I, II, New York-London-Warszawa 1966.
- [5] Б. Левшенко, Ю. М. Смирнов, Об одном свойстве нульмирных метрических npocmpanens, Proceedings of the Second Prague Topological Symposium 1966, Prague 1967.
- [6] L. F. McAuley, A relation between perfect separability, completness, and normality in semi-metric spaces. Pacific J. Math. 6 (1956), pp. 315-326.
- [7] E. A. Michael, 80-spaces, J. Math. Mech. 15 (1966), pp. 983-1002.
 - K. Morita, Note on mapping spaces, Proc. Japan Acad. 32 (1956), pp. 671-675.
- N. Noble, The continuity of functions on cartesian products, Trans. Amer. Math. Soc. 149 (1970), pp. 187-198.
- [10] P. Urysohn, Zum Metrisationsproblem, Math. Ann. 94 (1925), pp. 309-315.
- [11] S. Warner, The topology of compact convergence on continuous function spaces, Duke Math. Journ. 25 (1958), pp. 265-281.

Recu par la Redaction le 4. 2. 1973