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Discrete ordered rings
by
G. A. Heuer (*) (Moorhead, Minn.)

Abstract. A fully ordered ring is called disereie if the positive class has a least
element; otherwise it is dense. The paper studies the embeddmg of a discrete ordered
ring in a diserete ordered ring with unity; conditions for the existence of a discrete
full order; discrete orders in direct sums; nonisomorphie discrebe orders for the same
ring; embedding discrete ordered rings in dense ones, and vice versa; discrete subrings
of ordered rings; rings with well ordered positive class, and rings with Archimedean
order; order in quadratic extensions of ordered rings. Special attention is given to in-
tegral domains.

1. Introduction. The integers have been somewhat popularly charac-
terized as constituting the unique ordered (commutative) integral domain
(with unity) with well-ordered positive class. They constitute, in fact,
the unique ordered ring with unity having well-ordered positive class,
as we show in Corollary 10.4. However, ordered rings (with or without
unity) in which the positive class is not necessarily well-ordered, but
has a least element, abound, and these are the subject of the present study.

If the positive class has a least element e, then each element 7 of
the ring has an immediate successor r-e and an immediate predeces-
sor r—e. If the positive class has no least element, then between any
two distinet elements of the ring lie infinitely many ring elements. Thus
the order type of an ordered ring (indeed, any ordered group) is either
discrete throughout or dense throughout. We shall call ordered rings
discrete or dense aceording as the positive class has or has not a least
element.

Except in Section 4, where we consider the extension of discrete
partial orders to discrete full orders, only fully ordered rings are congidered,
and hereafter “ordered ring” is understood to mean “fully-ordered ring”.

In. Section 3 we show that whenever a discrete ordered ring is order-
embeddable in an ordered ring with umity, it is order-embeddable in
a discrete ordered ring with unity. In Section 4 we obtain a criterion for
the existence of a diserete full order, analogous to that of Fuchs for the
existence of a full order. Section 5 gives necessary conditions, and suf-

(*) Research supported by N8F Grant GY7675. Roger Bjorgan served as a very
valuable student assistant in this project.
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ficient eonditions, for a direct sum of ordered rings to be discrete order-
able. It turns out that none of the summands need be discrete orderable.
Section 6 provides examples of rings which admit infinitely many non-
isomorphic discrete orders. In Section 7 we show that every discrete
ordered ring may be order-embedded in a dense ordered ring, and in
Section 8, that every dense ordered ring may be order-embedded in
a discrete one. A necessary and sufficient condition for embeddability
of an ordered integral domain in a discrete ordered integral domain is
given. Section 9 deals with discrete subrings of ordered rings. In Section 10
we describe all rings with well-ordered positive class, and in Section 11
consider the extension of an order in K to R[«]/(x?+ bz+c).

2. Coxventions, some prelimmary observations, and examples. Except as
otherwise noted, ordered ring will always mean fully ordered associative
ring. Integral domain or domain will mean associative ring without divisors
of zero. A discrefe ordered ring is an ordered ring with least positive
element. This element we also call an atom, or afomic element, and we
usually denote it e. A ring which admits a total order (= full order) is
called an O-ring; one which admits a full diserete order we shall call
a D-ring. To indicate that na < [b] for all # in Z (the integers), we write
a<b. If neither o <b nor b <a, then o and b are in the same Archimedean
class.

The additive group of an ordered ring is always torsion-free. Thus
if the ring has a unity, 1, the subring which it generates is isomorphie
to the ring Z of integers. Whether or not the identity is atomic (when
the order is discrete) depends upon whether the ring has divisors of zero.

The following facts are immediately verified for discrete rings:
(1) Ers=0,0<u<r and 0<v<s, then uv= 0.

(2.2) If e is an atomic element in B and e*# 0, thenR is an integral
domain.

Discrete ordered rings may be classified broadly according to the
size of e®: (1) = 0; (2) €% Ze; (3) &* > Ze. Only in the second case is
¢ necessarily eentml.

(2.3)  If? = mu for some m ¢ Z and u is not a divisor of 0 in the ordered
ring R, then wr= ru = mr for all r ¢ R.

For, wr = mur = w(mr) = ur = my. From (2.2) and (2.3) we have
imme(}ia,tely

(2.4) \If &= me, then er = re= mr for all 7 ¢ R.

(2.5) - A discrete ordered Archimedean domain is isomorphic to mZ for
some me Z.

* © ’
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Examples (2.13) and (2.16) show that e¢ need not be central when

=0 or ¢ >Ze. In Section 5 we describe all Archimedean discrete
ordered rings.

(2.6) If ex = o for some & = 0, then R is an integral domain and e = 1.
For, 0 # 7= ex = ¢%r, 50 € 7 0.

(2.7) I R has a 1, then e=1 or 2= 0,

since 0 < e<1=>0<e< ¢ and hence ¢* is 0 or e.

(2.8) If ¢*= me and 72 = kr for some nonzero m, ke Z and r (# 0) « R,
then r = ne and % = nm for some = e Z.

For ke=re=mr by (2.3), so r is in the Archimedean class of e,
and hence r = ne for some n. Since kne = kr = 1* = n2%® = n’me, k = nm.

(2.9) If e >me for all me Z, and r, s are any positive elements of R,
then rs > mr+ns for all m,n e Z.

(2.10) If e =20 then er># for all r >0 in R.
(2.11) If ¢ # 0 then the convex ideal I generated by e is R.

Since every semi-simple Artinian O-ring is an O-field [1; Prop. 5,
p. 115], and obviously no field admits a discrete order, a D-ring cannot
be semi-simple Artinian. In fact,

(2.12) No D-ring is Artinian.

For if m, neZ, with m >1 and » + 0, then ne ¢ (mne), so that (ne)
properly contains (mne).

(For terms not defined here the reader is referred to [1].)

The following examples illustrate a variety of behavior, and will
be referred to at appropriate points later.

(2.13) Exampre. Let R= 2% wu=(1,0), e = (0,1). For given
positive integers m and %, define u?= mu, we= ke, and eu = e* = 0.
R may be ordered lexicographically, and e is atomiec.

(2.14) ExaxprE, R= 2%, u=(1,0), e=(0,1); u?= u-te, ue= eu
= ¢, ¢ = 0. If B is ordered lexicographically, ¢ iz atomie. In this example
B is commutative; in fact R is generated by u, since e = u2—u.

(215) Exavpre. B is the semigroup ring of the additive semi-
group of nonnegative rational numbers over the ring of integers. Equiva-
lently, R is the set of “polynomials” in o with integer coefficients and

.nonnegative rational exponents, and an element of R is positive if the

coefficient of the highest power of z is positive. The ordinary ring of
polynomials over the integers, ordered in the usual way, is a subring of R.
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-(2.16) ExanmpLE. R is the ring of polynomials in two noncommuting
indeterminates, & and y, with integer coefficients and no constant terms.
(Equivalently, the semigroup ring of the free semigroup on two gener-
ators over the ring of integers.) If u and v are two monomials and the
degree of  (in 2 and y) is smaller than that of v, put u<kv. Ifu= a,a,...a5

= v = byb, ... by Where each a; and each b; is  or ¥y, put w<w if in the first -

place where a; # b; we have a; = @. This determines an order in R in
which @ is atomie. '

3. Embedding in a ring with unity. Every ordered ring having an
element which is not a left divisor of zero and one which is not a right
divisor of zero may be order-embedded in a ring with unity, and under
certain conditions the embedding is possible when all elements are divisors
of zero. We shall show that whenever a discrete ordered ring is order-
embeddable in an ordered ring with unity, it is order-embeddable in
a discrete ordered ring with unity. There are three cases, described in the
three theorems following. (Not every ordered extension with unity is
discrete; see Theorem 7.2.)

(3.1) Turormy. Let R be an ordered ring with least positive element e,
and ¢ 0. Then R may be embedded in an order-preserving manner in
a discrete ordered integral domain 8 with unity (end 1 is atomic in 8).

Proof. (i) First suppose that ¢ > Ze. Then the standard extension
with unity, 8 = R X Z with vector addition and (@, m)(b, n) = (ab+mb+
-+ na, mn), ordered lexicographically (i.e. (a,m)>0 iff ¢ >0, or a=10
and m > 0), is discrete, with the unity (0, 1) as atom. ((2.9) implies that
(a, m)(b,n) >0 when (a,m) >0 and (b, n) >0.)

(i) Now suppose that e*= me for some integer m >0. If m =1,
¢ itself is an identity, by (2.4). If m > 1, let S=RX Z ag in (i). Now
(e, —m)(r, 0) = (er—mr, 0) = (0, 0) by (2.4), s0 § is not orderable with
the identity (0, 1) as least positive element, in view of (2.2). Let J be
the ideal generated by (e, —m). Sinee (r,j)(e, —m) = (e, —m)(r,J)
= (je, —jm), J = {k(e, —m): ke Z}. We have R>>8%5 8= 5|J, where
ré = (r,0) and ¢ iy the natural map. One notes that ker(d . ¢) = (0)
s0 B is embedded in §, and § has unity (0,1)4J.

It is easy to see that the elements of § are uniquely representable
in the form [r,j]l= (r,j)+J where 0<j<m. With elements written
in this form, define [r,4] >0 if r >0, or =0 and j > 0. It is routine
to check that S is fully ordered, with unity [0, 1] as atom (and therefore
§ is an integral domain), and that the embedding ¢ o ¢ preserves order. &

(3.2) TEEOREM. Let R be an ovdered ring with atomic element e, e = 0.

Assume that R has an element which is not a left divisor of 0 and one which .

8 not a right divisor of 0. Then R may be order-embedded in a discrete ordered
ring 8 with unity.
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Proof. That B may be order-embedded as an ideal in a ring § with
unity under the given conditions is known [1, Cor. 7, p. 111]. By replacing
S if necessary by the subring generated by 1 and R, we may assume that
each element of § is expressible in the form r—£%, where <R and
k= k-1 e Z. (Whether these expressions are unique is immaterial to our
argument.) We wish to show there is a smallest positive element of this type.

If (— k)2 >0, then !r— k| > e, since €2 = 0, so we need be concerned
only with elements r—k where (r—k)*= 0. We note that in this case
k2 = 2kr—r2 ¢ R.

Let J=1{jeZ: (r—j*=0 in § for some reR} and K =27 R.
Then J and K are ideals in Z, say J = (J,;) and K = (%;). Then we have
(73) C (ko) C {Jo). Write &y = mj, and jg = nk,. Then j, = nm. If, now,
(r—hj,)® = 0 in 8, then mr— mhj, € R, since mj, = ko ¢ R, 30 m(r— hjy) = e.
Thus no positive element of § is smaller than e/m. ®

If R does not satisfy the conditions of either of the two foregoing
theorems, all elements of R must be divisors of 0. For this case we have

(3.3) TeEOREM. Let B be an ordered ring in which every element is
a divisor of 0. Then R is order-embeddable in a ring with unity if and only if

(3.3.1) we < min{jul, p|]} for all w,veR.

If the order in R is discrete and {3.3.1) holds, then R is order-embeddable
in a discrete ordered ring with unity (and with the same atomic element).

Proof. We show first: that the condition (3.3.1) is necessary. Suppose
that § is an ordered ring with unity having R as an ordered subring,
and that u, v ¢ R. Since u is a divisor of 0, |u]<<1 in 8, so uv < |u|{v]
< |v|. Similarly we see that wo < |ul.

Suppose, conversely, that (3.3.1) holds. Let § = R X Z be the stand-
ard extension with unity, now ordered amtilexicographically. It is easy
to check that § is ordered, the subring R = R (0) is order-isomorphic
to R under the map(r, 0)1—+7, and that if R is discrete with atomic
element e, then (e, 0) is atomic in §. @

4. Conditions for existence of a discrete order. For use in this section
only we shall make some additional definitions.

(4.1) DEFINITION. A discrete subsemiring of the ring B is a pair (S, €)
where § is a semiring and 8 C R, ¢ a nonzero element of §, and § 0
in § = s—eeS. The element ¢ will be called the atomic element, or atom,
of (8,e).

(4.2) DEFINITION. A discrete partial order (d.p.o.) in a ring R is
a discrete semiring (P,e), where 0 e PCR and P is conic. Thus (i)
P~ —P=(0), (ii) P+PCP, (i) P-PC P, and (iv) » # 0 in P implies
r—eeP.
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A discrete full order (d.f.0.) is then a d.p.o. (P, ¢) with P —P = R,
One notes immediately:

(4.3) The atomic element in a d.p.o. is unique,

for if e, and e, were atomic then by (iv) e;—e, and ¢,—¢; would be in P,
and hence by (i), e, = €.

(4.4) If {(Pa,e)} is a collection of discrete subsemirings of a ring R,
then () Pa, ) is a discrete semiring.

If ACR, let K(4;e) be the intersection of all discrete semirings
in R containing A and with atom e. We shall write

KA, a,.,a5¢e Tor KA {a,..,a}; e,
K(A,B;e) for K(Awv Bje), ete.

The criterion for existence of & d.f.o. is analagous to that for existence
of a full order. Cf. [1, pp. 113-114].

(4.5) THEOREM. A necessary and sufficient condition that a d.p.o.
(P, €) in a ring R extend to a d.f.o. in E is that

(4.8.1) For every finite set {a, ..., an} in R, there are signs e, ..., e,
(each e; = + or —) such that K (P, & a, ..., entn; €) 18 conic.

The proof will be immediate from two lemmas.

(4.6) LeMMA. If (P, e) 48 a d.p.o. satisfying (4.5.1), then for each »
in R, one of K(P, m; e) and K (P, —u; €) defines ad.p.o. P’ satisfymg'(;j.l).

Proof. Note first that K(K(4;e),B;e)=K(4, B;e) for any sets
A4, B. Let P,= K(P,z;e) and Py= K (P, —x;¢). It both (P, e) and
(P,, €) fail to satisfy (4.5.1), then there are elements a, ..., @, by, ..., by
in R such that for all choices of signs e, ..., e, and 6y, ..., ds, both
K (P, %, &1, «ooy entny e) and K (P, —, 811, ..., 6ubm; ) fail to be conic.
But then K (P, g2, &1y, ooy Enny 0101, sy Oubm; €) is conic for no choice
of signs g, &1 +v-y €y 01y +.e 5 Om, contrary to the assumption that P satisfies
(4.5.1). ®

(4.7) Limvnma. Let § be the set of all d.p.o.’s in R containing a given
d.p.o. (P, e)-and satisfying (4.5.1). Then T, partially ordered by inclusion,
has & mazimal element.

Proof. It is straightforward to verify that the union of any chain
in § is again an element of P, so that Zorn’s Lemma applies. |

Proof of (4.5). The condition is obviously necessary. For the suf-
ficiency, let P be a maximal element of §. If neither x nor —a were in P
for some « in B, then by (4.6) one of K (P, x; ¢) and K (P, —x; ¢) would
be a d.p.o. satisfying (4.5.1), contrary to the maximality of P. m
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(4.8) COROLLARY. R is a D-ring with ¢ atomic if and only if P = K (e; e)
satisfies (4.5.1).

(4.9) CorOLLARY. If every finitely generated subring of R containing e is
a D-ring with e atomic, then so is E.

As an application of Theorerm 4.5 we may obtain a condition that
a discrete partial order be the intersection of discrete full orders.

(4.10) TumorEM. Let (P, e) be a d.p.o. in a ring R. A necessary and
sufficient condition. that P be the intersection of a collection {Q,} of d.f.o.’s
with e atomic is

(4.10.1)  If there exist @y, ..., @y € B such that K (P, — a, &0y, ..., &nGn; €)
is not conic for any choice. of signs &;, then a < .P.

Proof. To show the condition necessary, suppose P = [") @, each @,
A

a d.f.0. with atom e. If a¢P then a¢@, for some 1, s0 —ae@;; Le.
P’ = K(P,—a;e) extends to a dfo. @, with e atomic. By (4.5),
K (P, — @y &8y ey entn; €) = K (P, 8,05, ..., enan; €) is conic for some
choice of signs &;.

Now assume that (4.10.1) holds, and let & be any element of E\P.
From (4.10.1) we know that for every a,..,a,eR, K(P,—a,&a, ...
vy En@pj €) is conic for some choice of signs &;. Thus P'= K(P, —aj;e)
satisfies (4.5.1), so P’ extends to a d.f.o. @, with atom e. Then P
= [) @, ®

aeR\P
As an application of (4.8), let R be the ring of Example 2.15, and E,
the subring of “polynomials” with zero constant term. In the given order,
R, is a dense ring. We show that no diserete order exists for R,. If
e= 3 m,2% choose a positive rational s smaller than the minimum g

. occurring in e, and let a,= ", a,= > m,2?°. Then (ga)?=2° and

(101)%a, = ¢ are in K (e,ay, £as; ¢) for any choice of signs &, ¢. Since
—e e K(eya;, —ay; €), this set is not conic, and K (s a, ay;e) contains
(as— e)(e10,)* = e—e(e,4,)® and its negative, so is not conic.

5. Direct sums. We recall that a direct sum of O-rings is an O-ring
if and only if at most one of the summands has nontrivial multiplication
[1, Prop. 4, p. 114]. The question of when a direct sum of rings is
a D-ring is a bit more involved. For example, it is not necessary that
any summands be D-rings (although they must obviously be O-rings).
On the other hand, it is necessary that at most one summand have non-
trivial multiplication (since a D-ring is an O-ring), so we are led first
to some investigation of discrete ordered abelian groups. An is well-
known, an abelian group admits a full order if and only if it is torsion-fres.
For the discrete case the condition (4.5.1) may be immediately adapted,
of course, but some other characterizations will be more useful.
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(5.1) TaEorEM. Let @ be a torsion-free (additive) abelian group, and
e e @. The following are equivalent:

A) G admits a discrete full order with atom e.

B) Given elements @y, ..., an 0 @, if W signs &, ..., e Such that

=D

(
(

Fi(eeats)+ ke = 0 with k; > 0 in Z and k in Z, then k= 0 and each kya; = 0.
(

C) Bvery finitely generated subgroup of G containing ¢ admits a d.f.o.
with atom e. )

(D) For every finitely generated subgroup of G comtuining e, there is
a minimal generating set containing e.

(B) ¢ is mot divisible in G by an inieger >1.

Proof. The eguivalence of (A),-(B) and (C) is immediate from Theo-
rem 4.5 and Corollary 4.9, since (4.5.1) reduces to (B) when E has trivial
multiplication. That (A) implies (BE) is obvious, and that (D) implies (C)
is easy (extend e to a basis and order lexicographically). We shall com-
plete the proof of equivalence by showing that (E) implies (D). Let @ be
a subgroup of @ having dimension n. We may suppose @ = 2" and that
the assertion is valid for dimension n—1. Let Gy be an (n—1)-dimensional
subgroup of G containing e, and H the (n—1)-dimensional vector space
(over the reals) determined by &,. Then G,= G~ H is'an (n—1)-di-
mensional subgroup of @ containing @, . Extend ¢ to a basis {¢, by, ..., b, _,}
of @,. Bach coset of @, in G is the part of @ in some hyperplane parallel
to H, and there is one of these whose positive distance from H (measured
in R") is minimal. If b, is any element of @ in this nearest hyperplane,
then @ = G-+ Zbn; i.6. {€, Day ey by_q, by} is a Dbasis for G. m

(5.2). COROLLARY. A ring with trivial multiplication is a D-ving if,
and only if, its additive group is torsion free and it has an element not divi-
sible by an integer >1. '

This corollary allows us incidentally to describe all discrete Archime-
dean ordered rings. Hion [2] has shown that every Archimedean ordered
ring is (up to order-isomorphism) either a subring of the real numbers R
with usual order, or a ring with trivial multiplication and. with additive
group a subgroup of R. The former case we have already mentioned
in (2.5); in the latter case Corollary 5.2 applies.

(6.3) CoroLLARY. Hvery discrete ordered Archimedean ving R is
order-isomorphic to mZ for some m e Z or to a trivial ring whose additive
group s a subgroup of the real numbers and contains an element not divi-
sible in B by an integer >1. Conversely, all such rings are discrete Archi-
medean ordered. (Cf. (10.2) and (10.3).)

To turn now to the question of direct sums, we show first that the
summands need not be D-rings.

(5.4) ExaMPLE. Let Q= {m-27" m,n ¢ Z} and Q= {m-3"": m,n < Z}
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with the usual addition bui trivial multiplication, and R = Q.3 Q4. Then
R is a D-ring, but neither Q, nor @, is. For, neither summand has an in-
divisible element, but (1,1) is indivisible in R.

We have not succeeded in finding a satisfactory necessary and
sufficient condition that a direct sum of 9-rings be a D-ring. (For
a direct sum of D-rings see Corollary 5.7.) Certain conditions ave obvi-
ously necessary: the atomic element must be indivisible and not a sum
of two or more even products (products in which each expressed factor
ocecurs an even number of times). We have also:

(5.5) THEOREM. Lot B be the divect sum of the O-rings {R,: y eI}
(Assume that I' and each R, has at least two elements.) If R is a D-ring
with e as an atomic element, then

(A) at most one R, has nontrivial multiplication, and

(B) eR = Re = 0. (In particular, the component of e in the nontrivial E,
annihilates R .)

Proof. (A) is necessary in order that R be an O-ring, as we have
already remarked. (B) Let B be ordered, with e >0 atomic. Since at
least one R, has trivial multiplication and has a nonzero element, Hr >0
in R, such that 7R = BEr = 0. Then ¢R= Re=0,since 0 <e< 7. ®

We have not found a counterexample to show that the conditions
of (5.5), along with the necessary conditions of the preceding paragraph,
are not sufficient; however, our sufficient condifions are not sharply
different from the necessary ones: -

(5.6) THEOREM. Let R be the direct sum of the O-rings {R.}, and write
R= R,©&R,, where R, is the sum of all R, with trivial multiplication
and R, the sum of the remaining ones. If

(A) R, is (0) or consists of a single E,, and

(B) Ry is a D-ring (i.e., has an indivisible element) or Ry is a D-ring
= (0) with annihilating atomic element, then R is a. D-ring.

Proof. If R, = (0) we have B = R, is a D-ring by (B), so we suppose
R, = (0). If R, is a D-ring, let R, be given a diserete order and E, any
order. Then it is easy to check that antilexicographic order in B = R, ® &,
is a discrete full order. (r = 7,-+7y, s € R, is positive if 7, >0 in R,, or
7, =0 and 7, >0 in R,.) If R, has an annihilating atomic element e, let
R be ordered as follows: For r; € Ry, 1,7, > 0 if (i) 7, > 0 and n,> ¢ in B,,
or (ii) 7, e Ze and 7, > 0 in R, or (iii) », = 0 and r, = ke for some integer
% >0. Then (r,-7.)(8,-+8y) = 728, = 0 unless both 7,>e¢ and s;>e; all
the required order properties easily follow, and e is the least positive
element in K. &

(8.7) COROLLARY. A direct sum of D-rings is o D-ring if, and only 1f,
at most one summand has nonirivial multiplication.
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That condition (B) in (5.6) is not necessary is seen from

(5.8) Bxampie. Let B= R, @ R,, where R, = {p-837%: p,qeZ}
with all products 0, and R,= {ka+m-2 "¢ &, m,n ¢ Z} with o = ¢,,
6,0 = ag, = ¢ = 0. Then neither R, nor B, is a D-ring, and R, has non-
trivial multiplication (and R, is not itself a direct sum), but R is a D -ring.
For: each element of R, is divisible by 3, so R, is not a D-ring by (5.2).
In any order in R, we must have |a| > e, since ¢, is an annihilator; since there
is no smallest multiple of e,, R, is not a D-ring. In R, let p-37%, + ka+
4m 2", >0 if (i) k>0, or (ii) k=0, and p-37%+m 27" >0, or (iii)
k=10, p-3~%4+m-27" =0 and p >0. One verifies readily that this de-
fines a full order in R, with ¢,— ¢, the least positive element.

6. D-rings with many possible atomic elements. This section is primarily
concerned with some examples. In some D-rings, all discrete orders have
the same atomic element. This is the case, for example, in an integral
domain with 1 (where the atom must be 1). If R is a discrete ordered ring
and ¢ an automorphism of B, then « induces another discrete order in R;
if ¢ is atomic in the original order, ea is atomie in the new order. In some
cases discrete orders with different atomic elements exist, but for any
two, one may be obtained from the other by applying an automorphism.
For example, this is the case when R is a finitely generated ring with
trivial multiplication, as one sees from Theorem 5.1. However, there
are D-rings which admit infinitely many discrete orders and no auto-
morphism mapping the atomic element of one onto that of a different
one. We give an example in each of the three cases, (i) eR = Re = (0),
(ii) 2= 0 but eR 5~ 0, and (iii) e # 0. (Any two atomic elements must,
of course, have the same left and right annihilators.)

(6.1) ExamPLE. Let R be the ring of Example 5.8. Choose relatively -

prime integers m, n, neither divisible by 2 or 3, and define P, , in R by
e+ UslytRae Py, it k>0, or k= 0 and mu,-+nu; >0, or k= 0 and
U = Uy = 0. Then (A) P,, . is a discrete full order in R, with ¢ = me,— ne,
atomic, and (B) if o is any automorphism of R, then (me,—ne,) a = bme,—
— ene, for some b, ¢ € Z. Thus there are infinitely many choices of (m, n)
such that for no two of them is there an automorphism mapping the
one atomic element onto the other. The proofs of (A) and (B) are left
to the reader. For (B), note that if « is an automorphism of R, then ¢a
and e,a must annihilate R, so have the form u; e+ u,e,.

(6.2) Exampre. With B as in (6.1), let 8 = B x Z, with the order
deseribed in the proof of (3.3). For each atomic element ¢ in R, (e, 0) is
atomie in §, and again there are infinitely many, with no automorphism
of § mapping one onto another. Here (e, 0)2 = (0, 0) but (6,0)8 = S(e, 0)
+(0,0). :
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(6.3) Exampre. Let B be the ring of polynomials in a denumerably
infinite set of commuting indeterminates {, @,, ...}, with integral coef-
ficients, and with the constant terms and the coefficients of z] equal
to zero for 1 < j<Ci. Then for each ¢ there is a discrete order in R for
which #} is atomie, and if ¢+ j no automorphism of R maps z to .
This time F is an integral domain. To obtain the desired order, order
the indeterminates with a; first, and decree that if m < z, then every
polynomial in #, is <®, (and, of course, «f*'> z* for all n and k).

7. Embedding a discrete ring in a dense ring. If D is a discrete ordered
commutative integral domain, the order in D extends in a unique way
to the field F' of quotients, and the order in F is necessarily dense. We
show in this section how to embed an arbitrary discrete ordered ring in
a dense ordered ring. The following lemma is probably well-known, but
we have not encountered it before.

(7.1) LevmA. Let B be a ring whose addifive group is iorsion-free.
Then R may be embedded in a ring S such that if < S and n #% 0 in Z then
z = ny for some y 8. (Hvery torsion-free Z-module may be embedded in
a Q-module, where Q is the field of rational numbers.)

Proof. One roughly imitates the formation of quotient field, as
follows: In @ X R, define (m/n, r)~(m'[n’, 7') to mean mn'r = m’nr’. This
is an equivalence relation; let § be the set of equivalence classes, and
denote the class of (g, 7) by [¢g,7]. In 8, define the sum and produet of
[m/n,r] and [m'[n',+'] by [1fnn', ma'r+m'nr’]l and [mm'[nn’, #r'], Te-
spectively. Then one routinely checks that the operations are well-defined,
8§ is a ring under these operations, and the map ¢: R—S defined by rp
=[1, 7] is~an isomorphism onto a subring R’ of S. m

(7.2) TEHROREM. EHvery discrelte ordered ring may be embedded in an
order-preserving manner in a dense ordered ring.

Proof. If R is a discrete ordered ring, let S be the extension con-
structed in the lemma. Call [m/n,r] >0 in § if mnr > 0 in R. This order
is well-defined in S, is dense, and extends the order induced in the sub-
ring R’ by the isomorphism ¢ in the proof of (7.1). m

8. Embedding an ordered ring in a discrete ring. Not every subring of
a discrete ordered ring is discrete in the induced order. For instance,
in the ring of Example (2.15), the subring of polynomials having zero
constant term is not discrete. In Example (5.4) we have a direct sum
of two rings, with a discrete order in the sum, while the induced order
in. each summand is dense (indeed, the summands are not even D-rings).
These examples, it turns out, are not exceptional. On the contrary, we
shall show that every dense ordered ring may be found as an ordered
subring of some discrete ordered ring.

3 — Fundamenta Mathematicae T. LXXXV
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(8.1) Lienna. If << (n1)r for some.mieger I o?nd some 7 >0
in an ordered integral domain D, then there exists x> 0 in D such that
o<<ar<<r. v

Proof. Either 2mr< 212 < (2n41)r or (2n+-1)r < 272 < (2n--2)7.
e assume the former, the proof Dbeing similar in the latter case. Thus,
0 < 22—2nr < r. Choose k 80 that 2% >n-+1. Then

(n+1) (r— ) < (2r—2n)Fr = (27— oany*e=42r*—2nr)7
< @r—2n) 1 < .. < (2r—2m)7° = (2r°—2nr) 7

<r < (@+l)r,

g0 we have 0< [(r—n)frlr<r. ® '

(8.2) TumorEM. (A) Every ordered ring R is owder—embe.dda-ble in
o diserete ordered ring 8. (B) If R is an ordered integral domain, % may
be order-embedded in o discrete ordered integral domain if, and only if,

(8.2.1) lzy| = max{w,y} for all @,y in R.

Proof. (A) If R is not itself discrete, let E be any diseret?e ordere.d
ring with trivial multiplieation. Then 8= R® R, with 1611.100gmph10
order, has the required properties. In particular, the atomic elemel?t
is (0, %), where € is atomic in £. (B) If § is a discrete ordered domain
containing R, with atomic element e, and #,y e B, then

lzy| = max {|ale, elyl} > max{la|, |y} ,

by (2.10). Thus (8.2.1) is necessary. .

Assume, conversely, that (8.2.1) holds. In view of Lemma (8.1)
and (8.2.1), if 7 >0 in R, either 1% ¢ or 2 = mr for some m ¢ Z. In th.e
Iatter case r = m (see (2.3)), and the smallest positive integer in B is
atomic; i.e., R itself is discrete. In the former case, 8= EX Z, the
standard extension with unity, ordered lexicographically (see pro‘of
(3.1), (i)) is a discrete ordered extension of R, with no divisors of zero.

9. Discrete subrings of ordered rings. Given a dense ordered ring, it
seemed natural to inquire about the discrete subrings it might contain.
We considered primarily the extreme cases of singly generated subrings
and maximal subrings. ‘

(9.1) LEawa. If na < o2 < (n-+1)a for some o > 0 in an ordered ring B
and some m € Z, then no subring containing o and having no divisors of zero

is discrete ordered.

Proof. Let § be a subring containing ¢ and having no divisors of
zero. Tf f >0 in §, then 0 < o®*—na < o implies 0 < a?f—naf < of, and
thus 0 < af—nf<f. B
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(9.2) THEOREM. If D is an ordered integral domain and ae D then
the subdomain D, generated by o is discrete if, and only if, a*>e Za or
a®> a.

Proof. If «® = ma for some m ¢ Z, then D, = mZ by (2.3). If ¢?>a
then D, consists of all polynomials in « with integral coefficients and
zero constant term, ordered according to the coefficient of the highest
power of |a|. The least positive element is |al.

The converse is immediate from Lemma 9.1. &

One might guess from Lemma 9.1 that if « is not a zero divisor and
na < 6*< (n+1)a for some integer n, then the subring generated by «
fails to be diserete. That this is not the case may by seen from Ex-
ample 2.14, where » << 4*<C 2u, and u is not a divisor of 0, but » generates
all of R, and R is discrete.

A dense ordered ring need not, in general, have a maximal discrete
ordered subring. If R is the ring of Example (2.15), R, the subring of
polynomials with zero constant terms, and § any discrete subring of Ry,
there is an element 2? in R, which is smaller than the atomic element of S,
and the subring generated by 8 and 2? is again discrete. Thus R, has no
maximal diserete subring.

‘We do, however, obtain some results about maximal discrete sub-
rings of a special kind.

(9.3) DerFINITION. A commutative ordered ring R is strongly discrete
if there is a set T'C R satisfying

(i) T generates R, )

(ii) # < y in T implies every polynomial in # with integer coefficients
is <y, and

(iif) 7 has a least element f,, and y < min{f,y, yt,} for all ¥y >0
in R. (We abbreviate in (iii) by writing {,> 1, even if R does not
have a 1.)

(9.4) LemvA. If R is a strongly discrete commutative integral domain,
then R is discrete.

Proof. Let T be the generating set of (9.3) and %, its least element.
‘We show first that representation of elements of B as polynomials in T
with integral coefficients is unique. If it is not, then 0 may be represented
as a polynomial P (%, ..., %) in a nontrivial way, where f,, ..., ¢ I. We
assume that each of %, ..., {» actually oceurs with a nonzero coefficient,
that 1, is the largest of them, and that the number of #; occurring is minimal
for all such nontrivial representations of 0. If we write

P(tn ey n) = Z‘Pi(tl5 seey tn—1)t7i» ?
i=0

3%
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then 'Pm(tlj R tn—-l) # 0 80 le(tlf er? tn—l)i > 1 (1t iS > &HY ti Whlch
actually occurs). Thus

m—1
Pty oy by 01> 10| T Pile, s )]

1=0
contrary to P(ty, ..., tn)= 0. .
Tt is clear now that when , < f,< ... <t in T, {Z{)Pi(tl, ey by )EE >0

precisely when P, (6, vy tnq) >0, and therefore %, is the least positive
element of R. @

NorATION. We write # S y to mhean thabt o is greater than every
integral polynomial in y. .

(9.5) TEEOREM. A necessary condition for a commutative ordered
integral domain D to have a mazimal strongly discrete subdomain s that

(9.5.1) . Every infinite subset of D which is totally ordered by S and whose
dlements are >1 -has a lower bound =1 in D.

Proof. Tet M be 2 maximal strongly discrete subdomain, T the
generating set for M called for in (9.3), %= minT, and X = {z,: y I}
an infinite subset of D totally ordered by S. We assume X has no leas
element, since otherwise there is nothing to prove. If #, =z, for some
y e I, then t, & m, for some g, and the subdomain generated by T w {#,}
would violate the maximality of M. Thus i,<u, for each y eI Also,
1<t by (2.10) and the fact that M is discrete. m

Tet us call a set T satistying (i) and (iii) in (9.3) qualified. Following
is a partial converse to Theorem 9.5. .

(9.6) TeEoREM. If D is a commutative ordered integral domain satis-
Fying (9.5.1), then every qualified set in D is contained in a mazimal quali-
fied set. (Thus D contains strongly discrete subdomains for which the gener-
ating set is maximal.)

Proof. Let T, be a qualified set and G the collection. of all qualified
sets containing T,. T is partially ordered by inclusion. If {T,: y I} is
a totally ordered subset of C, let T = T, . If T has a jeast element;,

r

then 7' is a qualified set. If 7 has no least element, there is by (9.5.1)
an element %, > 1 in D which is a lower bound for 7. Clearly we must
have <1, for each te T, so T w {f} is qualified. Zorn’s Lemma now
gives the desired result. m

Tt does not follow, however, that a commutative ordered domain
satisfying (9.5.1) has a maximal strongly discrete subdomain. In the
domain R, described just before (9.3), no two elements satisfy 7 <<s,
so (9.5.1) holds, but R, has no maximal discrete subdomain.
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10. Rings with well-ordered positive class. These may be disposed of
quite briefly.

(10.1) LeMmmA. If R = (0) is an ordered ring with well-ordered positive
class then the additive group of R 1is infinite eyclic.

Proof. If not, there must be a first element w such that w > Ze.
But then w-—e > Ze also. Thus B = Ze. &

(10.2) TEEOREM. If B # (0) is an ordered ring with well-ordered positive
class, then R is (order-isomorphic to) a subring of Z, or to Z with trivial
multiplication.

Proof. By the lemma, R = Ze. If ¢ = me then the map ke>mk is
an isomorphism of R onto mZ. If ¢ = 0, R has trivial multiplication. m

By comparison of (10.2) with (5.3) we obtain

(10.3) CorROLLARY. A discrete ordered ring is Archimedean if, and
only if, iis positive class is well-ordered.

(10.4) COROLIARY. (A) If R is an ordered ring with unity and with
well-ordered positive class, then R is isomorphic to Z.

(B) If R is an Archimedean discrete ordered ring with unity, then R is
isomorphic to Z.

11. Orders for R[x]/(#*+ bx-+c). Assume now that B has a unity,
and consider the extension § = R[z]/(z*+ bzt ¢), always assuming that o
commutes with RB. We may have

(1) 2®+br+c= (z— a)?,

(ii) #®+br+c¢= (x—7r)(x—s) where r s~ s, or

(ili) 22} bz+ ¢ is irreducible in E[z].

The first two cases are easily disposed of; in the third we shall place
further restrictions upon R.

(11.1). TEEOREM. If R is an ordered ring with unity and a e B, then
the order in R extends to 8 = R[z]/((z— a)’). If R is discrete, so is 8.

Proof. We may write each element of § in the form 74 s = #'--s’,
where r,se¢ R and ' = r4sa, ' = x—a. Since

(@2 =0, (8,2 (ot 8&’) = 175+ (y Sot 8, 75) @,
and § may be ordered lexicographically: r+4sz' >0 if r >0, or r= 0
and s > 0. If R has an atomic element e, then ex’ is atomic in S. W

(11.2) TumoreM. If R is a ring with unity and r # s in R, then S
= R[m]/((m~ r) (m——s)) is not an O-ring.

Proof. Since (z—7)(z—s) = 0 in S, the square of the smaller factor
in any ordering of § would be 0. But

(2—7)? = 22— 2rp-+ 12 = (v 8)o—rs—2ro+ 12

cannot be 0 in § when r # s; similarly (z—s)*# 0. B
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Suppose now that 2?2+ bx- ¢ is irreducible in E[«]. If 4 = b2—4e < 0,
the order in R does not extend to §, since b*— 46 = (20-+Db)% If 4 =0,
then 4(z2+ bx+c) = (2o b)? is reducible, so if b= 2b’ for some b’ in R,
we are back to (11.1). We shall not consider 4 = 0 otherwige.

Tor the case 4 >0 we make some further assumptions, and the
next theorem summarizes our Tesults.

(11.3) TemoreM. Suppose that B is a commutative ordered integral
domain with unity, and p(z) = B*+br+tc @ polynomial over B such that
" for each d# 0 in R, dp(x) is irreducible in R[x], and 4 = b*—4e >0,
Let 8 = R[«]f(p(w)) and let Ps be the set of elements re-+s in S such that
one of the following three conditions holds:

(11.3.1) r=0 and 2s—1b=03
(11.3.2) r>0, 25—rb<0 and 124> (2s—rb)}
(11.3.3) r<0, 2—rb>0 and r4< (28— D)2

Then Pg is a positive class in 8. If R is discrete ordered, o mecessary but
not sufficient condition that 8 be disorete ordered is that 4> 1.

Proof. Note first that if 7 # 0, #2(b*— 4¢) is not a square in R, since
otherwise 41%p(x)= (2ro—rb)*—r3(b*—4c) would be reducible. Thus
Py~ —Pg=(0), and it is clear that Ps v —Ps= E, so to show that
Ps is @ positive class it remains to show that it is closed under addition
and multiplication. For j=1,2, let u; = ryw+s;. Then 2u; = ry84-1;,
where 6 = 22-+b and t; = 2s;—7sb, and &= A. The definition of Py
divides it into three subclasses, giving us six types of sums and six types
of products to consider. We label these -sums (i)<4-(i), (1)-+(ii), ete., ac-
cording as u, and u, both satisfy (11.3.1), u, satisfies (11.3.1) and u, (11.3.2),
ete., and in a similar way label the products (i)(i), (i)(ii), ete.

(i)+(i). The sum is clearly again of type (i).

() (). Here (1) < < 554 < (14724, 80 2 (14 1) = (1172)
(2-£b)+(t,++1,) is of type (i) if -1, < 0 (and of type (i) otherwise).

(i) (iii). If r,+7, >0, the sum is of type (i); if nn+r <O, then
P < 113 << 0, 80 (rn47)24 <724 < B < (4-+14)%, and the sum s of
type (iii).

(ii)+(ii). Since ## < r2124% we have 0< tl,< 17,4, and hence
(rnt-maf’d = R4+ A+ 2074 > G+ G+ 20t = (b+1)%, so the sum is of
type (ii). .

(iii) - (i) is proved similarly.

(ii) - (iii). Here we must consider four subcases.

(a) It ry+7,> 0 and #,+1, >0, the sum is type (i).

(b) If r;+7, >0 and %41, << 0, we show the sum is type (ii). From
0< —7,< 7 and 0<#< —1, it follows thab '

(11.3.4) V<A< B< <.
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Thus, 7348 < 124, and hence |r.t]| < |£,7;]. Then

[rety] = iret]— I ol — Ireda] < Iyl Iradl— [rot] — [radal 5

ie.,

(] F Iral) (= 18]) < (e Ire]) ([ - 1815
ie.,
(11.3.5) (n—r)(—h—h) < (n+n)(—t+b),

and each factor here is positive.
From (11.3.4) and (11.3.5) we infer that
(A (n—rn)(—t+6) = (T—B) d(n+r)(—h+1)
> (G—B) (n—r) (—t—1)
= (h+B)H— b+ %) (r—1),
and hence (r;+ 7)1 > (4, +1,)% as desired.

(e) It nE£r<0 and #+1% >0, a similar argument shows that
(ryF7afd < (B+4)

(d) T ry+r< 0 and +4,< 0, then 0 << —7ry= 0 < 174 < #24,
and 0 < << —4, = 0 << 83, while §§ < 124 < 124 < £, a contradiction.
Thus this case does not occur.

For the product, note that

(16+4)(rd+1) = (b)) 0+ (bl +nmd) .

(i). The product is clearly again of type (i).
(ii). (a) If rtfrety > 0 and #t,+rrd > 0, the product is of
)

()
)

type (i).

(b) Suppose rf,+17s < 0; ie., 0<< 7, < 1yfty]. We show that then

(11.3.8)

and

(11.3.7) (r et A < (hlaFrim A,

so the produect is of type (iii) or (i).

Since 0 < 115 < 15713 < 137134, we have
(11.3.8) B<r?d and #B<nid.

Then [tt,]| < 73754, 50 (11.3.6) holds. Now (11.3.7) e+ 4* > i+
+ifde (HA—6)(r34—1) >0, and the last inequality follows from
(11.3.8). :

(c) Suppose t,t,-- 7754 << 0. Then from (b) we see that nt, 447, >0,
and we must show that (rfa-+67)24 > (L, +n7y4)%, ie. the product
is type (ii). Bub now [t > 74, 50 28 > r2r24% > 11 4%; hence rid < 17
and 724 >, and the desired inequality follows as in (b).

Ll rrd >0,
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(i) (iii). The proof is similar to that of (i)(ii). ‘ .

(i) (ii). In this case rify+7reh < 0 and #,t,+ 774 >0 are immediate,
and (11.4.3) holds, so (11.4.2) follows as before, and the product is of
type (ii)' Y] o

(iii) (iif). The proof is similar to that of (i1) (if).

(if) (iii). Here 124 > ¢ and 154 < 15, and this is used in 2 now familiar
manner to show (ryf,--7eh)24 > (fl—1,734)%; hence the product is of
type (ii). : ' )

Suppose now that B is discrete ordered. Note that § is an integral
domain, for if (r,@+s;)(ra@+ ) =0 in S, then

(ry®+81) (ra®-82) = 1ara (WP +ba+¢) ,

50 that (ryry @+ 758,) (ryry@-+8y7y) = ir3p (2), which is impossible unless
7,1, = 0. Thus we cannot have A< 1in 8. If 4 were in the same Archi-
medean class with 1, then 2z4b = A" would be in this class, but not
be an integer (because p(w) is irreducible), and § would not be discrete.
Thus 4 » 1.

To show the condition is not sufficient consider

(11.4) Examers. R = Z[y], p(») = @+ (y+4)2+2, 8= R[z]/(p ().
Then A = 42+ 8y+8 > 1 in the usual order for B, and & = 20 (y+4).
If we put 4 = d— (y+3) = 20-+1, we find 0 < w < 1 in the order defined
for § by (11.3.1) to (11.3.3). Since § is an integral domain, it cannot be
discrete ordered.
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Regarding arc-wise accessibility in the plane
by

James Williams (Bowling Green, Ohio)

Abstract. Suppose S is a bounded relatively closed subset of the upper half-plane H,
and that F is the set of all points on the z-axis which can be reached from the line y = 1
by an ave lying in S. Question: Which sets F arise in this way? It is (with mild restrictions
on S) necessary and sufficient that F be an F,; set. The corresponding problem where
§ is open is also briefly discnssed. The results of the paper prove sharpness for a theo-
rem by J. Gresser on almost are-wise accessibility, and also demonstrate some possi-
bilities for sectioning bounded sets.

§ 1. Closed access sets.

DeriNiTIONS. Let I be the closed unit interval; we shall identify T
with Ix {0}; an arc is & set that’s homeomorphic with the half-open
interval [0, 1). Unless otherwise indicated, the topologies to be considered
are the relative plane topologies on I and on Ix{0,1]. Given a set
8 CIx(0,1], we shall say that a point @ e I is accessible (or more accur-
ately, 1-accessible) through § iff some arc in § meets 7 X {1} and touches
x. @ is almost accessible iff it is accessible through every neighborhood of S.
Given FC I, 8 is an access set for F iff 7 is the set of all points in I acces-
sible through 8. § is a parallel access set for F iff in addition there is
a disjoint family {a;| ® < F'} of arcs in § sueh that Vo e ¥, o, meets I x {1}
and touches . § is a definitive access set for F iff in addition, Ve e I—F,
no arc in § touches .

Relative to the above definitions, Gresser’s Lemma 1, p. 324 of [2]
is equivalent to the following:

If § is an access set for a dense subset of I, then every point of I is
almost accessible through the elosure of S (in I X (0, 1]).

The theorem’s sharpness follows from Example 7 and the following
result whose proof will be established through a series of lemmas:

THEEOREM 5. For any subsel F of I, the following are equivalent:
1) F has a closed parallel access set.

2) F has a closed definitive access set.

3) F has a closed definitive parallel access set.

4) F is an F,; subset of I.
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