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For the rest of the theorem — assuming set theory is consistent —
one begins with a model M of set theory and Ay, (this is defined in [4]).

One can check that D¥ is strongly sequentially compact in M (see,
for example, Theorem 4.10 of {1]) therefore M contains a P(c) point.
Carry out a Cohen extension of M obtaining a new model A in which
9% ==y, and S(N)¥ = §(N)4. The P(c) point P of M is still an ultra-
filter and a P(c) point. Let {a,: 4 x5} be a collection of infinite sets,
in order to meet the conditions of Theorem 2 we may as well suppose
that N ~ a, is infinite too. Bither a, or N ~ a, is in P; let a, be a, if a, ¢ P
and N ~ a, otherwise; since P is a P(c) point there is a b C ¥ such that
for each «, b<< a.. This b satisties condition 2 of Theorem 2.
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Completely regular proximities and RC-proximities

by
Douglas Harris (Milwaukee, Wis.)

1. The author recently introduced the theory of RC-proximities to
characterize the spaces that can be embedded in a regular-closed space.
The present results are concerned with the manner in which RC -pro-
ximities are made up from other types of proximities.

The theory of RC-proximities was developed in our paper [HS];
this paper is a continuation of [HS], and terms, notations, and techniques
introduced therein will be used herein without further reference.

2. LO-proximities and R-proximities. A proximity é such that the
induced closure operator is topological and such that from A noné B
there follows cl4 nond el B is called a LO-prozimity. An R-provimily is
defined in [HS] as a proximity satisfying Axioms P1-P5 of [HS], a LR -pro-
@imity is a proximity that is simultaneously a LO- pronmxty and an
R-proximity. ‘

There are three proximities that can be defined on any T, space
and that will be useful later in forming examples. These proximities are
considered in [CHY]; it is appropriate here to observe that the proximities
considered in [CH] are more general than those that we consider, since
Axiom P4, which requires that distinet points be far, need not be satisfied
by the proximities of [CH].

The proximities considered below do satisfy P4, however, since the
associated topologies are 7.

21 [CH, 25A. 18(a)]. For any T, space X the relation A 8 B if
(A ~clgB)v (clx A~ B) # @ 1is the finest prowimity ihat induces the
topology of X.

2.2 [CH, 25A. 18(b)]. For any T, space X the relation A 6, B if A 6; B
or both A and B are infinite is the coarsest prowimity that induces the
topology of X.

2.3 [CH, 25A. 18(c)]. For any T, space X the relation A 6, B
~clxB # O is a promimity that induces the topology of X.

The following results are readily established from the definitions.

if clx A ~
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2.4. If X is a T, space then A d. B
and B are infinite.

2.5. If X is a T space then the proximity 5w 18 the finest LO - proximity
that induces the topology of X.

The proximity &, is called the Wallman—promimity on X. If X is
regular then &, is a LR-proximity by [HS, Lemma 2].

2.6. Let X be o T, space with no isolated point. Then the LO -prozimity S,
induces the topology of X and is not an R-promimity.

Proof. Suppose d. is an R-proximity; then the topology of X ig
regular. If X has the cofinite topology then it is finite and so every point
is an isolated point. If X does not have the cofinite topology then there
is # ¢ X and a neighborhood V of » such that X—V is infinite. Now there
is a neighborhood W of # such that ¥V > W, and it follows that W is finite,
and therefore x is an isolated point.

if and only if A 6w B or both A

CoroLLARY. There is a compact Hausdorff space X such that 6, is not
an R-prozimity and thus 8, # .

The interest of the corollary lies in the fact that it shows we can
have two distinet LO-proximities inducing the topology of a compact
Hausdorff space, although according to 2.9 below, 8, is the unique
LE-proximity that induces the topology.

The following lemma is often useful in constructing examples.

2.7. Any proximity finer than an RE-promimity and inducing the same
topology is also an R-proximity.

Proof. Let 6 be an R-proximity, suppose ¢ is a finer proximity
giving the same topology, and write >, > for the corresponding proximal
- neighborhood relations. Now if V> # then since both topologies are the
same we have also V > #, and since ¢ is an R-proximity there is a W with
V > W > o. It now follows since ¢ is finer than ¢ that V> W > a.

CoroLLARY. The proximity 6s on o regular Ty space is an R-prowimity.

Proof. It is finer than the R-proximity &,, and induces the same
topology.

2.8. The proximity & on a normal but not hereditarily normal (= com-
pletely normal) Hausdorff space is.an R-prozimity that is not a LO-pro-
wimity.

The proof is immediate. .

An example of a compact Hausdorff space for which the three
proximities d, du, and 8 are all distinet is provided by an uncountable
product of unit intervals, since such a space is not hereditarily normal
(see [ST]) and has no isolated points. This shows also that two distinet
E-proximities can induce the topology of a compact Hausdorff space.
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The following result is now quite interesting; although LO-proximities
and R-proximities need not be unique on a compact Hausdort space,
the combined property is unique.

2.9. The proximily 8 is the only LR-prozimity on a compact Haus—
dorff space. .

Proof. By 2.5 such a proximity is certainly coarser than é,, 50 we
need only show that it is also finer than 6,. This can be shown by a device
similar to the one usually used to show that a compact Hausdortf space
is normal. This is a generalization of the usual theorem [CH, 41C.10]
that a compaet Hausdorff space has only one completely regular pro-
xXimity.

3. Maximally full and maximally saturated proximities. To analyse the

- makeup of RC-proximities we break the axiom P86 of R(-proximities,

stated in [HS], into two parts.

A proximity satisfying

P7. It A > B then 4 surrounds B is called a mazimally full proximity.

A proximity satisfying

P8. If 4 surrounds B then 4 >B is called a ma:oimally saturated
proximity.

We first turn our attention to showing that mammally full and
maximally saturated are independent conditions.

The following result provides a general method of obtaining maxi-
mally full proximities on RC-regular spaces.

3.1. Let Z be a regular-closed space with topology induced by LR-proz-
tmity 6. If X is any dense subspace of Z then the prozimity o induced on X
by 6 is a mazimally full LR-prozimity.

Proof. It is easy to see that the induced proximity is a LE-proximity.
Now if 4, BCX and A4 > B, writing > for the proximal neighborhood
relation of o, then it follows readily that Z—elz(X—B)CclzBC Z—
—clz(X—A); therefore any round filter 4 on X generates a regular
filter -2 on Z with the base {clzB: B¢ y}. Sinece Z is regular-closed the
filter A has a cluster point p ¢ Z, and since ¢ is an R-proximity on Z the
neighborhood filter 7(p) is maximal round, and it follows that y must
be contained in the trace on X of the filter 5(p). Now suppose yp is
a maximal round filter (on X) that intersects B; from the preceding
argument it follows that y is the trace on X of #(p) for some p ¢ Z, and
therefore p e clzB, from which it follows that 4 €.

3.2. Let Z be a regular-closed but not compact space and let X be any
dense subspace of Z. Then there are subsets O and D of X such that clzC ~
N clzD =0, but clzC and clzD do not have disjoint neighborhoods in Z.
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Proof. We shall show that if the conclusion does not hold, then Z ig
compact. .

Suppose A is an ultrafilber on Z. Let gy = {V' C X: V is open, and
for some BCX clzBel and clz(X—7V)neclzB=@}. Let y,= {clzV:
V € g,}. We shall show that y, is a subbage for a regular filter y on Z,
and that if 2 e Z is any. cluster point of y, then A converges to z. It will
then follow that A does converge, since the regular filter y on the regular-
closed space Z must have a cluster point.

To see that any finite intersection of members of y, is nonempty,
observe that if Vi, .., Vsepg, then there are sets B;CX such that
. clzBiel and clz(X—Vi) neclzBi=@, for i=1,..,n Now since 1 is
a filter, then

g # ﬂ clzByC Z— U clz(X—Vs)
=Z—clz(|J(X—Ti)) = Z—elzX— N TVy),
and thus clz(X— [\ Vi) # Z, and so (Vs # &, from which there follows
m clzVs # 0.
To see that y, generates a regular filter it will suffice to ‘show that

if clzV ey, then there is an open WC X with cl;WC Z—clz(X—V)
CelzV, and clzW e p. To this end, if V € g, then there is B C X with

clzB e and clz(X—7V) nclzB=@. By hypothesis there are open sets.

T,8CZ with clz{(X—V)CTCZ—~8CZ—clzB. Setting W= 8~ X we
have X—W CZ—8, 80 clz(X—W)C Z—clzB, giving W e g,. Now clzW
=clz(8 nX)Celz8 CZ—T CZ—clz(X—V)CeclzV, the last inclusion
following from the sequence ¢lz(X—V)u clzV = elz((X— Vyu V)
= C].z.X = Z.

Now let 2 € Z be a cluster point of the regular filter y. Suppose T is
an open neighborhood of z. Choose open sets 7, 8 with 2 e TCclzTC 8
Cclz8CU. Set V= X—clzT. Since V ~ T = @ then z ¢ clzV. It follows
that elzV ¢ 4y, 50 V ¢ g, and thus if BC X with clzB nelgX—TV)=@
then clzB ¢ 1. Taking B= X—8 we have

elzBCX—8C X—clzTC Z—clz(X—V),

and thus elzB ¢ . Now X C Bu 8, thus clzB U clz8 = Z, and since A is
an ultrafilter we have clz§ ¢ 4, and thus U e A

We now give a general method for finding maximally full proximities
that are not maximally saturated.

3.3. Let Z be a regular-closed but not compact space and let X be any
dense subspace of Z. Then there is a LR-prowimity on X that induces its
'tapology and is mapimally full but not mawimally saturated.

Proof. Under the present hypotheses there are subsets ¢ and D
of X 51_1011 that clzC ~elzD = @ but the two sets do not have disjoint
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neighborhoods in Z. It ff)]lows (from the regularity of Z) that the filter y
generated by {V: V is open in Z and clzGCV or clzDCV} is an open
filter on Z with no cluster point. Now define a relation = on Z by setting
A n Bif A §, B or if every member of the filter ¢ intersects every neighbor-
hood of clz4 and every neighborhood of clzB. This is a proximity for Z,
and it is clearly coarser than the Wallman proximity &, for Z. To see
that = is an R-proximity and that it induces the topology of Z, observe
that if 2 € Z there is U € 5(z) such that U does not intersect some member
of y, from which it follows that if ¥ is a neighborhood of z then there is W
with ¥ > W >z, found by choosing ze WCeclzWCV A TU.

To see that = is a LO - proximity note that if 4 nonz B then A nondy, B
and there is an open set V ey and a neighborhood W of ¢lz.A (or of c¢lB)
that is disjoint from V. Now since A nondy B then clzA4 nondy clzB,
and X—clzV is a neighborhood of clzA4 that fails to intersect ¥ ey;
thus clz4 non= clzB. It has now been shown that = is a LR-proximity.

From 3.1 it follows that the proximity p induced on the dense sub-
space X by = is & maximally full LR-proximity. It is also clear from the
proof of 3.1 that the maximal round filters on X are precisely the traces
of the neighborhood filters of points of Z, and thus if ¢ and H are sub-
sets of X then @ surrounds H if and only if X— @ and H as subsets of Z
are far in the Wallman proximity of Z. To see that ¢ is not maximally
saturated merely observe that X— ¢ surrounds D but € p D.

‘We now turn our attention to LR-proximities that are maximally
saturated but are not maximally full. The ground space for such a prox-
imity cannot be regular closed in view of 3.1.

3.4. The round filters with respect to the Wallman prozimity on any
space are precisely the regular filters.

3.5. The Wallman promimity on any regular space is a LR-proximity
that is maximally saturated.

Proof. By 2.5 the Wallman proximity is a LO-proximity and for
a regular space X it is an R-proximity by [HS, Lemma 2]. Now suppose
4,BCX and A surrounds B. Since by [HS, 3.2] every neighborhood
filter is maximal round, it follows that every neighborhood filter that
intersects B contains 4, that is, ¢l B C int.4, which means B< 4 in the
Wallman proximity.

It is shown (in § 5) that the Wallman proximity on the well-known
Tychonoff plank is not maximally full. Another perhaps more interesting
example is the subspace W = Z— {p} of the minimal regular non-compact
space Z constructed in [BS, § 3]. We shall not give the details here but
merely remark that the Wallthan proximity 8, for W is not maximally
full. However, it is finer than the R(-proximity ¢ induced on W by the
‘Wallman proximity on Z. Further, by the proof of 3.3 the proximity 4 is
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finer than a maximally full but not maximaﬁy saturated proximity o
that also induces the topology of W.

The following results give new criteria for the compactness of a regular
closed space.

3.6. A regular closed space is compact if and only if every LR-pros-
imity that determines its topology is maxzimally saturated.

Proof. This follows from 2.9, 3.5 and 3.3.

Using 2.9, 3.6, and Theorem F from [HS] we obtain the following
criterion:

TamorEM A. A regular-closed space is compact if and only if there is
only one LR-prozimity that determines its topology.

It is possible that this criterion will be useful in examining the un-
solved problem of whether a regular-closed space in which every closed
subspace is regular-closed is compact.

4. RC-normal spaces. This class of spaces will be seen to form
2 natural generalization of the normal spaces with respect to many of
their properties.

The space X is RC-normal if no maximal regular filter intersects
both of two disjoint closed sets. Clearly a normal space is RC-normal,
since the filter of neighborhoods of a closed set will be a regular filter.
It is also clear that every regular-closed space is R(-normal, since the
maximal regular filters are just the neighborhood filters in this case.

The following resulf is readily obtained using the methods of Section 3.

TarorEM B. The following are equivalent for p reqular space X.

(a) X is RC-normal.

(b) A mawimal regular filter on X contains a member of every binary
open cover.

(¢) The Wallman prowimity on X is mawimally full.

(d) The Wallman promimity on X is an RC-prowimity.

(e} There is a regular closed space Z imto which X is densely ambedded
in such a way that disjoint closed subsets of X have disjoint closures in Z.

Condition (e) is the analogue of the familiar condition for normality
of a completely regular space expressed in terms of its compactifications.
Just as there can be only one compactification with this property, so
there can be only one regular-closed extension with this property.

The Tychonoff plank is an example of an RC-regular but mnot
RC-normal space, as we shall see in the next section.

5. Maximally bounded and completely regular proximities. A. mazimal
cover is a cover of X such that every maximal round filter contains
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& member of the cover. A proximity is maximally bounded if every maximal
cover has a finite maximal subcover. A maximally bounded RC-prox-
imity is called a BEREC-proximity.

5.1. 4 maximally bounded R-proximity is maximally saturated.

Proof. Suppose A surrounds B; then if y is a maximal round filter
we have Aey or X—Bey, and so there is W, ey with W, < 4.or W,
< X—B. Now {W,} is a maximal cover and so contains a finite maximal
cover {Wi}. Setting C= | /{We: Wi< A}and D= {_J{W: W;< X—B},
it follows that ¢ v D= X, ¢ < 4 and D < X— B which gives B < X—
—DC A and thus B<< A. .

It is interesting to ask if the analogue of 5.1 for maximal fullness
holds, that is, if a maximally bounded proximity is maximally full. An
example will be given at the end of this section of a maximally bounded
LR-proximity that is not maximally full.

We now introduce the well-known axiom of complete regularity for
proximities, and show that the proximities satisfying this axiom are
precisely the BRC-proximities. i

P9 (Aziom of complete regularity). ¥ A< B then there is € such
that 4 < 0 < B. '

A completely regular proximity is a proximity that satisfies P1-P4
of [HS] and P9 above. We shall see that such a proximity also satisfies
P5 and P6, that is, it is an RC-proximity, and moreover that the com-
pletely regular proximities are precisely the BRC-proximities.

5.2. A completely regular prozimily is a mazimally full LR -prozimity.

Proof. Clearly P9 implies P5. Now if § is a completely regular
proximity and A nond B then by P9 there are ¢, DC X with 4 < C,
B<< D, and C nondD. By [HS, 2.6] clxACC and clxBC D, and by
[HS, 2.4] clrAnondclyB. Thus a completely regular proximity is
a LR-proximity.

Using P9 it is immediate that for any BC X the collection 2

.= {4: A > B} is a round filter. Therefore if 4 > B and y is a maximal

round filter that intersects B, then ACy and thus A4 ey.

5.3. A completely regular proximity is mamimally bounded.

Proof. Suppose a is a cover that contains no finite maximal cover.
Define 1= {4: there is F ¢ a such that 4 > X—F}.

It follows from 5.2 and the assumption on « that 4 is a filter subbase.
It follows from P9 that the filter generated by A is round, and thus it is
contained in a maximal round filter y. Now if F e, there is G e y with
F > @; then X—F < X—@ and since 1 C 9 then F ¢ a. It follows that a
is not a maximal cover. '

The main result of this section is the following:
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THEOREM C. A promimity is completely regular of and only if 4t is
o BRC-promimity.

Proof. It follows from 5.2, 5.3, and 5.1 that a completely regular
proximity is a BRC-proximity.

Conversely suppose 8§ is a BRC-proximity. If A >DB then #
= {4, X— B} is a maximal cover. Thus for each maximal round filter 4
there is , € 4 with ¥, e y, and there is @, ¢ y with ¥, > @,. Then B= {@,}
is a maximal cover, and so it econtains a finite maximal cover {G:}. Now
for each @, there is F; ¢ {F,} with G; << F,, and for each i either F,== 4
or F; = X— B. Setting ¢ = |J {G4: Fi= A} and D= | J{Gi: Fs = X—B}
it follows that C< 4, D< X—B, and 0 | JD = X. Thus, B<X—-D
CC< A, and so there is a set ¢ with B< (< 4.

We now give the previously mentioned example of a maximally
bounded ZR-proximity that is not maximally full. Let T' be the Tychonoff
plank, that is, the space o' X Q'—{(w, 2)} where »’ and 2’ are the one
point compactifications of the space of countable ordinals and the space
of uneountable ordinals, respectively. Liet 4 be the filter on 7' generated
by the sets with compact complement. Given #,v e ', ¥, w € ', write
(,y)<(v,w) if <o and y<w. Also given 4, BC T write A< B
for 4 nondy, (X—B).

The subset U of 7' gets into the corner if for each (z, ¥) < (w, 2) there
is (v, w) > (z, y) with (v, w) ¢ U. Clearly a subset U gets into the corner
if and only if the filter A intersects U. The subset W of T contains a tail
if there is y < 2 such that if ¥ < 2 < 2 then (o, 2) ¢ W. It can be shown
just as in the proof of TBS, 3.3] that if U, V and W are open sets and
U< V< W then if U gets into the corner the set W contains a tail.

Now suppose p is a free regular filter on 7. Then » cannot inter-
sect any compact subset of 7', and thus A C y. From the preceding paragraph
it follows immediately that every member of y contains a tail. Next
suppose there is V ¢y such that V is closed and V ¢ 1. Since y is a regular
filter, then y is round. Hence there exist closed sets R, W ¢y such that
E<W<T. '

Since V ¢ 4, then for each Fel, F  (T—V) # @. Thus T—V gets’

into the corner. Now I'—V, T—W, T— R are open sets and T—V < T—
—W < T—R. By the above paragraph, T—R contains a tail.

Since B¢y and 1 C y, then R contains’a tail. Thus B ~ (T—R) # @,
which is & contradiction. It follows that every member of y is a member
of 1, and therefore finally it follows that y = A, that is, the only free
regular filter on 7 is the filter.

Consider the Wallman proximity &, on 7. By 3.5 the round filters
are just the regular filters, so the maximal round filters are the neighbor-
hood filters along with the unique free maximal round filter 1. It follows

that if A and B are subsets of T then A4 surrounds B if and only if A and B
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have disjoint closures in the (unique) compactification o’xQ’ of T.
Since T’ is not normal it follows that &, is not maximally full. To see
that &, is maximally bounded observe that if W is an open member of
the unique free maximal round filter A, then T—W is compact; thus
every maximal cover has a finite maximal subeover.

Since the Wallman proximity on 7T is maximally saturated (3.6),
it is an example of a maximally saturated proximity that is not maxi-
mally full. )

Since the Wallman proximity is not maximally full it is not an
RC-proximity, and thus by Theorem B the space T is an example of
an RC-regular space that is not REC-normal.

It is interesting to observe that T has a generalization of the property
of almost-compactness, that is, having only one compactification; it has
just been shown that the space T has only one regular-closed extension.
Clearly any completely regular space having only one regular-closed
extension is almost-compact.
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