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Classes of ngeki.nd finite cardinals (*)
by
John Truss (Oxford)

Abstract. We discuss seven possible definitions of “finiteness” of cardinal numbers,
and associate with each definition the class of cardinals “fihite” in that sense. The results
are extensions of those in Levy’s paper “The independence of various definitions of
finiteness” (Fund. Math. 46 (1958), pp. 1-13). We investigate the closure of the classes
under addition, multiplication, unions, and disjoint unions. In the final section we give
a wide variety of possible combinations of inclusions and equalities between the classes.
Also we give an affirmative answer to Tarski’s question “Can there be exactly 2% De-
Jekind finite cardinals?”

§ 1. The object of this paper is to investigate various properties of
seven classes of Dedekind finite cardinals, and to discover what possible
combinations of inclusions and equalities can hold between them. The
starting point is Levy’s paper “The independence of varions definitions
of finiteness” [8]. All but two of the seven classes correspond to definitions
of Levy (which were in turn taken from Tarski [18]), and the other two
arise quite naturally.

The classes are defined in § 2, and some of their elementary pro-
perties given. In § 3 we discuss the closure of the classes under +, X,
unions, disjoint unions, and <, and 2 model is given in which A4, is not
closed under X.In § 4 we show that if any two Dedekind finite cardinals
are comparable, then any infinite set is the digjoint union of two infinite
sets. § B containg five models which establish various possibilities of
strict inclusion and equality between the classes. Various combinations
of these models actually yield thirteen models in which the combination
of strict inclnsion and equality is different. It is shown that there can
be no more than twenty-three possible combinations, nsing the results
of § 2 and § 3. All of the ten unsolved cases involve the following sitnation:

There is an infinite set with no infinite orderable subset, and if
a set X has a countable partition, there is & map from X onto X which
is not 1-1.

(*) This paper is part of the author's Ph. D. thesis at the University of Leeds.
He would like to thank Dr. F. R. Drake and Prof. A. Levy for their supervision, and
the Science Research Council for their financial support.


GUEST


188 J. Truss

We do not know if this is possible, and suspect that it is.

One or two results are proved incidentally which are of interest
apart from the immediate.setting. One of them has been mentioned above,
namely that if any two Dedekind finite cardinals are comparable, then
=, (in the notation of § 2). This is a very small start to answering
Tarski’s question as to whether the comparability of any two members
of 4 implies that o = 4. Another incidental result is a strengthening
of Léuchli’s result [6] that

W: any set of non-empty well-orderable sets has a choice function,

does not imply the ordering principle.

We show that W does not even imply that any infinite set has an
infinite ordered partition, and at the same time avoid any group-theore-
tical complications. (The model is due to Gauntt [3].)

Finally we show that in Halpern-Levy’s model [4] (our 9, of Theo-
rem 5), there are exactly 2% Dedekind finite cardinals, thus answering
affirmatively another gquestion of Tarski(?) (see [17]). We also show
that 9N, and 9%, of Theorem 6 (which are Fraenkel-Mostowski models)
satisfy |4] = 2%, and hence 4 can be well-ordered. In fact it follows easily
that 9, and N, satisfy “any set of cardinals can be well-ordered”.

Most of our notation is standard. If x and y are cardinals, we write
2 <*y to mean that whenever |X| = 2 and |Y| =y, there is a mapping
from @ subset of ¥ onto X. A class @ of cardinals is closed under unions
if whenever |[X|eQ, and & e X—>|£] €@, then || X|Q.Q is closed under
disjoint unions if whenever X is disjointed, |X|eQ, and £eQ—|& €@,
then {|J X} € Q.Q i3 closed under x (- respectively) if whenever =,y ¢Q,
then 2y eQ (x-Ly respectively), and @ is closed under < if whenever
zeQ,y <z, then y Q.

§ 2. The seven classes of Dedekind finite cardinals are as follows.

o = {n: n & finite ordinal}.
(From now on “finite” means “has cardinal in ”.)

Ay = {g: ®=y-+}2—>y or z finite},
4y, = {|X|: any ordered partition of X is finite},
A4y = {|X|: any ordered subset of X is finite},
dy= {w: 5 £" 2},
dy= {z: z+1 &£* 2},
A = {z: 8, & x}.

(*} This question was first brought to our attention by Dr J.E. Rubin. See her

fo‘thmming joint paper with A. L. Rubin: “The cardinality of the set of Dedekind
finite cardinals in Fraenkel-Mostowski models™.
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Of these, 4; and A5 are new, so far as we know, and the others appear
in Levy [8]. The significance of 4 is that it comprises all cardinals which
can be cancelled additively from <*-inequalities. 4, is considered because
of the obvious parallel with 4,, and that 4, comprises just those cardinals
finite in sense II of Levy in shown now. :

LemMA 1. |X]ed,

« any non-empty chain of subsets of X has a maximal member

-~ any non-emply chain of subsets of X has a minimal member.

Proof. The equivalence of the last two is easy.

Suppose | X| e 4,, and let ¢ be any non-empty chain of subsets of X.
For e X let A,={ceC: £ec}.

Define the partition = on X by

&,n are in the same member of med, = 4, .
Let (&) be the member of = containing &z is ordered by
@ <(n ¥ A4,CA,.

Since ¢ is a chain, (=, <) is an ordered partition of X. By definition of
Ay, w is finite. If ¢ = {0}, @ is maximal in C. Otherwise, as C # @, there
is a (&) e such that A, # @. Let (&) be the least such, and let ce 4,.
It is clear that ¢ is a maximal member of C.

Conversely, suppose that any non-empty chain of subsets of X has
a maximal element. Let (z, <) be an ordered partition of X. To show
that it is finite we need only show that < and > are well-orderings. Let P
be a non-empty subset of m, and let ¢ = {{JI: I a proper initial segment
of (P, <)}. Then C is a chain of subsets of X, and is non-empty, as @ ¢ C.
By our hypothesis, 0 has a maximal member. This gives a maximal
proper initial segment of (P,<C), and hence a maximal member of P.

Similarly, by considering final segments, we see that P has a minimal
member.

Levuma 2. @ e 4,27 e 4.

This is due to Kuratowski, and is proved on pages 94, 95 of [18].
Thus 4, comprises just those cardinals finite in sense IIT of Levy. We
should like to have the analogue of this for 4, and A, but suspect that
it ig in fact false (though it holds in all the models considered here).

LeMMA 3. 0 CA4,C4,CA,CA;,CA, 4,CA4,CA.

Proof. Levy showed in [8] Theorem 1 that wCA4,C4,C4,C4,
$0 it remains to show that 4,C 45C 4 and 4,C A;C A. The only point
presenting any difficulty is 4, C 4;.

Suppose that o1 <", |X| ==, and let f map X onto X o {X}.
Let X, = f~®+9({X}). Then every X, is non-empty, as f is “onto”, and
all the X,’s are disjoint and contained in X. Hence % <*X|.
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Lemua 4 (Tarski [9], page 304, 24). If o4y <*z +=2 there are a,b
such that y = a+b, b<*z, and z+a<"a

LEMMA 5. weds o (for all p,g, p <* qoat+p < z49).

Proof. Suppose z € 45, and x+p <*a+ ¢- By Lemma 4 there are a, b
such that p=a-+b, b<*g¢, v+a<*z Since s+1 £*®, a = 0. There-
fore p = b <* ¢, as desired. :

Conversely, if # ¢ 45, 41 <*=, 5o there are p, ¢, namely p=1,
g =20, such that p <*¢ and o+p <*z-+q. . :

LeMMA 6. Let q(X) = the set of all finite sequences of members of X with
distinct entries. q(|X|) = |¢(X)|. If & € 4, 4y respectively, then q(x) €4, A;,
and if » is infinite, q(x) ¢ 4.

Proof. This lemma for 4 is due.to Tarski. See [7], page 225, lines
16-20. Suppose that (4,<) is a well-ordered (ordered respectively) sub-
set of ¢(X), where |X|= 2.

Let 4, = {& ¢ A: & has length n}. Assume the result of Theorem 1 (vi)
below (in whose proof we do not nse this lemma) that 4 and A4, are closed
under X. Then |[X*| ed, (|X" e d; respectively). Therefore each A, is
finite, and 4 can be well-ordered. The set of entries of members of 4 can
be well-ordered by first oceurrence, 50 as |X| e 4, is finite.

Therefore A too is finite, as desired.

If X is infinite, map ¢(X) onto g(X)w {ne} (o ¢ q(X))'thus

(fmfn-‘ja n—1) > (&4y By vy Epg)  H 0 >0,
() = 75 {( ) isthe empty sequence) .

Since X is infinite, for any (&, &, ..., &,,) there is a &, # &, any ¢,
and so the map is “onto”.

Lemma 7. If 4,C A, then 4, =4,.

Proof. Let z e 44, z = |X|, and suppose (w,<) is an ordered partition
of X. Then {z| <* [X|. Since

w &P m, % £ ]
Hence |7| e 4, C 4,, by hypothesis. Now (=, <C) is an ordered subset of .
Therefore x is finite, and z e 4,.

COROLLARY.WIf Ay = A, then 4,= 4,.

The converse of this corollary does not hold, for in Halpern-Levy’s
pm_del ([1], page 136), the ordering principle holds, 80 4, = 4y, = w, any
infinite set has a countable partition, giving A, = o, but there is an
infinite set with no countable subset, 50 o % 4.

] § 3. Closure under various operations. We now investigate the question
of the clogure of the classes under nnions, disjoint unions, +, X, and <.
The positive results are set out in the following theorem.

e ©
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THEOREM 1. (i) AUl of w, 4, 4., ..., 45 are closed under <.

(i) o, dy, 4, are closed under unions.

(ifl) 45, 4 are closed under disjoint unions.

(iv) 4s is closed under +.

(v) 4, is closed under + if and only if w= A,.

(vi) @, dy, Ay, Ay, A arve closed under +, x.

Proof. (i) is obvious in all our cases, but is none the less important.
For example, the class {#: £ < 2a} corresponding to definit on ¥ of Levy
is not necessarily closed under <.

(ii) This is well known for w. Let |X|ed,(4,), and let & e X—|£]
e 4, (4,). Suppose that (=,<C) is an ordered (Wé]l—ordered respectively)
partition of -| J X. For each £¢ X, £C [ X, and we get the induced par-
tition of & m, = {§ » 4A: A emwand & ~ A 5 0}, also ordered (well-ordered).

Since || € 4,(4,), each x, is finite. The finite subsets of an ordered
(well-ordered) set can be ordered (well-ordered). Let <C; order (well-order)
the finite subsets of #. Define the partition ¢ of X by

&, 5 are in the same member of o if for 4 e,

ENnA=0nnd=0.
¢ has the ordering (well-ordering) induced by <.

Since |X|ed,(4,), o is finite. Hence only finitely many members
of = appear, and this means that there are only finitely many of them.

(i) Let X be disjointed, |X| e d;3(4) and &e X—|& e d3(4). Let
(4,<) be an ordered subset of | jX (well-ordered respectively).

For each £e X, let A, = A ~ &, Since |£] € 43(4), A, is finite.

Let B={feX: A, # @}. Then B is ordered by &< n if the first
member of 4, precedes the first member of A, in (4,<). This defines
a linear (well-) ordering of B because X is disjointed. Hence B is finite,
as | X| e dy(4).

Therefore A is also finite, as desired.

(iv) Let @,y e d5. Suppose that (z+y)+p <* (@+¥)+4¢.

By Lemma §, y+p <* y+¢ and p <* g. Hence, again by Lemma 5,
@+ e ds.

(v) If wedy— o, then xt+x¢ 4.

(vi) Follows from (i), (i), and (iii), since x+y < ay. )

Next we have the following negative result, which answers the
remaining closure questions about the classes.

THEOREM 2. (i) If w # 4, 4 is not closed under unions.

(i) If w # 45, 45 is not closed under unions.

(iit) If ZF is-consistent, so is ZF -+ 45 is not closed under X.

Proof. (i) and (ii). By Lemma 6 there is an X such that |X] e 4—4;
{d;— 45 respectively), and so |X|e A—4, (4;— 4, respectively).

2 — Fundamenta Mathematicae LXXXIV
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Let X = |J{Xs: ico}, X; disjont and non-empty. If &e Xy, let
Y,=Xu {i} .

; For ea?cﬁ EeX, | X e d(ds), and |X]| e 4(413). But o C | {¥,: e X}

Hence 4, 4, are not closed under unions. .

(iii) We first prove the following lemma, which Awﬂl be U%sed
in » number of cases where we wish to show that a particnlar cardinal
is in 4;.

LE;[HA 8 If X=X i} where each | Xi| € 44, and |X| ¢ 45,

then there is @ map f from X onto X v {a} (a ¢ X), and an increasing func-

tion n from o to w such that for each ¢,
f—(i+l)({a}) C X -

Proof. As | X| ¢ 4; there is & map g from X onto XK.J {a].». peﬁne 41,
n(i), m(i) in the following way, so that As # @, each i, n is increasing,
m(i) >0, each i.

n(O)’ is the least ¢ such that g~*({e}) » Xi # O,

m(0) =1,

Ay= g"l({a}) N Ay ) )

Otherwise suppose that A¢, n(i), m(i) are defined for < k. Then

I (Ap): >0} ¢45  (use g to show this),
and : .
U X j<nkE—1)}eds (by Theorem 1 (iv)) .

H
o U4y §>03 ¢ U X j<n(E—1)}.

8o for some n >n(k—1), m > 0,
g Ay ) " X £ O .

Let n(k) be the least poésible such #, and for that value of n, m(k) the
least possible m. Let A= g ™ (Az_1) ~ Xngy- " .

Thus Az, n(k), m(k) are all defined, each k, and ¢™*® maps Ax into
A,_, (not necessarily “onto”).

Let By = {£ ¢« A;: there are arbitrarily large n such that for some
neU{As jea},g(n) =& .

Define f on X thus. If &eBg, (&)= g™®(&); f(§) =¢ otherwise.
Then all the required conditions are satisfied, except possibly that f is
“onto”.

Tf & ¢ Bg, each k, then &= f(§), so & eimage 1.

Suppose that & e By, or that § = «, and & ¢ image f. Then for each

€Ay (or 4, it £= a) such that f(n)= & 7 ¢ Bgya-”
That is, for every such e Ay, there is a least %(u) € » such that
Cely{dpie w}—>g"“"(§) # £

iom°®
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Arbitrarily large values of k(u) must appear, by definition of Bj.
Hence 8 <" |4y This is contrary to |Xg..! € 4,.

We now give a Fraenkel-Mostowski model in which 4 is not closed
under X. The ZF consistency result then follows by the Jech-Sochor
Theorem [5], since the statement in question is

&I(XZY,f) (f maps XX Y onto XX Y {Xx Y} and for all ¢
C(X v Yp i gis a mapping from X w ¥ onto X u ¥, then g is 1-1).

We suppose then that we have a model M of FM (= ZF modified
so as to allow the existence of “nrelemente”; one only needs to alter the
axiom of extensionality) in which U, the class of all urelemente, is a set
of cardinal &. We suppose that the axiom of choice holds in 9.

Since U is countable, it may be indexed by I7, the set of all finite
sequences of 0’5 and 1’s, s0 we let U = {u,: ='e IT}. For convenience we
write [ayay ... af] instead of up . ..

Let

V = {u,: @« begins with a 0} and W= {u,: = begins with a 1}.

@ i3 the group of all permutations of U which preserve ¥V, W and the
lengths of the sequences.

Define f: VX W=V X Wu {@} thus

F([0a ], [18]) =@,
fl0xa, ... ai+2]9 8.8, .. Biyel) = ([0ayay ... a;B514], [15: B - Bioial)

and

flay, @) = (my, m)  otherwise .

Thus for members of ¥V x W where each half is of equal length >2,
f deletes the last elements, and interchanges the last but one.

Clearly f maps VX W onto VX W v {@}.

If ¢e @ and & e M, of is defined by transfinite induction on rank &
thus :—of = {on: €&}

For each & we then let

H(E)={oeG: of=¢} and K(f)={oe@: 1]'e§—>ar]=17}_

& is the filter of subgroups of @ generated by {H(u): we U} and H(f).
% is the resulting Fraenkel-Mostowski model. That is to say

EeM if and only if EC R and H(&) e .

That 3 is a model of FM, with membership relation just the restriction
of that on I to N is proved, for example, by Mostowski in [11].
Clearly U,V, W,feMR. Let v=|V|% w= |W|™ Since fe %R, vw ¢4,
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in 9. We show that v (and similarly w) € 45 in N. It follows that 45 is
not closed mnder X in 9.

Since each member of & preserves the lengths of members of 7,
the sequence (Uy, Uyy «) is in 9, where U; is the seb of members of U of
length 4. Of course each Ui is finite.

Suppose that v ¢ 45. By Lemma 8 there is & map g in % from ¥V onto
¥ v {0}, and an increasing map n: 0= such that for each i, every
member of f~+)({@}) has length n(i).

Since g % there is a finite 4 C U) such that

H(g)D H(f) ~E(4).

Tet i be the least integer > 0 such that every member of A has length <.
Let g(a) = B, where length o=k, length g=7j, and k>j>i.

Then if o ¢ H(g) n H(a), 8= g(a) = g(oa) = og(a) = of. This shows
that H(g) ~ H(a) C H(f), so

E(A)nH(f) ~H(a) CH(p) .

Mo obtain the desired contradiction, we find a o€ H(f) which fixes all
members of ¥ of length # §, all members of W of length <1, and moves
every member of ¥ of length j.

Such a ¢ will be in K(4) ~ H(f) » H(a) but not in H(f). Let

o[0y; 7z - pia] = [0p1%2 Vimal—¥jls
O[16,85 e 8] = [16,0, ... 6301 — 87185 6), i 1 >j—1,

and ¢ fix everything else. .

Then o fixes lengths of sequences, and ¥V, W, so lies in &. ¢ also fixes
every member of V' of length #j and every member of W of length <4
(as < j), and moves every member of V of length j. )

Tt remains to show that o < H(f). This is the same as saying that
flom) = of (=), each me VX W.

Let &= (m, m). If m and m, have different lengths, f(=)= =, and
o7, om, also have different lenths, so f(on) = aw = of (n).

Suppose therefore that they have equal lengths, I+1. Let

7y = [0p17; --- ?’;]: 7y = 10105 ... &;] -

(I) 141 < j. Then ¢ fixes = and f(z), so of(n) = f(a) = f(on).
(D) 14+1=j. f(z) = (0972 .- ¥j-s0;-2]s [1‘515.2 o B5gy;0]) and as
j—-1<j, of(x) =J(n). '

o = ([0y,9; ... 'Vy‘—21'“ ?’;f-1]s [16,0; ... 51‘—1]) )

©
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and so

flom) = (07195 ... 7’7'_35;_2], [16,%5 ... 67‘—377——2]) = gf(7) .
(ITT) 141 = j£1.
F(@) = (09,75 v 75-20;_3Ts [16,6; ... 6;_0751])
and

s of (@) = ([07272 - g 1= 0; 1]y [18:85 .. 85_57;4]) -

#om) = F([0p172 - 77ly [1035 ... 1—5;_,0,)

= ([0y, 75 ... Vj—ol— 67‘-—1]: [16,y5 ... 57‘—277“1]) = of (7).
(IV) 141 >j+1.
Flm) = [0y, 75 - ¥ip 64 ], [16,85 ... 835711 ])
and
af () = ([0p1¥s . Y12 8131, [16,0; .. 1— 0jq e S0 710])-
Thus
flom) = F([0p17s . 7]y [16,65...1— Ojq - 67))
= ([0y172 v V12 0pidy [16,05...1— 5;‘—1 e 0oy 4]) = of () -
To obtain the ZF consistency result as stated we use the Jech-Sochor
Theorem [5], as mentioned above. Pincus [14] 2B7 could also be used.
§ 4. Now suppose that | X| € 4,— w. We define the 2-valued function u,
from P(X™) to {0, 1}, by induction on n.
n=20 w(D)= 0,
o w{(MH=1 (() is the empty sequence).
n+1 Unia(A) =0 if {&eX: py(d,) = 1} is finite,
finy(A) =1  otherwise,
where 4, = {neX™ (& nnedl.
Let X, = {(507 Sy ooy 5n—1) e X" &= 51}
The proof of the following lemma is very simple, and is omitted.

LEMMA 9. uy is a finitely additive measure on X*, vanishing on singletons
when n >0, and satisfying pn(X™) =1, pn(Xy) = 0.
Let ¢ be a permutation of {0,1,..,n—1} If ACX" we let
A, ={&: ted} - where (&, &, ey Eni)e = (Eo0y £ty ooy Eatn—ny) -
LeMMA 10. For any A C X" and permutation o, un(4) = ua(4,).

Sketch of Proof. Firstly we may suppose that o is a transposition
of adjacent elements, as such transpositions generate the symmetric
group. One performs the proof in three stages, corresponding respectively
to the paossibilities n =2, o= (01); =2, o= (01); o= (¢ i41).


GUEST


196 J. Truss

TarorEM 3. If X is infinile and f s a function on [X]" such that
@ # f(4) C 4, f(4) # 4, for each A [XT", then | X| ¢ 4.
Proof. Suppose |X|ed,. Then un can be defined. Let
0= {(&o) Eus veer Ena)? i all distinet, and for some @< n,
{En; E]: ey Ei—-l} = f({Em 617 ey En—l})} .

Then un(Copr) = #a(C0) by Lemma 10. Tt is clear that ¢~ Cpy =9
as i # 0. Hence pn(Cop—y) = un(0)= 0. .
Let X, = {(£, &1y --rs Eny): Tor some i #§, &= &} By Lemmas 9
and 10,
X)) = pal U {(Xn)a 0 a'pe}'muta,tion of n})=0.
Therefore
(X" = un{{J {C,: ¢ & permutation of n})+ palXp)
=040=0, a contradiction .

COROLLARY. If for some n >1, [XI" has a choice function, then X is
finite or | X| ¢ 4.

Temya. 11. If any two members of 4 are comparable, and |e(X)| e 4,
then e(X)—{@) has a choice function, where e(X)= {ACX: A finile}.

Proof. Let eX(X)={(4,n): 4 ee(X), n< |4]1}.6%(X) is designed to be
the same “size” as ¢(X) (the set of finite 1-1 sequences of members of X;
see Lemma 6) at each stage. For this reason we put in |4|! copies of each 4
corresponding to the |A|! different orderings of A. Tt is easily seen that
[e(X)] e A~>|e*(X)] e 4. i

By the comparability of any two members of 4,

(X)) < g} or  jg(X)] < [e"(X)] -
Let f map ¢*(X) 1-1 into ¢(X) (or vice versa), and let 4 e e(X). We show

how to choose effectively in terms of f a BD A such that f maps e*(B)

1-1 onto g(B) (or vice versa), and B is finite.

Let 4= A.4,,, is the union of 4, and {5: £ is the set of entries
of a member of f"/(¢*(4n))}, or {&: for some i, (£,14) ef"(q(An)} it f goes
the other way round.

As je(X)| ed, 4, = 4, for some n, and this is our B. f is then
1-1 from ¢*(B) into ¢(B) (or vice versa), and as |€*(B)| == |¢(B)| it is
also “onto”.

Thus by taking f' in place of f in the second case, we¢ have an
effectively determined finite BD A, and a 1-1 map f from ¢*(B) onto ¢(B).
‘We show that when 4 # @ this gives an effectively determined g(4) ¢ 4,
which is what is required.
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Let C be the closure of {(4,0)} under the operations

(i) it (&,1) e C, s0 is (&,7), any j<< |&]! and

(il) if (£,4) € G, P(n) X {0} C € where 7 is the set of entries of ]‘((E, i)).

It is clear that € can be effectively ordered, and that C C ¢%(B).
Also f maps € 1-1 onto U {g(n): (1, 0) e C}. g(A) is the first entry of the
first member of ¢(4) in the ordering of the image of €. Thus g is a choice
function for ¢(X)— {0}, as desired.

COROLLARY. If any two members of A are comparable, then o = 4,.
Proof. Use Theorem 3 and Lemma 11.

We mention another way in whieh this corollary can be derived,
without giving details. First one proves the following.

If any two members of 4 are comparable, and |X| e 4,, X infinite,
there is & permutation of X moving infinitely many points.

To derive the corollary from this, suppose X is infinite, |[X]e 4,.
Then |X| € 4,, 80 there i3 a permutation ¢ of X moving infinitely many
points. Since |X|e 4, each eycle of X under ¢ is finite. There are thus
infinitely many finite cycles with at least two members. Let ¥ be a sub-

ot of X which chooses a member from each such cycle (using Lemma 11).
Then ¥ and X—Y are infinite disjoint subsets of X, contrary to |X| e 4;.

It seems likely that an argument along the lines of Theorem 3, using
Temma 8, will show that if e 4,, e(x) e ;. (e(X) is the set of finite
subsets of X.) At present the best we have is the following.

THEOREM 4. If # e d,— w, e(x) e dy—4,.

Proof. Let @ ¢ |X|. Of course e(z) ¢ 4,, as e(X)= | J{[XI" new}
Suppose (4, <) is an infinite ordered subset of ¢(X). Then {J 4 is infinite.

For £ e | 4, let n(&) be the least n such that for some Be 4, £ B
and |B| = n. As zed,, n(§) is bounded for £e 4. Thus for some #,
and some infinite BC A, BC[X]". Hence X™ has an infinite ordered
partition, as it can be mapped onto [X]*. This is contrary to Theorem 1
{vi) that 4, is closed under X.

§ 5. Five models. The models we use in this section are already kuown;
but we shall be concerned with properties of them not previously studied.
For example it was not known before that in three of them |4] = 2R, R is
due to Halpern and Levy ([1], page 136), 3%, and M, are due to Mostowski
([10] and [11] respectively), and %, is due to Gauntt [3]. :; is only = slight
modification of Levy’s model ', [8] page 11. When the model wé are
using contains urelemente, we appeal to Pincus [14] 2B7 to give the
corresponding ZF result.

«Qombinations” of the models give all but ten of the possible combi-
nations of equality and strict inclusion in Lemma 3 (subject to the re-
strictions of § 2 and § 3). For example, o = 4, = ... = 4 0ccurs whenever
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we have DC. To obtain & model for = A, % Ay # Ay % As #+ 4, 4y # 4
# 4, combine the methods of (i), (iii), and (iv).

TarorEM 5. If ZF is consistent, then so are each of the following

) ZFto=d4,="14=44 # A # A, Ay = 45 # 4,

(ii) ZR+o=A4,=M =4, # Ag # A, dy # 4y =4,

(jil) ZF4+o=d,= 4y # 4, = A # A, dy= 43 # 4,

(iv) ZR+ =4, # dy= 4 # 4 # A, 4y, # A3= 4,

(v) ZF o # 4y # dy= 44 # 45 # 4, 4, # 4y=A.

Proof. N, is Halpern and Levy’s model, defined on page 136 of [1].
Tt is obtained from the ground model M (a countable transitive model
of ZFC+ GCH) by adjoining a set b of generic reals, @i, € w, but not
their indexing by o.

%, is the following Fraenkel-Mostowski model. We use the same .

notation for M models as in § 3. U= {ui: e, €2}, Us= {Uy, Uy}
@ is the group of all permutations of U which fix each U;. § is the
filter of subgroups of & generated by {H(u): we U}. This model was
studied in [19]. :

9, is Mostowski’s model of [11], used by Levy in [8]. U= {u;: ¢ < 0},
where @ is the set of rational numbers. @ is the group of all orderpreserving
permutations of U, and § is generated by {H(u): we U}

9t, ses & combination of the Fraenkel-Mostowski and Cohen methods.
Tet T be an infinite set of urelemente and F a generic choice function
for domain F= {4 C U: 2 < |4] < x}. (In fact for o= 4, it would be
enough to ensure that AC, holds in %, some finite n > 2, by Theorem 3;
however we wish to prove rather more about 9, than what is stated in
Theorem 5 (iv).) More precisely, & condition is & function p from a finite
subset of domain F into U such that p(4) e A, each A e domain p. Con-
ditions are partially ordered by inclusion, § is & generic filter on the set
of conditions, and F= |J§F. M[F] is the Cohen extension of I, and N,
is the submodel of MM[F] consisting of all its members which are hereditarily
definable over v U v {F}. For this approach to forcing, see Shoen-
field [16], and for ordinal definability, see Myhill and Scott [12].

For N, U= {us: i« ©}. & is the group of permutations of U which
only move finitely many points, and § is generated by {H(u): u e U}.

 The restrictions given to us by § 2 and § 3 are these:

If o # 4;, then 4, # 4, (Theorem 1, (v) and (vi)).

If w # 4, then 4; # 4 (Lemma 6).

If w # 4,, then 4, # 4; (Lemma 6).

It A, = 4, then 4,= 4, (corollary to Lemma 7).

It is easily checked that these allow only twenty-three combinations
of eqnality and inequality in Lemma 3. We make no attempt here to
discuss the relationship between 4, and 4,, 4;, though Lemmas 6 and 7
give a partial answer.
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These restrictions leave us with only the following to prove in
Theorem 5:

%lkw:A,;?éAs, A2=As,
Mybow=4d,#dy, b= 4,

o b=y # 4, = 45,
NuFw=4d # 4y, 4, %# 45, dy= 4,
mﬁi:a)7éAI3A45éA5,A3= 4.

When the ordering principle holds, we clearly have w= 4,. (See
Levy [8] Theorem 3.) Hence o= A; holds in %, and %,. Levy proves
that w # 4, in Ry, [8], Theorem 4.

Tt is known that in M, any set can be put in 1-1 correspondence with
a subset of e(b) X x, some ordinal », and hence with a set of sets of ordinals
(Cohen [1], page 139). So if X N, is infinite, X has a countable partition
(which is in fact effectively determined by this 1-1 correspondence). This
gshows that w= 4, in ;. .

We show now that 4, # 4; in %,. Suppose |b] ¢ 4;. -Then there is
a function f in 9, from b onto b v {0}. Let p be a condition in § forcing
“f is a function”. f must move infinitely many points, so there are i, j
such that f(a:) = a;, © # J, and a; is not ihvolved in the definition of f.

Let ¢ be a condition (in the generic filter) extending p and forcing
flai) =.a;. Then there is a permutation ¢ of w such that o fixes each
% such that &k = i or ax is involved in the definition of f, but not j, and
such that ¢ is compatible with og. So ¢ og forces f(a;) = a; and f(as)
= a,;, and this contradicts g forces f a function.

Hence |b| e 4;— 4, in 9, so N, F 4, # 4s.

Now to show the same for R,. Certainly |U|¢4,. Suppose that
|U| ¢ 45. Then by Lemma 8, there is a function f from U onto U v {3},
a finite # such that H(f) D K (Vn) where Vy = {ui: ¢ <n}, and 4,7, &, 1
with i,% >, i # %k and f(uy) = um. Let ¢ be the permutation of U
interchanging just 1, and w,. Then o K(Va) as k >n, so of =f, and
olyy = Ygg a8 1 # k. ’

Therefore oum = af (%) = flowy) = fluy) = Uz, 2 contradiction. So
|U| e dg— 4, and R, F 4, # 4.

Now let X ¢ 9, be infinite. Let f(£) = the least n e » such that H(g)
D K (Vy), for £ X. If the image of f is finite, let < be a well-ordering
of X in 9%, and » an upper bound for f(£), £ ¢ X. Then if 0 ¢ K (V), o fixes
each £ e X, and hence the well-ordering of X. Therefore 8, < | X|.

If the image of f is infinite, to show that &, <* | X| it is enough to
gshow that feN,. But this follows from the fact that H(£)D K (Va) if
and only if H(cf)D K(Vy), any o. (We omit the simple proof.)

Hence N, F o= 4,.
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Now we show that in Ry and N, 4= Ag. In fact we show rather_
more, namely that any ordered set can be Weﬂ—orde?e(?l. (This also 1.101c1s
in %,; however the proof is rather different there as it is not a “stra,lghlt”
TAL model). The important point here is that each member of @ has finite
order (for 9, this is 1 or 2; for M this is one reason why we took only
permutations of U moving finitely many points). “Any ordered set can
pe well-ordered” implies the axiom of choice in ZF (see Rubin and Rubin
[15] page 77), but not in M.

Tet (X,<) be an ordered set. Then for some H ¢,

H(X,<)DH.

Define ~ on X by &~y if for some o e H, of = 7. Let X, be a ~ -class
and & e X,, and suppose that H(&) D H. Then there is a ¢ e H—H (&)
and as &, # &, 0y < & OF &< 0&,. As every member of @ has finite
order, o" = identity, some n ¢ w. Also o ¢ H, 5o o preserves <<. Therefore

Eo>°’§u>02§o>,..>o-"5°= &
or
£y < 0By < < . < TG =&y

each of which is impossible.

Therefore H (&) D H. Now by definition of ~, X,= {0&: o H}.
But of, = &, all o ¢ H. Therefore | Xy = 1. Thus each ~-class has just
one member. Let <’ well-order X in 9t. Then every member of H preserves
every member of X, so also <’. Thus X can be well-ordered in 9, (or N;).

Now we move on to 3,. By Gauntt [3] Lemma 4 we have that for
each X e 9, there is a unique minimal finite $(X)C U such that X is
ordinal definable over Mw §(X)w {F} (and is contained in any other
such subset of U). The function s is definable in 9, and moreover for
any finite 4 C U, the class of all X e %, such that s(X) = A has a natural
well-ordering, w(A4), say, in 9, given by the minimal triple (@, a, 1),
where @ is & formula defining X in terms of the ath member of M and F
(if i =0), or mot with F (if {=1), and A.

We are now able to show that %, satisfies W: any set of non-empty
well-orderable sets has a choice function. A similar proof shows that it
holds in 9, and 9, (see Liuchli [6] pages 33, 35), but we do not need
that here.

Let X be a set of non-empty well-orderable sets in 9,, and let ¥ e X.
As Y can be well-ordered in 9, there is a 1-1 map in %, from Y into On
(= the class of all ordinals). Hence for some finite 4 C U, every member
of Y is ordinal definable over M w A w {F}. Therefore | J{s(&): e Y} is
finite. Liet it be A. Then F defines an ordering of P(4). Let B be the first
member of P(4) in this ordering such that for some £e¢ Y, s(&) = B,
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and let g(¥) be the first member of ¥ ~{Z: 8(Z) = B} in w(B). g is
defined in terms of #, and so lies in %,.

W implies as a very special case AC_, (or indeed AC, ete.) and by
the corollary to Theorem 3, w= 4, in N,.

Now to show that o # 4, in N, we show that |U] e d,. Let (V, <)
be an infinite ordered partition of U in N,. Then for some condition p in §,
p forces “< is a linear ordering”. Let 4 be the set of all urelemente in-
volved in p and in s((V, <)). Define ~ on U-—A by u~v if whenever
O+ BCAF(Bu{u})=uwandF(Bu{v}) =vorF(Bu {u})=F(Buv{v}).

~ is an equivalence relation and there are only finitely many equiva-
lence classes. Since V is infinite, there are u,, 4, ¢ U— A, such that the
~-class of u; is infinite, u, ~u,, and if 4, ev; €V, Use VeV, v, < 0.
(In fact every ~-class is infinite but we do not need that here.)

Let g=>p,qeF, g force v, < v,. Let B be finite, B~ A = @, and be
such that every member of U oceurring in g or s(vy), s(ny), 8(u;), s(u,) is
in A v B, and #,;, 4, € B.

Let B = {t;, 1y, Wy, Wy, ..., Wy} Since the ~ -class of u, is infinite,
there is & g € U— (A v B) such that u; ~ug. Leb 8, 855 o5 Sny bty fay ooy B
be distinet members of U— (4 v B u {ug}).

Let

By == {tiy, Uy, S1y Sy ooy $n}  aNd  By= {Ug, Uy, ty; by ooy n}
o, 7, permutations of U are defined thus:
OUy == Uy, OUy = Ugy TUg= Uy, OWs= 8¢, 051 = Wi,
TUy = Uyy TUy == Ugy Tly = Uy, TWi= Ly, Thi= Wi, -

and ¢ and T are the identity on points not mentioned.

We observe that oB = B,, 7B = B,, and ¢, 7 both fix A pointwise.

We wish to show that gu ogvw 7q is a condition. For this we show
that if X edomain ¢~ domain ag, ¢(X)= (og)(X), and similarly for
g, tq and oq, 1q.

By the choice of -4 and B, domain qC P(A v B). Hence domain
0g C P(A v By) and domain 7qC P(4 v B,).

Thus if X e domaing ~ domainag,

XCAUB N(AUB)=A4v {u}.

It ¢(X)=1, F(X)=u as ¢CF, s0 F(X ~A) o {u)) = as
Uy ~ Uy Therefore

(X ~4)o {u},w)eF and (X~ A) w {ug}, up) € oF,

as
c(XnA)=XnA and oU=1uU.
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This just says that (X, u,) e oF. Since og C oF, X e domain o¢, and
oF is a function,

(o) (X) = (oF)(X) = 1, = ¢(X), as desired.

Similarly if ¢(X) e 4.

Hence g v og is a condition. In a similar way we get that g u 1q,
aq v q are conditions, and hence that g u ogw 7¢ is a condition.

Since ¢ forees v; < %,, we have oq forces v, < v, and g forces v, << v,
where %, ¢, ¢V, because o,7 fix 4 and hence << and V. Therefore
g v og v zq forees v, << v, and v, << v; and v; << v, which contradicts ¢ = p
and p forees < to be a linear ordering.

Hence U has no infinite ordered partition in Ri,, and so |U| € 4,— w.
‘We have now incidentally proved the following, which is a strengthening
of Lauchli [6]. )

TEEOREM 6. If ZF s consistent, then so is ZF+W: any set of non-
empty well-orderable sets has a choice function - there is an infinite set
with no infinite ordered partition.

To obtain the ZF consistency result as stated here from our proof
using urelemente, we use Pincus [14], 4B2. Alternatively a direct proof
is not hard. One adds an infinite set of infinite sets of generic reals, (See
Gauntt [3].)

We are now left with the following to prove from Theorem 5.

msl:Afg:Asy
m4FA49éA57 dy= 4,
Nk ow s dy, 4y # 4.

Firstly to show that 4;= 4 in %,. Let (X, <) be an infinite ordered
set in 9. If for some finite subset 4 of U, (£ ¢ X: s(£) = A} is infinite,
this provides a countable subset of X by w(4). If for each finite
ACU,{&e«X: 3{£) = A} is finite, then by W in %, we may suppose that
each [{£eX: s(§) = 4}| is <1 (replacing X by an infinite subset). This
amounts to supposing X C ¢(T). But by Theorem 4 and |U]| e 4,, X can-
not be ordered in N, a contradiction.

Now suppose that ¥ is an infinite subset of U in 9%,. Then for some
finite AC U, H(V)D K(4). As V is infinite, there i some wu; e V— A.
Let u; be any other member of U— 4. Then o, the permutation of U
which interchanges u; and uy, lies in K (4), s0 oV = V. Therefore u; e V.
.Th}zs U-7V is finite. This shows that .U is not the disjoint union of two
infinite sets in My, ie. that |U] ¢ 4,— w. Therefore o # 4, in N;.

‘We next show that |e(T)| e 4,— 4, in N;. Certainly ¢(T) has a count-
able partition, as e(U)= UA{IUT new). Suppose that |e(T)| ¢ 4.
Then by Lemma 8 there is a map f from ¢(U) onto ¢(T) u {1} (L¢e(D))
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and an increasing function n: w—>w such that for each 4, fG*9({1})
C Uy,

As f e, for some finite A C U, H(f) D K(4). For some i, n(i)
> |A|. So there is an X « ¢(U) satisfying X ¢ 4 and X ¢ |J {f~¢({1}):
i e w}, and with respect to this, |X ~ 4] is maximal. (We may assume
maximality becaunse 4 is finite.)

Let f(¥Y)= X. Then as = is an increasing function,

| Y] =n(i+1) > (i) = |X]| .

Case L. X—(Y v A) # 0. Let ue X— (Y U A). Let ' be a member
of T—(X v Y¥Yuv ) (X ¥udis finite.) Then the permutation (uu')
is in K(4), and hence also in H(f).

Since (¥, X)ef, (¢¥,0X)<f, where ¢ is this permutation. But
o¥ =Y as neither  nor »' is in ¥, and oX £ X as u e X but «' ¢ X.
This contradicts f a fonction.

Case II. XCY u A. Then X—AC Y—A. By the maximality of
| X nA], | X nA|>|Y ~ A|. Therefore

[X—A|l= X~ X ~n A< |X]— [T n A< |T|— Y n 4| = |T-4].
Since X ¢ 4, we get
O#X—~ACY—~-A and X—A4 % Y~A"

Let ue X—A4, v e (¥Y—A4)—X, and let o= (uu’). Then » and «’
are both in'Y, but v e X and u' ¢ X.

As in case I this gives a contradiction.

Therefore A # A5 in N;.

There remain now to prove, 4, = A; in N, and 4, # 4; in N,. Let
1X| ¢ 4, in ;. Then X = |J{Xi: € 0}, X; disjoint, and the sequence
{(X3,1): % € 0} in . This means that for some finite A C U, H(X:) D K(4),
each iew.

~ ig defined on X; by &~y if for.some o e K(A4), o =17. Let @
# ¥Y;CX;, ¥; a ~-class, each iew. Then H(Y;)D K(A), each 4, s0
U {¥:: i ¢ 0} ¢ M. This amounts to supposing, withont loss of generality,
that each X; is a ~ -class. Let & ¢ X;. Then by Mostowski [11] page 239
we know that there is a unique B;, B; finite and contained in U, B; »
~ A =@, such that H (&) ~n K(4) = K (B;w A), eachi e w. Let Ty, I, ..., In
be the open intervals of U under A. Then if » C U—A4 and |5~ I
= |B; n 1], each j < n, there is a ¢ e K(A4) mapping B; 1-1 onto ;.

Therefore if we map X;= {o&: oeK(A)} to {oBy: oceK(A)} by
0&—>0B; the map is 1-1 and “onto”, because H (&) n K{4) = K(By v 4),
it lies in 9N, (easily checked), and its image is

{9 CU—A: |5 nIj| = |Bin I}, each j<n}.
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Thus we may suppose that X; is of the form
{7 C U—A: |~ If = my(i)}

for some (n-+1)-tuple (mo(i), my(4), ..., Ma(4)).

By discarding some of the X’s, (but retaining infinitely many)
we may suppose that 7 < j—-mg(l) < mo(j). (Comsider the two cases
mg(i) bounded and unbounded), and similarly for the other co-ordinates
one by one. Thus we may suppose that for each k<<, i< j—mu(d)
< mg(]).

We are now able to map X onto X v {1} (1 ¢ X).

It ne EXi, i=10, let f(m) =1.If 5 e Xy, 1>0, let f(ﬂi) = {; where
£ C U— A and for each j < n, {y ~ I; are the first my(¢—1) members of
nin I; in the ordering of U.

It is then easily checked that fe %, and f is “onto”, as desired.
Hence A, = 4z in Ry.

° In fact by pushing this proof a little further one can show that in R,
any eardinal  can be written as y-2, where y ¢ 4,, and 22 <*z.

Finally we show that in R,, 4, # 4;. Let % ¢ U, and for each n ¢ o,

Xy={Ee[U—{u}]": P({u} v §) &, and it @ # 4 # & ACE, then
F({u}vw A)=u}.

Fach X, is non-empty because no condition can force it to be empty.
Thus if X = | {Xn: # e}, 8 <* X[

We show that | X| e 4; in R%,. If not there is a function f: XX {1}
(1 ¢ X), “onto”, as given by Lemma 8. (Bach |X,| ¢ 4, by Theorem 1 (vi).)

Then for some p «{, p forces “f is a function”. Let 4 be a finite
snbset of U containing u, s(f), and any members of U involved in p.
By choice of f there are £, nC U such that 0 < || << |&], (&, ) e f*, some
>0, nnA=EnA.

Let g &, ¢ > p, and ¢ force (&, ) ef™ If 4 C &, by definition of X,,
and since @ # n # & F({u} v n) = u. However this is contrary to 5 ¢ X.
Therefore 7 ¢ &.

Let v e y—&, and let B be the set of all members. of U involved in
A, g5 let we U—B. Since nnAd=E6nAd,v¢ A,

If ¢ is the permutation of U interchanging » and w, then

og forces (o€, on) € of™
But ¢ fixes s(f), & pointwise, so

oq forces (&, on) e f™.
It is easily seen that ¢ and oq are compatible.
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Hence qu og forces (&, 7) ef* and (&, o) e f* and this contradicts
n # on,q > p, and p forces “f is a function”.

‘We conclude by answering a question of Tarski’s as to whether
14] = 2% is possible. (See [17].)

THEOREM 7. Hach of Ny, My, and N (of Theorem 5) satisfies |4] = 2%
and there is a set of 2% mutually incomparable members of A.

COROLLARY. If ZF is consistent, so are ZR 4 |A] = 28128 j5 g orell-
ordered cardinal - there is a set of 2% mutually incomparable members of 4,
and ZF+ 4] = 2801 2% s not o well-ordered cardinal + there is a sel of
9% mautually incomparable members of A.

Proof. The first part of the corollary follows from the fact that Re
(or 9M;) satisfies the desired statement (remember that in any Fraenkel-
Mostowski model, the real numbers can be well-ordered), by use of Pincus
[14] 2B7. (This fact was pointed out to us by Dr Pincus).

Firstly we show that |4 < 2% in %,. Let M’ be the extension of
9 formed by adding a sequence {(as,7): i€ w} of generic reals to I,
where we suppose that Mtk CH. (i.e. 2% = ;). Cohen shows on page 125
of [1] that M’k CH. N, may be viewed as a submodel of M'. In fact
EeRoECH, and £ is IM-definable over {a;: iew}u {b} where
b= {a;: ieow}

Since w, and w, are unchanged in the extension M->IN’ (see Cohen [1],
pages 131-132), they are the same in 9 too.

Now any set in 9, can be put into 1-1 correspondence in I, with
a subset of e(b) X %, some ordinal » (by Cohen [1] page 139; remember
that e(b) is the set of finite subsets of b). Hence any Dedekind finite set
in 9%, can be put into 1-1 correspondence with a subset of e(b) X . (This
shows by the way, that A is a set; in general it may be a proper class.)
So 4| <* gle®xel,

Suppose that 8, < |4] in 9. Then s, <* 2@l However #; C M,
ot = o, and |e(b) X o] =& in V. So this violates CH in M.

Therefore 8, £ 4] in 9.

Since 4 is a set there is a 1-1 mapping f from 4 into P(w) X %, some
ordinal ». We may suppose that for each 4 € P(w), f”4 n ({4} X %) is an
initial segment of {4}x x. Let its order-type be au:

Then, as f is 1-1, a4 can be mapped 1-I into A. Since s, £ |4,
a4 < w,. The same argument that was used to show that s, & |4] in %
shows that %, % 2% in 9. Hence the values of a4 for A e P(w) arve
bounded below w,.

This means that 4] < 2%-x, = 2%. (Because % < 2% holds in 3t.)

Now let 4 be a set of 2% “glmost disjoint” infinite subsets of w in R,
ie. A, Ages, A, # A,—~A; A, finite. For 4 e, let bs={aebh:
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ACa}. Then {|bal: 4 ¢ A} I8 a set of 2% mutually incomparable members
of A. The details are omitted.

We now turn to 9%, and %;. In each case every member of the filter §
has finite index in @, so § is countable. Let § = {Gq, Gy, Gy oo}

For o, let vp = (Ugos Yors Yoy %11y »+y Ynos u,,) and for N let v,
= (tlgy Ugy Ugy oony Up—)- ’

Then for each H e, H D H (va), some n € w. Liet n; = the least n such
that GO H(va).

Let

wi={ov,: 0@} and XK= {ows o e H(va)}.

Firstly H(w;) = @;. For certainly & C H (w;). Conversgely, if o e H (wy),
¥, € w; shows that v ew;. That is, for some v e Gy, ov, = v, This
gives 710 € H(v,), and as H(»,) C G, by definition of n, oe TG = G4.
This shows that H(w;) = G, as desired.

Now let X e 9, (9 respectively), |X|e 4. Then for some n, H(X)
D H(vy). Let X be the set of H(w,)-orbits of X, and let X = {X;: a<u}
e a well-ordering of X in M. Since H (X,) D H (), each a, this well-ordering
is also in M, (or 9;). Pick &, e X,, each a (choice in I), and for each a
let i, be the unigue ie o such that H(E,) » H(v) = Gs.

Let Ay = {a < »: i, = i}. We define the map f: X—{J {ws X X;: 1 € w}
thus, where ;= |44} (x; an initial ordinal, as 4; is a set of ordinals, so
can be well-ordered), where X,,= X,;x {i}; this ensures disjointness
of the X;. '

Let fi map A; 1-1 onto ;.

I &eX, &e X, for a unique ordinal a << x, since X i3 a partition of X.
As X, is an H(v,)-orbit, there is a o € H(v;) such that &= of,. We let
&) = (fila), oweg, 7).

‘We have to check that f is 1-1, “onto”, and is in 9, (or ;).

1. Well-defined and 1-1.

of, =18, 0, 1e Hm)ost 0 e H(E) n H(wm) = G,
<7710 ¢ H (wi,) <> 0wy, = TWi,, .

2. “Onto”. This follows from the definition of X,;, and the fact
that each X, is an H(w,)-orbit. ]
3. f e (or Ny). In fact H(f) D H(v). For if v e H(ry), and of, ¢ X,,

Tf("'é‘a)’z T(fiu(a)f Wiy ia) = (fia(a)y TOWiyy ia) = f(voé,).

Tk;ms any set X in 9, () can be pub in 1-1 correspondence in M, (M)
with a set of the form {J {#: X Xy 4 ¢ w}, for some n, and sequence »; of
well-ordered cardinals.

Now we supposed that X was Dedekind finite. Hence each x; is finite.
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Thus if we map o X w® by g, thus:
9((n, ) = 1UAF() X Xyt i€ w}]

we certainly have 4 C g"(w X 0®), (and in fact =).

We now show that ge 0, (or %N;). In fact H(g) = G To show this
it is enough that |oX]|= |X|, any ce @, X e N, (N;). (This actually
shows that any set of cardinals can be well-ordered.)

For N, we show that H(o}X)D H(X) and for N;, H(c}X)D H(X) n
~ H(vn), where 7 is the least integer such that o fixes all u, with m > n.

For v e H(X) (H(X) ~ H(w,) respectively), = commutes with o, so

T(o}X) = 7{(§, 08): £ e X} = {(v, T0B): £ X}
= {(z&, o18): £ e X}
= {(z&, ov€): € X} as TeH(X)
={(§,08): EcX}=0}X.

Therefore |4] <* 2%. Since 2% is a well-ordered cardinal, we have |4] < 2%,
Finally to show that in R, and R there is a set of 2% mutually in-
comparable members of 4, let £ again be a set of 2% almost disjoint in-
finite subsets of w.
Then {|X4|: A € A} is a set of 2% mutually incomparable members
of 4, where X, = {J{X;: ieA}.
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iom®

O Teopeme Bueropuca B KaTeropHs roMoTOIHit
¥ opmoi mpoGreme Bopcyxa

C. Borarerii (Mocksa)

AGcrpakT. Paccmarpusarorest orofpakenus (¥) METDHSYEMBIX KOMIAKTOB, V KOTOPBIX
f0JHBIE IPOOGPa3h! TOUCK ANIPOKCHMATHEHO CBS3HLI B HeKOTOPOit pasMeprocTy m [7]. B wacr-
HOCTH, IOKA3bIBACTCA aHANOT Teopem Bmeropuca [23] m Cwmeiina [22]: ecmu mya oroGpamerms
fi X»Y xommaxra X ¢LO™ ma xommaxr ¥ mpoobpassr f(y) ¢ AC™ s mcex y ¢ ¥, 10
¥ ¢ LO™ u umpymmpoBaHHOE oTOGpAXKEHHE fa: [Z,X] —[Z, ¥] (xnaccos [Z, X] romoron-
HBIX 0TOGparkeRMii) GHEKTUBHO, KaK TOMsKO dim Z < m. D10 mozsonser JaTh YaCTHYHEIHA OTBET
Ha opsry npofxemy K. Bopcyka [5]: ecmu mua orobpaskerust f: X — ¥ KOHEUHOMEDHOTO KOM-
naxra X Ha KOHewHOMEpHBIH KommakT ¥ mpoobpassl f'(y) ¢ FAR mus Beex ye¥, o ShX =
= Sh Y. Kpome aroro, B orser Ha Bompoc K. Bopcyxa [7] moxasmiBaercst, ¥To DyERaMEHTATE~
Hble 86COJIOTHBIE PETPAKTHI 3TO B TOWHOCTH HONBMMKEBIC KOMIAKTBI, KOTODBIE ANIDOKCHMA-
THBHO CBA3HEI BO BCEX Pa3MEPHOCTAX.

Iycrs X m Y KOMIIAKTHBIE METpHUYECKHe IIDOCTPAHCTBA M IyCIh OTOGpa-
wemne f: X—Y sapnserca ma. Teopema Bmeropuca (xax oma Gbuia Joxasama
Bueropucom [23]) romopur, uro ecmm A BeeX 0 <r<<m u Beex Ye Y,
HT( f‘l(y)) = 0 (mpenmonararorcss romonorsy Bumeropumca mo mod msa), To mH-
Aynuposarmetit romomopdusm f,: H(X)—H(Y) asnaerca nsomopdusmom Ha
g f<<m u Ha ana ¢ = m-1. CyIecTBYIOT IPUMEDEI, IOKASHIBAIONINE,
YTO AHATIOLWYHAA TeOpeMa JULT IOMOTOIMI HeBepHA. TeM He MeHee, Hamaras He-
KOTOpBIE JOKaNbHbIE yCIoBusa, Cmelin [22] /okasan aHANOIMYHYIO TeOpeMy MJIT
romorormii (HibKe NpuBeseHa ee HOPMYIMPOBKA I KOMIAKTHBIX TPOCTDPAHCTE).
Tycrs f: X—Y orobparkenme cpasubx mnpoctparcte X um Y, ¥ = f(X),
X eLC™ u nna Bcex Yy € ¥, f~Y(y) ABNAETCH NOKATBHO CBA3HBIM U CBASHBIM
B pasmeproctH m—1 mpocrpamcreom (1. e. fHy) e LO™Y, €™ ). Torma
Y ¢ LO™ u ungynupoBaHHBIE rOMOMOPGhHSM Fyt 7, (X)—>m,(Y) asazercs wuso-
mopdusmom Ha mns Bcex 0 <7< Mm—1 ¥ HA A 7 = M.

OcHOBHAs IeNb NAHHOA paGoTEI COCTOMT B . OKA3ATENLCTBE TeopeMbl Bue-
TOPHCA B KaTelrOpuM IUEHIOB, B. KOTOpOH Ha mpocrpancrBa X u f~'(y) me ma-
KJIAZbIBACTCS. HUKAKUX JIOKANBHBIX YCIOBHI, HO, KAK YK€ TOBOPHIOCh, B TEO-
peme Cmeitima mpocro sauepxayTs LO™ u LC™ ™' menpss, mMoSTOMy OT MHOMKECTB

(*) Ilocne npemcTaBienusi CTAaThi aBIOP YSHAN, YTO HEKOTODBIE AHAJOTHUHBIE PE3YIhb-
TAThI IONYUEHBI /U TOYEUHLIX OTOGpakeHuit B [26], 278 KIETOIHO-MONOCHEIX OTOBpayKeHHH
B [27], [28] m mua U V" -orobpaennit = [25].
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