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Normality in function spaces
by
R. Pol (Warszawa)

Abstract. . In this note we characterize metrizable spaces for which the function
space IZ is normal, Lindel6f, or has the &-property. We give also some related examples.

This paper concerns the normality, the Lindelof property and the
k-property of the space I* of continuous mappings of a metrizable space X
into a segment I. In part one we shall formulate two theorems character-
izing metrizable spaces X for which I¥ is a normal space or a Lindeldt
space (Theorem 1) and spaces for which I¥ is a k-space (Theorem 2).
Part two is devoted to the proof of Theorem 1, part three contains
a certain generalization of that theorem, and part four gives examples
related to the above facts. In part five we shall prove Theorem 2.

We adopt the terminology and notation of [3] and [4]. In particular,
the word “mapping” and the symbol f: X — ¥ always denote a continu-
ous function from X to Y. For topological spaces X and ¥ the symbol ¥x
will be used to denote the space of continuous mappings of space X
into ¥ considered with a compact-open topology. If ¥ is a metrizable
space, the base of the space YX is formed by the sets

H(f, 2, 0= (I« 75 olf(2), ') < ¢ for 2 2)

where f e Y%, Z C X is compact, ¢ > 0, and g is a fized metric on ¥ ([31,
T. 8.2.3). The symbol ¢¥* will denote the set {f|f: X > X} with a topo-
logy of pointwise convergence. The symbol ¥ will denote the product
of X copies of the space Y indexed by the set X; the mapping fe ¥
will also be regarded as an element of ¥'X.. By D{(m) we shall denote
a discrete space of power m, by N — natural numbers, by () — rational
numbers, by I —the segment [0,1], by T — the unit complex eirele,
by R — real numbers.
1. THEOREM 1. For a melrizable space X the following slatements are
equivalent:
(i) IF is normal,
(i)’ oI% is normal,
(ii) X% is separable,
(iii) for any compact metrizable space K, the space KX is Lindelof.
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As can be seen from the examples in parb four, the assumption of
metrizability in the above theorem is essential.

TrEOREM 2. For a paracompact space X satisfying the first awiom of
countability the following statements are equivalent:

(i) IX is a k-space,

(i) X = D(m) ® X,, where X, is a locally compact Lindeldf space,

(iii) for any compact metrizable space K, the space KX is paracompact
, and complete in the sense of . Cech.

The example quoted in part five shows that the assumptions on the
space X are essential.

Remark. Theorem 2 does not hold for oI%. Consider the rational
numbers Q: the space ¢I9 is metrizable but ¢ does not satisfy (ii) and
¢I? is not complete.

2. We begin the proof of Theorem 1 with a simple lemma.

Lesma 1. If the derivative of a paracompact space X sabisfying the
first amiom of countability is not Zindelsf, then IX and oI* contain the
space N¥ as a closed set.

Proof. We shall restrict ourselves to the space IX; the proof for
oIX is identical. Suppose that X¢is not Lindelof. Then there exists a family,

diserete in the space X, of closed sets {F,| s e 8} such that S =1, and
IntFs ~ X%5 2. Let

As= {f e IX| fI(E\Fs) =0} and A= {f e IX| fI(XN Lgﬁ’,,): 0}.

Then A =P 4;, and since A is a closed subset of I, it is sufficient to

8e8
prove that every 4, contains a discrete countable closed subset (cf. [3],
Ex. 3.3.E). Let us fix s and let #, e IntFy, &n # &n # % for m # n and
zn 5. Let us choose a funetion f,  4; such that

0, m>n,
T5)=0.
1, m<n, Jnlae)

Jul@m) =
The set {fu| n=1,2,..} is discrete and closed in the space 4.

The implications (i), (i)’ = (ii) follow from Lemma 1 and from the
fact that N™ is not normal ([3] P. 2. T). ’

For proving Theorem 1 it is sufficient to prove the implication
(ii) = (iii) (the remaining ones follow @ fortiori); this implication results
from Proposition 1 given below.

To begin with, define a class 9 of all regular topological spaces X
such that there exists a COSMIC space B ([7], Def. 10.1) and upper

e _®©
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semi-continuous set-valued function @ {[4], § 18) from F into the family
of compact, non-empty subsets of the space X and
1 U{P@)] weB}=X.

This class has the following properties:

(2) U is s,-multiplicative, hereditary with respect to closed subspaces

and closed with respect to the continuous images,
COSMIC spaces belong to U,
it X e, then X is Lindelof.

(3)
(4)

PROPOSITION 1. Let X be a metrizable space with a separable derivative.
Then for any compact metrizable space K the space K= and ¢ K= belong to U.
Thus a countable product of the space KX or oKX and a product of this space
by any separable, metrizable space is a Lindeldf space.

Let X be a metrizable space with a separable derivative. From (2)
and (4) it follows that it is sufficient to show K= 9. This fact, as will
be shown later, can easily be reduced to the following lemma.

LemmA 2. Let Iy(X) = {f e IX| f1 X% = 0}. Then I(X) e¥.

Proof. Adopt the notation X%= X,, I =[0,1/k], k=1,2,..
Establish a metric ¢ on the space X for which the diameter of X is less
than 1, and a retraction 7: XOED X, ([5], T. 0.). For ¢ ¢ I** such that

p(z) >0 for v e X, define a set
(5) Wip)= |zeX| oz, r(@) < plr(x))} .

Then set W(g) is a open-and-closed neighbourhood of X,, and if ¢,
= g, > 0, then W(g,) D W(p,). As F let us take a subspace of the product
I¥ox I0... consisting of sequences a = (e;) such thate, =1> gy > ... > 0.
For a ¢ B the following sequence of open-and-closed sets is defined:

(6) W(g)=X2 W(a)D..0X%,.
Assume Xy(a) = W(a:)\W(az,), for i=1,2,... Then

(7) U Xila) = INX,, Xila)n Xa)=0, for i#]
i=1

and it follows that we can define the function F(a) as
for 2 e Xgla)

-TEXO.

1/k

®) 0 for

F(a) (@) =

Assume:.

O (a) = {u e I’ u(z) < Fa)(x), for zeX}.
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The openness of W(a;) and the definition of F(a) imply that

(10) D(a) C LX) .
We shall prove that

(1) U{®(0)] aeB}=IX),

(12) @(a) is compact for ae F,

(13) @ is upper semi-coptinuous.

Let felI(X) and assume that Ly=f"'(L:), i=1,2,.. We shall
define by induction a sequence ¢, og, ... such that a= (a;) ¢ B and
W(a;) C Li. For a; = 1 we have W(al) X = I,. Assume that o, ..., ax
have already been defined and let f(s) = o(z, X\Ly,4), for z ¢ X, and
0pry = (1fk+1)min(B, ax). Then ay,, €Ik+17 U = Gy >0,. and W(az.,)
C W{B). It is sufficient to show that W(B8)C L,,,. Take e W(B); then
olz, (@) < olr(2), X\Inyy), ie. @ elyy,. Now for the a defined above
and for # e Xi(a) we have ze Wi(a)C Ly; hence f(z)<<1/k= F(a)(2),
and thus fe ®(a), which concludes the proof of (11).

Let us now fix a= () e ¥ and, for every a = (a;) e I3%® x IF x
X .= A4, put

07

a(x) ,

%‘GXD,

D{a)(z) =

Zre Xi(a).

We shall show that D is a continuous mapping of the compact space 4
onto @ (a), which proves (12). Let f = D(a), let M (f, Z, ¢) be a neighbour-
hood of f and let 2/k < e. Assume that Z; = Z n Xy(a )

U= M(ay, %y, &) X . XM (g 1, Z5s, &) X X5
Let «' = (a}) e U and zeZ. If 2z W{ay), then
D) &)—f@ <2k <e,
and if ze Xi(a) for i<k, then
[D(a’)(2)—f(2)] = |as(e)—am(2)| < e .

Thus D(T)C M(f, %

‘We shall now prove (13). Let U C IX be an open set and, for a certain
a=(ag) ¢ B, let ®(a) C U hold. Using (12), let us choose Jiy s Jp € D(0)
and their neighbourhoods M(fi, %, &), t=1,..,p 50 as to have

(14) S(a)C UM (fe; Zs, &)

i=1

and  M(fi, Zi,26)C U, i=1,..,p.
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Let Z = UZ,, & = min{e;| i < p}. The set Op = Z n W{ax) is compact
and for ze 0;; we have ag(r(2))— oz, r(2)) > 0; hence
(15)

there exists a 0 >0 such that ax{r(z))— g2, r(2)) > 6 for z e Ci.

Let 2/ky<< e, 6= min{d| i<
hood of a of the form

ke, Z'=r(Z). Let us take a neighbour-

(16) (M(al,Z 6) Mok, Z', 5)><Ikw1 X ..)nE.
‘We shall first show that
(17) if '€V, zeZ, and F(a')(2z) > F(a)(z), then F(a')(2)—F(a)(2) < e.

Let o' eV and i < k,,, then W(as;) » Z C W{(a;). Indeed, if 2z e W(a)
~Z = C;, we have, by (15), air(2)})—é > oz, 7(2)}, and since r(z) ¢ Z’,
we have, by (16), ai(r(2)}—06 < ai{r(2)), Le. aj(r(2)) > o(z, 7(2)) and thus
zeW(a;). Nowlet ze Z. If 2z W(ay,), then z e W(ay,), and thus

[F(a)(2)—F(a')(2)] < F(a)(2)+F(a)(2) < 2/ko < &3

on the other hand, if z¢ W(ay,), then z e X3(a) for k< k, and thus
ze W(ar) n ZC W{a;) whence F(a')(2) < 1/k = F{a)(2).

‘We shall now prove that for o' €V we have &(a’) C U, which will
complete the proof of (13). Let f'e®(a'), f" = min{f’, F(a)}. Thus
" eD(a), i.e I e M(f;,, 10,aw) for iosp (from (14)). Let zeZ. If
F'(z) >F(a)(2), then F(a')(z) =f'(z (a)(z), whence

()—f"(@) = If'()— d)(z)—Fla)(2) < e,
| =0.

by (17). On the other hand, if f'(z) < F(a)(z), then [f'(z)—f"(2)|
Thus we always have |f’(2)—f"(2)] < ¢, whence, for z¢Z,,

(D) —F ()] < |F ()= (@) + 1" (2)—Fal)] < 24,

which, by (14), gives f'e U.

The lemma now follows from (11}, (12), (13
the space F is COSMIC ([7], Proposition 10.3).

We shall now derive Proposition 1 from the lemma. Let Ty(X)
= {f e TX| f| X, = 1}, and let h: T—I* be a homeomorphism of T onto
the perimeter of a square such that h(1) = (0,0). Then ¢(f)="Tlof i
a homeomorphic embedding of the space T,(X) onto the closed subseb
of I(X)x I(X), whence, by (2) and Lemma 2, we have T\(X) ¢ 2. For

1 .
(o) « T T x T5 put ¢/l fo) = fy- = then ¢'s TX)x I 2 T
By (2), (4) and the fact that T%° is COSMIC, we have TX < 9. From the

F(a)(z)] < F(

) and from the fact that
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exponential law ([8], Theorem 2) we have (TR)X — (TX)R0 ¢ 9, and since
K is embedded in T® as a closed subspace, KX is homeomorphic with
a closed subspace of (T¥)%; henece it is an element of £

3. Let X, Y, Z be topological spaces and p: X o Y. For fe Z¥ let

us asswme p*(f) = f o p. Then: p* embeds ¢Z¥ homeomorphically in ¢Z%;
if p is a compact-covering mapping ([7], § 7), then p* embeds Z¥ homeo-
morphically in Z%; if p is a quotient mapping, then p*(Z¥) is a closed
get in oZ%, and thus also in Z%.

Leaa 3. A regular space with a point-countable base and a separable
derivative is a compaci-covering image of @ metrizable space with o separable
derivative.

Proof. Let X De a regular space with a point-countable base B. Put
X% = X,. We shall begin by constructing a pseudometric d continuous
on X such that d(z,y)<<1 for z,y « X and

(18)  if d(an, 2,) 0 and x, € X, then z, > x,.

We shall use the classical construction of Urysohn [10]. Let
U={V,W)] V,WeB, VCW, X,nV # 0} Then WL <sx, and let
(Vyy W), (Vy, Wy), ... be a sequence of elements from . Since X, satisfies
the second axiom of countability, it can easily be seen that X is para-
compact, whence there exist functions fi: XTI such that f;|V;=0,

HUENW)=1. The pseudometric d(z,y)= ,}fz-i] fum)—fi(y)| satis-

fies (18). Let m = X and let J¥(m) be a subspa(:,e of the hedgehog J (m)
(the definition and the notations used in the sequel are taken from ([3],
E. 4.1.3)) consisting of points g, , = (s,1/n) n=1,2,..,5¢8, and the
point g, = (s, 0). Let ¢* be a standard metric on J(m). In the product
E = X, x J*m) we shall introduce a metric by a formula ([3], E. 4.1.4.):
(g, 1) for » =a/,
e, )+ (¢ )+ d(z, o)

The derivative of ¥ is homeomorphie with X,, and thus it is separable.
Let us introduce the following notation: for 4 C X let

ollz, @), (&', ¢) = for ¢ # o'

K4, e)={reX! d(x, 4)< e}
An(x) = K(z,1n)\E (z, 1[n+INX,,
Bu(z) = {(#,¢,)| 58}, zeX,,n=1,2,..

For z ¢ X, and n ¢ N we shall choose a function Dy,n I the following way:

Pant Bn(‘”)‘;;oﬁ-n(m) if An($) # @
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and
Pant Bn('T) - {*”} if A,,(.I}) =0.
Define the function p: B vt X by the formula
oni

for geBulx),

9= G-

Pa,nl)
plz gl =1 for
We shall verify that p is continuous and compact-covering. Continuity
follows from the fact that for wu,= (z,q)e¢B* and u= (a',q)
we have d(p(ue),p(u)) < o(uy, u); hence if u,eF and us—u, then
d(p(uo),p(un))—m and by (18) also p(ua)—p(%). Now let ZC X be
a compact set. Put Zy=Z nX,, Zn=Z ~(K(Zy, 1n)\K(Z,, 1{n+1)).
The set Z, is finite. For every 2 € Z, choose 2’ € Z, such that z ¢ K (2, 1/n)
and % e By(¢) such that p(3) =2 Let Z=1{2] 2¢Zu, n=1,2,..} v
w (Zo X {@})- The set Z\{u < B| o(u, ZyX {g,}) < 1/n} is finite and the set
Zyx {go} is compact; hence Z is compact and p(Z) = Z.

Lemma 3, Proposition 1, the fact that the compact-covering mapping
onto a first countable Hausdorff space is quotient ([1], Lemma 11.2) and
the initial remarks in this part imply

PropPOSITION 2. If X is a regular space with a poini-countable base
and a separable derivative and K is a compact metrizable space, then KX
is a Lindelsf space (more precisely: KX e U).

Remark. Proposition 2 and Lemma 1 imply that the assumptions
of Theorem 1 can be weakened to paracompactness and the existence of
a point-countable base.

4, We shall now give three examples related to our situations.
Exawere 1. Let K be a segment [0,1) with the topology of the
right-hand arrow ([3], E. 1.2.1). We shall show that the spaces I* and oI¥
are not normal.
For 2 [0, 1] let us define a function fz ¢ IX by the formula
1 for

0 for

t=o,

Felt) = t<w.

It can easily be seen that the mapping ¢(#) = f_, 18 a homeomorphism
of the space K onto the closed subspace of the space I=(cI%). Since K

= K @ K, we have IX = I¥x IX (oI% = I¥ x ¢IF), and 50 both these
top top op
spaces contain, as a closed subspace, the space K x K, which is not normal

([37, E. 2.3.2)). . .
ExampLe 2. ([2], Proposition 5). Let ¥ be a filter on a space D(x;)
consisting of sets with denumerable complements. Let A(F) = D(w) v
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U {§} be a topological space connected with §. Then T4® = oT4® jg
homeomorphic with the X-produet of %,-copies of the space T, and thus
it is normal but not Lindelof.

Exavpie 3. For te R let

V(t,n):{:ﬂERXRl !m—(tj:l/’n,(})[<1/'lb}u{i, 0} .

ﬁxR, let us take, as the base of neighbourhoods of points (¢, 0) the
sets Vi, n), n=1,2,.., and as the base of neighbourhoods at the
remaining points, Euclidean balls. We obtain the well-known COSMIC
space (ef. [6]). Let us denote by 4 the subspace Ix I of that space. Let
B=((QXQ)UI)AA be a subspace 4, and let B; ([3], B. 5.1.2) be
a space in which the neighbourhoods of points belonging to I are such
as in B and the points from B\I are isolated.
We shall prove that

(19) the spaces I4 and I®2 are not normal,

(20)  the space oI is Lindeldf.

To begin with, let us observe that the spaces I+ and I®! are both separable,
because 4 and By can be mapped in a one-to-one way into a plane ([11],
Theorem 5). For the proof of (19) it is sufficient to show that both of them
eontain a closed discrete set of power 2% (see [3], E. 1.5.2).

Let F(t) = ANV (t, 1) for t € I. Define a function f, ¢ I4 50 as to have

1 - for
0 for

zeF(t),
zel.

Since F(t) and I are closed and disjoint in the Lindelof space 4, such
functions exist.

Let r: I4 — I®D be a restriction r(f) = f|B to the set B. Since B is
dense in A, the mapping r is one-to-one. Let f; = r(f), F = {f/| t ¢ I}
Cr(I4). Tt suffices to show that F is closed and discrete in the space I®7.
Let fe I and f ¢ F. Then f(I) = 0, and thus V = f~[0, %) is a meigh-
bourhood of I. There exist ?,,..,%, eI and #,..,7,¢N such that

b4
IC(UV(t, n))~ BCV. For every i < p choose & compact set Z; C B ~
=1

N~V (ts, ne) such that if t e V(ti, ne) ~ I and ¢ ¢ {8, t;—2/nq, -+ 2/ng} = i,
then F(t) ~ Z; #+ @ (we can take as Z; the suitable sequences tending to
the points of ().
Let Z=1)Z;, U= M(f,Z,}). T f,e U, for a certain i <p the
i=1 N

point 7 belongs to the set ¥ (f:, ns) ~ I, and since for z e Z; we have flz)
< f)—f{2)+fl2)<1, we obtain Z;nF(t)=0 and it follows that
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»
te Ci. Hence Un FC{f] te.U Ci} is a finite set, ie. F is cloged and

i=1

discrete. Property (20) follows from the fact that there exist Ry-8pace B
and a quotient mapping ¥ onto A ([7], Example 12.7), and thus, in ac-
cordance with the remark at the beginning of seetion 3, the space oI is
contained topologically as a closed subspace in the Lindelsf space oIF
([7], Theorem 9.3).

5. We shall begin the proof of Theorem 2 by showing the implication
(i) = (ii). First we shall prove that

(21) X is locally compact.

Assume that it is not and let @, ¢ X be 2 point which has no compact
neighbourhood. Let V; DV, DV, ... be a base in #, and let Pj= VAV,,,.
Since none of the sets V; is compact, there exists a sequence ;< k<< ...
such that Py, is not compact and %y, >k;+1. Put P, = P}, Vi= Vi,
Then {P,}, is & sequence of closed, non-compact subsets of X Vs 2‘;‘1
is a descending base in #, and

(22) .P{CV{ and PinT71-+1=0.
The paracompactness of X implies that P; contains a diserete closed sub-
space of power %, whose elements can be arranged in a sequence ; ;,

j=1,2,... From (22) it follows that there exists a family {V; 71 open
in X and such that )

(28) ;e ViinVy=0, {V,)2, is discrete in X.

For p, ¢ ¢« N such that ¢ >p > 1 let us choose an fup € IZ 50 as to have
(24) fq,p(mq, p) =1 E] fq,p(mq. q) =0 ) fq,p(mo) = 1llp ’
Ja.o® <1fp 2éV,,.

We shall show that for A= {f, | ¢>p > 1} the following condition is
satisfied:

(25) if K CIX is compact, then K ~ A is finite .

Let us first observe that

[

for

(26)  there exists a po.such that if p > p, and ¢ > p, then f, . ¢ K.

Otherwise we would be able to choose a sequence p, < g, < Py < s << ..
such that f,. . € K. Let

Z = (B iy Tyl T=1,2, ..} w {ire} .

From (22) it follows that Z is compact, and thus Ascoli’s theorem ([3],
T. 8.2.5) implies that there exists an 7N snch that if &, " eZnT,

and feK, then |f(z')—f(2")|<1. But ¢, >p,>r, whence z, ,, 2, .
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—Fon o T, )| = 1. Since fo p e K, we geb

eV, Z, and also {fy, (@)
a contradiction.

We shall now prove that
{27)  there exists a ¢, such that if ¢ > q(,, and ¢ >p, then Jan €
Let Z' = {z; | j < i} v {z}. We infer from (22) that Z' is compact and,
acam by Accoh’s theorem, it follows that there exists & ¢, such that for
¥, 2" eV, nZ and feK we have 1f(z"—f(#")| < 1/p, where p, satis-
fies (26). The go chosen in this way satisties (27), since otherwise there
would exist a ¢ > ¢, and p < ¢ such that f., ¢ K. Then =z, ¢ Vo Z',
zye ¥, nZ', and by (24),
fp(#a,0)—Fa,n(@o)l = Fanl0) = 1jp

which gives a contradiction.

From (27) immediately follows (25), because the seb {f, | p< g < o}
is finite. We shall show that fo = 0 belongs to ANA, which by (25) contra-
diets the assumptmn that IX is a k-space.

For a compact ZC X and & >0 let us choosé 1fp,<<e. From (23)
it follows that for j>j, holds ZnV,, =@. Take ¢,= po+Jj,- Then
Jaom0 €4 and for z ¢ Z we have 24V, ,, and thus, in accordance with
(24), frp (2) < 1fpo<< . This coneludes the proof of (21).

Lemma 1 implies that X2 is a Lindelof space; otherwise the space N,
which is not a k-space ([3a], Problem 7. J), would be embedded in I* as
a closed subspace. It follows from (21) that there exists a set X,, open-
and-closed in X, which is a Lindelof space, so that X, D X%. The required
decomposition is X = X, v (I\X,).

The remaining implications necessary to conclude the proof of Theo-
rem 2 follow from the fact that K@) — gXoy F™ iz g product of
a space metrizable in a complete manner by a compact space, and hence
it is paracompact and complete in the sense of Gech ([3]), and from the
fact that spaces complete in the sense of Cech are k-spaces ([1], IIL, § 2,
Corollary 1).

ExAMPLE 4. The assumption that X is first countable cannot be
omitted in Theorem 2. The space I4® from Example 2 is a k-space ([9],
Theorem 2.1) but it is neither complete in the sense of Cech nor para-
compact, and A(F) is not locally compact.

I wish to express my gratitude to Professor R. Engel]nng for valu-
able discussions.
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