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Maximally almost periodic groups
and
varieties of topological groups
by
Sidney A. Morris (Kensington, N.S.W.)

Abstract. It has been shown by Kakutani, Nakayama and Gelbaum that if 7 is
the variety of all topological groups or the variety of all abelian topological groups
and X is a Tychonoff space, then the free topological group F(X,¥) is maximally
almost periodic (MAP). It is shown here that for any non -abelian (respectively, abelian)
variety ¥, F(X,Y) exists and is MAP for each Tychonoff space X if and ounly if ¥
contains an arcwise conmected non-abelian (respectively, abelian) MAP group. This
clearly implies the previously known results and also yields: Tf ¥ is a variety containing
a connected compact non-abelian group, then E(X, ¥) is MAP for each Tychonoff
gpace X. It is also shown that if for some connected space X, F(X, V) is MAP, then
the underlying variety of groups of ¥ is either the class of all groups or the class of
all abelian groups. B

Preliminaries. A non-empty class ¥ of topological groups (not neces-
sarily Hausdorff) is said to be a va’riety— if it is closed under the operations
of taking subgroups, quotient groups, arbitrary cartesian products and
isomorphic images. (See [2] and [9]-[16].)

'We mnote that a variety ¥V (of topological groups) determines
a variety ¥ of groups [18]; the Jatter is simply the class of all groups
which with some topology appear in the former.

The smallest variety containing a class 2 of topological groups is
said to be the variety gemerated by £ and is denoted by V(Q).

i ¥ is a variety, X is a topological space and F is a member of 7,
then F is said to be a free topological group of V on X, denoted by F(X,V),
if it has the properties: .

(a) X is a subspace of F.

(b) X generates F' algebraically.

(¢) For any continuous mapping y of X into any group H in ¥,
there exists a contintous homomorphism I" of ¥ into H such that INX=y.

The following results on free topological groups are proved in [9]:
(i) F(X,¥) is unique (up to isomorphism) if it exists, (i) F(X,¥) exists
if and only if there is a member of ¥ which has X as a subspace,
(iii) F(X,V) is the free group of the underlying variety ¥ of groups on
the set X. N
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A topological group & is said to be mazimally almost periodic (MAP)
if there exists a continuous monomorphism of G into a compact group.
(See [4].)

Results. Our first theorem extends Theorem 2.5 (iv) of [2].

TeEOREM 1. If G is a connected MAT group then V(@) is either the
variety of all groups or all abeliam groups.

Proof. Let f be a continuous monomorphism of G into a compact
group H. Without loss of generality we can assume f(@) is dense in H,
and hence H is connected. We note that since f is a monomorphism, G
and f(@) satisfy precisely the same laws [18]. Further since f(@) is dense
in H, any law of f(&) is a law of H; the converse statement is trivially
true. Thus @ and H satisfy the same laws.

It is clear from [1], that H satisfies either no (non-trivial) laws or

just the commutative law. Thus Y (H), which is also V(&), is either the
class of all groups or all abelian groups.

THEOREM 2. Let V be o variety such that for some non-totally discon-
nected space X, F(X, V) is MAP. Then ¥V is cither the class of all groups
or all abelian groups. )

Proof. Let Y be a connected subspace of X with more than one
element. For any element y in ¥, the subgroup & of F(X, V) algebraically
generated by y~'Y is a connected MAP group. In view of Theorem 1,
it will suffice to show that V(@) = 7.

Noting that Y is a connected Tychonoft space we see that it contains
at least 2% elements. Since the subgroup H of F(X,V) algebraically

generated by Y is a free group of Z on the set ¥, we see by 15.62 of [18]
that V(H) = V. It is also readily seen that G and H satisfy the same

laws and thus Y(@)=Y(H)=7 and the proof is complete.
The following example shows that the condition “non-totally discon-
nected” cannot be removed in the above theorem.

Exavpre. Let 2 be the class of all discrete nilpotent groups of
class ¢, for some positive integer ¢. Then by 17.75 and 32.22 of [18], for
any discrete space X, F(X, V(Q)) is MAP. However V()

14 is not the clags
of all groups or all abelian groups. ‘

TBEOREM 3. Ir"or any non-abelian (respectively, abelian) variely V,
F (.X ) V) exists (M’.bd is MAP for each Tychonoff space X if and only if V con-
tains o non-abelian (respectively, abelian) arcwise conmected MAP ?mup.
. Proof. Let X be an arcwise connected space. If F(X, V) exists and
is MAP then the subgroup & of 7 (X, 7) algebraically generated by 27X,

for some % in X, is an arcwise connected MAP group. Further, if V ig
non-abelian then so too is @. -
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Conversely, let G be an arcwise connected MAP group in ¥ (where
G is non-abelian if ¥ is). L X isany Tychonoff space, then Lemma,! 5,p.116
of [7] implies that X can be embedded in a product of copies of @ and
therefore (X, V) exists. Since G is MAP, there exists a continuous mono-
morphism of G into a compact group. Therefore, to show that F(X,Y)
is MAP, we only have to find for each a e F(X,¥), a # ¢, & continuous
homomorphism I' of F(X, V) into & such that I'(a) # ¢, where ¢, and e
are the identity elements of F(X, ¥) and @, respectively.

By Theorem 1, @ satisfies only those laws which define V. This,
together with the fact that F(X, V) is the free group of Z on the set X,
implies that there exists a (not ne:f:essarily continuous) homomorphism @
of F(X,V) into @ stch that ®(a) # e. Let a = af, ..., 2;*, where ;e X
and g is an integer for ¢ =1, ..., n. By Theorem 3.6 of [5], there exists
a continuous map y of X into @ such that y(@:) = @ (a) for i =1, ..., n.
Therefore there exists a continuous homomorphism I of F(X, V) into &
such that I'|X =y. Clearly I'(a) = ®(a) # ¢ and the proof is com-
plete.

CorOLLARY. If ¥V is any variety containing a connected compact non-
abelian group, then for each Tychonoff space X, F(X,V) is MAP.

Proof. This is a consequence of Theorem 3 and the fact (§ 4.6 of [8])
that any connected compact non-abelian group has a quotient which
is & compact connected non-abelian Lie group (which is of course arcwise
connected).

Open question. If ¥ is a variety containing & connected non-abelian
MAP group, is F(X,V) (necessarily) a MAP group for each Tychonoff
space X. (Indeed, does F(X,V) necessarily exist?)
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Set existence principles of Shoenfield, Ackermann,
and Powell

by
W. N. Reinhardt (Colorado)

Abstract. The author proposes a formalization of an informal set existence prine-
iple of Shoenfield. Some consequences of the axioms are developed and comparisons
are made with other axiomatic theories which have been proposed. The author also
makes some general remarks about the problem of axiomatic principles in mathematies.

Introduction. Shoenfield has formulated the following principle §
for the existence of sets. The prineiple assumes that sets are built up in
cumulative stages, and that there is an ordering on the stages as they
are built up.

8 If P is a property of stages, and if we can imagine a situation in
which all the stages having P have been built up, then there ewisis
a stage s beyond all the stages which have P.

‘We remark at the ountset that one can read § in either (i) a more or (ii)
a less constructive way, namely (i) that the stage s exists mathematically
because of (or in) the act of imagination, which is thus a sort of construction
of s, or (ii) that what can be imagined is but an-indication of what has
mathematical existence, so that the latter can retain a certain changeless
Platonic impregnability or Cantorian absoluteness. It is (if) which seems
appropriate to this author in the context of classical set theory. (Bvidently
this does not preclude consideration of processes, eonstructions, and the
like, only they are not to be regarded as more primitive than existence.)

Although § is certainly vague, Shoenfield has wused it rather
convincingly to derive a number of the usual axioms of set theory [10].
The purpose of this paper is to propose » formalization of this principle,
(§ 1, § 5) and to deduce some of its consequences, the most striking being

_the existence of measurable cardinals (see § 5, Theorem 5.12). The formali-

zation proposed will bear a close relation to two other set theories, one
due to Ackermann and one to Powell, (see § 2, § 5 Remark 5.13 and § 6).
Tn a sense, adding arbitrary properties of sets to Ackermann’s theory
yields measurable cardinals (see 5.13).
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