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A 3-dimensional irreducible compact absolute
retract which contains no disc

by
Sukhjit Singh

Abstract. R. H. Bing and K. Borsuk gave an example of a 3-dimensional compact
absolute retract which containg no dise. In this paper, we construct a 3-dimensional
irreducible compact absolute retract which contains no dise.

1. Imtroduction. Borsuk [8] described a 2-dimensional compact
absolute retract which does not contain any proper 2-dimensional com-
pact absolute retract. Following Borsuk, we say that an n-dimensional
compact absolute retract A is irreducible if and only if 4 does not contain
any proper n-dimensional compact absolute retracts. Molski [10] gener-
alized Borsuk’s example of [8] to obtain for each # > 2 an n-dimensional
irreducible compaet absolute retract. Bing and Borsuk [6] gave an example
of a 3-dimensional compact absolute retract which does not contain any
(2-dimensional) disc. The following is a natural question: Does there
exist an irreducible n-dimensional compact absolute retract for » > 2
which does not contain any (2-dimensional) disc

For n =2, the answer is affirmative as proved by Borsuk [8]. The
purpose of this note is to answer the question in the affirmative when
a = 3. For n >3, the angwer is unknown.

By an AR we mean a compact absolute retract for metric spaces.
For notation and terminology see [8], [6] and [7]. The techniques of
construction are similar to those used in [3] and [6].

If @ is an upper semi-continuons decomposition of a topological
space X, we denote by X/G the associated decomposition space and
p: X—>X[G the canonical projection.

The author expresses his thanks to
encouragement. '

S. Armentrout for help and

2. Antoine’s Necklaces. Let # be a fixed positive integer and X, be an
unknotted polyhedral solid torus in 3-dimensional Buclidean space BB,
All tori congidered will be solid, unknotted - and polyhedral. Let
{Ty;s ..y Tym,} denote a chain of linked solid tori in Int(Z;) circling Zr
exactly twice such that for i=1,2, .., m, the diameter of Ty i3 less
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than one. For each 4, with ¢=1,2, ..., OT My, let {Trs1y Triny -oy Trim,}
be & chain of linked tori in Int(Tr) cireling Ty exactly twice, with the
diameter of each Tyy less than 3, where 1 <§ < Mete Lot {TLyyjry Thijoy oo
wey Trim,,} e a chain of linked tori in Int(Twy), each of di'a.meter less
than }, cireling Ty exactly twice foralli=1,2, ..,0rmypandj=1,2,..,
or my. We continue this construetion 0 obtain the following sets:

. Mmro
M, = U Tss
Ci=1
myo Mt

_M,.2= U UT”J'7

i=1 §=1
Mre Myt Mrif

M= U U Tris»

i=1§=1 k=1

oo
Tet N, denote (| Myi; Ny will be called a dyadic Amntoine’s necklace
f==1
circling X,. Note that Ny is contained in Int(Z2%):
An A-are substituting for Zy. Consider the first stage torus T,; for
i=1,2,.., or m, and the set (Nr Tr). It is well-known that for
each i, there is an arc ay; in Int (Tr;) such that ar contains the set (¥, ~ T,.;).

Mro
Construct ares by, bray -1 Drgmpe—py 28 CODSIITCRA in [3] such that (| an) v
mro—1 . =1

u( jU by) is an arc 4,. The arc A, will be called an A-arc substituting
=1

for Z,.

An  A-wreath substituting for X,. For each 4, i=1,2, .., OF My,
let {Tyi1; Trigy s Tpimy} D€ the chain of linked tori in Int(Ty:) exactly
twice. Consider T,y for j=1,2, ..., or my and the set (N~ Tyis), for

Mri
all j. As before, there are ares by, by -y Dpspmp—1y S0CH that (U ang) ©
Mri(myi-1) =1

u kU1 b,;) is an 4-arc Ay contained in the interior Qf Ty . The union W,

of 4, Ay, ..., and A,,, will be called an 4-wreath substituting for 2y
and the A-ares 4,5, Ay ...y A, Will be called links of W;.

3. Cantor-manifolds.

DemnITION. Let X be 2 metric space of dimension <n. We say
X is dimensionally uniform if for each point p « X and 6 >0 there is an
open ball B,(P) with 0 <C ¢<C § such that the boundaries of uncountably
many open balls contained in B,(P) and centered at P have dimension
<n—1.

Let X be a separable metric space with dim(X) = «. Given an upper
gemizcontinuons decomposition G of X into clogsed subsets of X such

@
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that dim(g) < K for each g« G. The following is the main lemma of this
section: .

LevMA 3.1. If Y is a subset of X[G such that 0 < dim(Y) < K then
Gm[P~YY)] < K provided X|G is metrizable, G contains at most countably
many non-degenerate elements and Y is dimensionally uniform.

Proof. Let P;: P™Y(X)—>Y denote the restriction of P: X—X/G.
Tt is easy to see that the collection {P~*(y): y ¢ ¥} is frpper semi-continu-
ous and ¥ can be thought of as the decomposition space. We shall show
that the family {P~*(#): v ¢ ¥} of closed subsets of P™(Y) satisfies the
hypotheses of the following proposition of Hurewicz and Wallman: If
a separable metric space X is the sum of a family of closed sets {K,} with
the properties: each K, has dimension <, and given any K, and open
set U containing K, there is an open set V, K; CV C U, with dim[Bd (V)]
<n—1.

Then X hag dimension <.

We proceed with the proof. For each y ¢ ¥, there is an open ball
B,(y) with ¢ >0 such that BA[B,(y)] does not contain any element which
is the image of a non-degenerate element of the decomposition and
dim[Bd[B,(y)]] < E—1. This can be done since the family of non-de-
generate elements is at most conntable and ¥ is dimensionally uniform.

Now :

dim[ P BALB ()] < K1,
and hence

dim[Ba[P[By)]]] < E—-1.

Let U be an arbitrary open subset of P~Y(Y) containing P;(y) for
some y ¢ Y. Since ¥ is a decomposition space of the upper gemi-continu-
ous decomposition {P*(y): y ¢ ¥}, there exists a saturated open set W
such that P7Yy) C W C U. Now Py(W) is an open subset of Y contain-
ing y. There exists an open ball B,(y)C P(W) such that the dimension
of Bd|PrYB,y)]| < (E—1). Clearly, Pr[B,y)]CWCU since W is
saturated. Since this can be done for each set P~'(y) and P~(Y) is the
union of P~Yy)’s the proof of the lemma is finighed. q.e.d.

Remark. The condition that “¥ dimensionally uniform” can he
omitted. This follows from a remark in [9], page 107.

We have the following theorern:

TrEOREM 3.1. Let X be a Cantor-manifold of dimension n, with n > 3.
If @ is an upper semi-continuous decomposition of X such that G contains
at most countably mamy non-degencrate elements and dim(g) <1 for each
g ¢ & then X|@ is a Cantor-manifold of dimension K provided K = dim (X/G)
<n. (For a definition of a Cantor-manifold see [71.)


GUEST


239 ) 8. Singh

Proof. Let ¥ C X/G such that dim(Y)<K—2.

It K—2 = 0, then dim[P~{¥)] < 1 ([9], page 92). Therefore P~¥)
does not separate X and hence ¥ does not separate X/G.

I 0< dim(Y)< K—2, then dim[PHY)] < K—2. This follows
from Lemma 3.1. If K < n, we have K—2 < n—2 and therefore P~(Y)
does not separate X and hence ¥ does not separate X/@. This shows that
X/@ is a Cantor-manifold.

COROLIARY 3.1. Bing and Borsuk's ewample [16] of a 3 - dimensional
compact absolute retract is a Camtor-manifold.

Remark. It is useful to know if a given compact AR is a Cantor-
manifold becaunse of the following:

Tach Cantor-manifold of dimension # is #»-dimensional at each
of its points, and hence its open subsets are n-dimensional at every point.
Since, Bing and Borsuk’s example of a 3-dimensional compact AR [6] is
2 3-dimensional Cantor-manifold it follows that at each point it contains
arbitrarily small 3-dimensional open sets which are 3-dimengional non-
compact absolute neighborhood retracts. The same holds for our example
and for that of [10].

4. An upper semi-continuous decomposition. Let {4:} be a sequence of
polyhedral solid tori in P. The sequence {4} is A-dense in B® if for each
simple closed curve ¢ C E® and open subset U of P, there is an index ¢
such that

(1) A;CE—0,

(2) the core C; of A4, is homologically linked with C, and

(3) C; meets U.~ .

For the definition of core and matters related to linking see [6] where
other references will be found. ’ ‘

We organize the rest of this section in parts (A) to (D).

) (A) There exists in B® a countable family # of disjoint polygonal
mmple closed curves such that for any simple closed curve ¢ in B°
and open subset U of P there exists an element P of F satisfying the
following:

(1) P and C are homologically linked, and

(2) P meets U.

) It is apparent that one can constrnct an A-dense sequence {4;} of

solid polyhedral tori by taking the family F of simple closed curves as

the cores of the tori. The above assertions follow from [6] by making
suitable changes. )

) (B) Let B® be the closed unit ball in B® with boundary S2. There
exists a countable family of disjoint segments {K;} satisfying the following:
(1) For each ¢ the end points of K; lie on &2
(2) The diameters of the Ky’s converge to zero.

O D L iie compat aboiuls st whith coin o d
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(3) For each non-empty open subset @ of 8% there is an index j such

that both the end points of the segment K lie in @. This is a result of [6].

(0) Let {Ej} be a countable family of segments as in (B). There

exists a sequence {4} of solid polyhedral tori contained in B*— &— | J K;
i

such that for each j:

(1) The inner radius of 4, is less than 1/j.

(2) There exists in A; an A-wreath W; substituting for 4;. Also
Wen Wy=@ for j # K and the diameter of each link of Wy is less
than 1fj, for j=1,2,8,.. For a definition of the term “inner radius”
and other related matters see [4]. '

(D) Let {E;} be a countable family of digjoint segments as provided
in part (B) and {4:} be a sequence of polyhedral solid tori described in
part (0). Also in (C) we described a sequence {W;} of A-wreaths with
the properties:

(1) Wy is an A-wreath substituting for 4;,

(2) W; and Wy are disjoint if j # &, and

(3) the diameter of each link of W is less than 1/j. For each j,
=1,2,8,.., W; has only finitely many links, say {a, G ) Gim,}-

J
Put 85= {@1, tygy - ym,} and define a set 8= 8. Clearly § is a
=1

countable set of disjoint arcs. Take the countable family of disjoint
segments {K;} as in (B) and form a set 8 by taking its union with 8.
We define a decomposition ¢ of B® whose non-degenerate elements
are precisely the elements of §'. @ is an upper semi-continuous de-
composition since the non-degenerate elements form a null collection.
Tt follows directly from [4] that BY/@ is a compact AR of ‘dimension 3.

5, The main .theorem.

TenoREM 5.1. The decomposition space BY|G is an irreducible AR
of dimension 3 such that BYG does not contain any (2 -dimensional) disc.

Proof. The fact that BYG is an AR of dimension three follows
from [4] and results quoted in [6]. The proof that B*|@ does not contain
any 2-dimensional dige is similar to the proof in [6] and hence will be
omitted.

We proceed to show that BY/@ is irreducible. Let 4 C B%/G e a proper
3-dimengional compact AR. By [3; Lemma 7], there is a sequence
Uy, Uiy oovy Upy oo 6of open subsets of B¥G each containing A such that
for each 4, Uy, C U, and each loop in Uy, is null homotopic in U;. Also
U, can be chogen smeh that the interior of BYG—U, relative to. BY@ is
non-empty. We assnme that there iz a point y e B*/G—-TU, such that y
belongs to an open subset W' and W' is a subset of BYG—TU,. Let Vy
=P U, for i=0,1,2, .., and W=PW). Now V;, CV, PH4)
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CViand Vin W= for each = 0,1, 2, ... By [3], Lemma 9, we have
that for each 4, every loop in V,,, is nullhomotopic in V;.

By Lemma 3.1 of this paper it follows that the dimension of the
seb P~(4) is three. By [9] we conclude that the interior of P~ A) relative
to B® is non-empty. Since the decomposition & is upper semi-continuous,
there is a saturated open set O contained in P~%(4). Now O is contained

in the set [} ¥;: Since O is open, and non-empty we may choose a point z,

i=0
in 0. Since {z,} is a compact AR, by [3], Lemma 6, there is an open set 0’
such that 0" contains #,, 0 is contained in 0 and each loop in O is null-
homotopic in 0. By choosing the point », such that {z,} is a degenerate
element of @ we may assume that 0’ is saturated.

Let D* = {(2,9): 2*+3*< 1 and @, y real number} and §' — {(=, v}
€ D*: 22-y%= 1}. Since 0’ is open, it follows that there is a simple closed
curve C contained in 0'. Let f: S'—C be some fixed homeomorphism
of 8 onto (. The simple closed curve ( is nullhomotopic in O and hence
there is a continuous map y: D®*—>0 such that f=y|8". We consider
4= y(D*) and the open subset W of B®. W and 4 are disjoint and there
exists a polyhedral solid torus A;, for some index 4, such that the core O
of 4 is homologieally linked with ¢ = w(8%) and 4; containg a meridional
dise D such that DC (4;n W). The meridional disc D can be taken
to be polyhedral. Let W; be the A-wreath substituting for 4;. One of the
links of W; lies completely in the interior of P~(4). The above assertion
follows from the fact that some link of Wi meets A4 and hence the link
must be completely contained in 0’ since 0’ is a saturated open set
contained in the interior of P~Y4). Without loss of generality we may
assume that a; is contained in the interior of PHA4).

By [3], Lemma 4, we obtain a pelygonal simple closed curve ¥ in
Vo 4, such that y is not nullhomotopic in A,,. This can be seen by
setting 4; = X; and 44 = T in the above mentioned lemma and keeping

in mind that 4, is a second stage torus in the construction of the dyadic -

Antoine’s necklace. By applying the arguments of the proof of Lemma 5
of [3], we conclude that there exists a loop »" in ¥, ~ 4; such that » is
not nullhomotopic in 4;. Hence the loop »' must meet the meridional
disc D, where D C W ~ 4;. This is 3 contradiction, since W AV, = @ by
our construction. Hence B%@ is an irreducible AR of dimension 3 and
B¥@ contains no (2-dimensional) dise.

As an application of Theorem 5.1 we have the following generali-
zation of Corollary 3.2:

COROLLARY 5.1. There emists g non-compact absolute neighborhood

reiract which contains neither a 3-dimensional compact AR nor a (2-di-
mensional) disc.

N s, . . 0o
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COROLLARY 5.2. B3G has the singularity of Mazurkiewicz.

In [5] Steve Armentrout announced that one could construet a cellular
decomposition of E?® whose decomposition space is neither strongly 19ca,]ly
simply connected, locally peripherially spherical nor locally nice in di-
mension one. For the definitions of the terms involved see [5]. We have
the following:

COROLLARY 5.3. The space B|G is neither strongly locally simply
connected, locally peripherially spherical nor locally nice in dimension 1 at

every poind.
A proof can be constructed by using the techniques [3], [4] and

this paper.
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