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(i) (iii). The proof is similar to that of (i)(ii). ‘ .

(i) (ii). In this case rify+7reh < 0 and #,t,+ 774 >0 are immediate,
and (11.4.3) holds, so (11.4.2) follows as before, and the product is of
type (ii)' Y] o

(iii) (iif). The proof is similar to that of (i1) (if).

(if) (iii). Here 124 > ¢ and 154 < 15, and this is used in 2 now familiar
manner to show (ryf,--7eh)24 > (fl—1,734)%; hence the product is of
type (ii). : ' )

Suppose now that B is discrete ordered. Note that § is an integral
domain, for if (r,@+s;)(ra@+ ) =0 in S, then

(ry®+81) (ra®-82) = 1ara (WP +ba+¢) ,

50 that (ryry @+ 758,) (ryry@-+8y7y) = ir3p (2), which is impossible unless
7,1, = 0. Thus we cannot have A< 1in 8. If 4 were in the same Archi-
medean class with 1, then 2z4b = A" would be in this class, but not
be an integer (because p(w) is irreducible), and § would not be discrete.
Thus 4 » 1.

To show the condition is not sufficient consider

(11.4) Examers. R = Z[y], p(») = @+ (y+4)2+2, 8= R[z]/(p ().
Then A = 42+ 8y+8 > 1 in the usual order for B, and & = 20 (y+4).
If we put 4 = d— (y+3) = 20-+1, we find 0 < w < 1 in the order defined
for § by (11.3.1) to (11.3.3). Since § is an integral domain, it cannot be
discrete ordered.
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Regarding arc-wise accessibility in the plane
by

James Williams (Bowling Green, Ohio)

Abstract. Suppose S is a bounded relatively closed subset of the upper half-plane H,
and that F is the set of all points on the z-axis which can be reached from the line y = 1
by an ave lying in S. Question: Which sets F arise in this way? It is (with mild restrictions
on S) necessary and sufficient that F be an F,; set. The corresponding problem where
§ is open is also briefly discnssed. The results of the paper prove sharpness for a theo-
rem by J. Gresser on almost are-wise accessibility, and also demonstrate some possi-
bilities for sectioning bounded sets.

§ 1. Closed access sets.

DeriNiTIONS. Let I be the closed unit interval; we shall identify T
with Ix {0}; an arc is & set that’s homeomorphic with the half-open
interval [0, 1). Unless otherwise indicated, the topologies to be considered
are the relative plane topologies on I and on Ix{0,1]. Given a set
8 CIx(0,1], we shall say that a point @ e I is accessible (or more accur-
ately, 1-accessible) through § iff some arc in § meets 7 X {1} and touches
x. @ is almost accessible iff it is accessible through every neighborhood of S.
Given FC I, 8 is an access set for F iff 7 is the set of all points in I acces-
sible through 8. § is a parallel access set for F iff in addition there is
a disjoint family {a;| ® < F'} of arcs in § sueh that Vo e ¥, o, meets I x {1}
and touches . § is a definitive access set for F iff in addition, Ve e I—F,
no arc in § touches .

Relative to the above definitions, Gresser’s Lemma 1, p. 324 of [2]
is equivalent to the following:

If § is an access set for a dense subset of I, then every point of I is
almost accessible through the elosure of S (in I X (0, 1]).

The theorem’s sharpness follows from Example 7 and the following
result whose proof will be established through a series of lemmas:

THEEOREM 5. For any subsel F of I, the following are equivalent:
1) F has a closed parallel access set.

2) F has a closed definitive access set.

3) F has a closed definitive parallel access set.

4) F is an F,; subset of I.
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DEFINITION. If o is an arve in Ix (0,1] from Ix {1} to Ix {0}, it
will be convenient to let OF(a) (respectively, ~(a)) be the right (left)
component of Ix(0,1]—a.

Teaa 1. Boery 5, subset T of I has a closed parallel access set 8 such
that the plane closure of 8 is just B~ v §7. .

Proof. Let M = IX [}, §]. Suppose F C I isan J, seb. Let {Fn] 7 ¢ o}
be a nested sequence of closed sets whose union is F. For each n, let
{Gni| % € 0} be a sequericing of the components of I— Fy. Proceeding by
induction with = > 0, assume chosen (for » >0) or choose (for n=0)
the following: a closed parallel access set Sy for Fy, where Sy = Fox (0, 1];
and for each % € w, a closed set Thx C GuxX (0,1] and a family

{q)nk: G';k * [01 1]_>Tnk hd ';L-ch {0}| k € w}

of homeomorphisms (in the relative plane topologies) such that for each &,

(@) 8n U {Tagl j € 0} = O,

(i) gns is the identity map on Guzx {0} and takes @ {1} into
Ix {1},

(iii) Tnz crosses M at least 2n-1 times in the sense that every arc
in Ty from Ix {1} to Ix {0} divides M intoat least 2n+-2 components.

(iv) Any disjoint monotone sequence of arcs in S, that is cofinal
with a similar sequence in the complement of 8, converges to an arc.

Let C be a component of Ty ~ M such that O separates Tnx, and
every are in Tnp from Ix {1} to Ix {0} crosses M in O. Then ¢;[0] is
a relatively closed subset of Gnix [0, 1] separating Gax X {0} and Gnr X {1}
Let ynz be a homeomorphism of @, x[0,1] into itself such that
Yar[ G, X (0, 17] crosses ¢, A{C] three times, . restricted to GaxX {0} is
the identity map, and yu; takes Gy X (0,1] into Gur X (0,1] and takes
G X {1} into Guex {1}. Then g, o 9, [Gm X (0,1]] is a subset of Tm
which crosses M at least 2n-+3 times. For each ke w, let

B = @ui o pai (Fppy N Gp) X (0, 117

Let 8,y = 8, U{Kr| kew} Bach Ky is closed in Ix(0,1], and so
is 8., for the following reasons: any sequence not eventually in a given
Ky is contained in a corresponding sequence of Kj’s, and is thus related
to ‘a corresponding sequence of Gni's, which contains a monotone sub-
sequence converging to some 4 ¢ F,. But then the corresponding sub-
sequence of K3's converges to an are e in 8, from I x {1} to y, by property
(iv) above. Thus the original sequence has a limit point on « v {y}. That
8, is a parallel access set and satisfies (iv) now follows from the
same properfies for the Ky's. To complete the induction cycle, let
Gpi1 D6 a component of I—F,,.. G, 41,5 18 contained in some Guj.
Let @.1x be the restriction of g,; 0w, to @, ,x[0,1], and seb

©
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T = Pnsril Onre X (0, 10). Then T py gy @yry 20d 8, clearly satisfy
conditions (i)-(iii) above.

Finally, let 8 = {_| {8a] 7 € o}. It is clear from the construction that §,
and thus 8~ contains a disjoint family {a;| x# ¢ F} of arcs, where each ay
meets I x {1} and touches 2. Henece the proof will be complete if we show
that no arec in 8~ meets I X {1} and touches a point of I—F. Suppose
to the contrary that y is such an are. Then ¢ touches each given Gng.
Let o and a* be the left and right boundaries of gur[Grz X (0, 1]], and
let 4~ and BT be the left and right boundaries of gk o wur[Gnr X (0, 17).
Because ynr takes G X (0,1] into Gurx (0,1], C*(a™)~ 07(f~) and
CT(3*) n C(a*) are connected open subsets of Ix (0,1]—8~. Since y
touches Gnx it lies between these two sets and is thus contained in

(0F(87)  C=(B¥)™ = s, © vl G X (0, 1]

Hence o crosses M at least 2n-+3 times. But n was arbitrary, a contra-
diction. m .

LeyyA 2. Every F,, set in I has a closed definitive parallel access set.

Proof. Let K be the Cantor ternary set. Let ¢ be an increasing
(continuous) function of I onto I which is constant on each component
of 7— K, and maps different components to different numbers. For each
n >0, let {Jar| k<< 2"} be the set of closed intervals left in I after the nth
stage of the construction of K (so that the length of each Ju is 37™).
Suppose F is an §; subset of I, then F = ¢ '[F] ~ K is a nowhere denge
F,s set in K. Let {F;| n ¢ w} be a nested sequence of F, sets in K whose
intersection is H. For each n >0 and % << 2%, let Epr = Ey N Jnx. Let Sux
be a closed parallel access set for Fy,r which is eontained in Juz X (0, 1],
and is of the type constructed above. Let Tu: be the reflection of Sux
about the line I x {1}. Notice that if a is an open arc in (Spxv Thr)~
from Ix {2} to IX {0}, then aC Sur v Thx since (Sprw Tux)” I X {0, 2}
is nowhere dense, and thus for some x ¢ Eyuz, a goes from {z, 2> to {(z, 0}
by parallelness. Let y be the homeomorphism of I (0,1] onto itself
given by

y(@, ) = yr+(1—y)e@), ¥ .

For each % > 0, let §, be the increasing linear function from the interval
(0, 2) onto the interval {1/(n-+1),1/n), and let pu(z, y) = v(z, 62(y)). Let

8= U yalSar o Tl 0<k<nen}l.

First, each given x ¥ is accessible through 8~ from IX {1}: Choose
u e B o that ¢(u) = z. For each % >0, there is a unique %, such that
% € Jnky; let ap be an are in S, from IXx {1} to u, and let f, be its re-
flection in Tyr,. Let a = | {galan © Bu]| 7 >0} & {wa(u, 2)| n > 0}. Then
a is the union of a sequence of ares. The points y,(u, 2) all lie in a straight


GUEST


1492 J. Williams

line from (u, 1y to {(z, 0. Hence a will be an arc in 8§~ from I x {1} to »
provided it is locally connected at . Bub the trapezoids with bases
YaldTar, % {2}] and ¢[Jap,] converge to &, and « is eventually in each such
trapezoid. Now suppose that # >0 and o is an arc in 8~ which meets
Ix {1/n} and touches some point @ e I X {0}. The parallelness of the sets
Suz  Ti, clearly carries over to 87, so that Vm >mn, a ~n I X (1/m+1,1/m)
has just ome component, which belongs to some set of the form
Y[ Smp v Tmi]. For each m > n, let an be the inverse image of « in Sps.
Then oy is an access arc in Spy; for some point % € Bui. Consequently, by
parallelness, « goes through all points of the form ym(u, 2), for m >mn,
and o = p(y). But then u apparently belongs to each Hy, for m >, and
thus to E since the By’s are nested. Hence z ¢ F. Therefore 8~ is a closed
definitive parallel access set. B )

Lenva 3. Suppose 8 is a closed access set for F, @ C I is a S, set, and
{as] e F G} is a disjoint family of ares in 8 such that each ag goes from

Ix {1} to x; then F ~ G is an T set. In particular, if I has a closed parallel-

access set, it is an F 5 sel.

Proof. For each connected set ¢ that meets IX {1} and touches
Ix {0}, and each g >0, let I,(0) be the least rational number p/q such
that some connected subset ¢’ of ¢ meebs I x {1}, touches I X {0}, and
is the union of p connected sets of diameter less than 1/g — provided
such is possible, otherwise let l(C) = oo. Let L be the set of all 2-sided
limit points of F ~ ¢ belonging to F ~ &. For each y ¢ L, let

Ly={CT(a)] @<y}~ {C7 ()| 2>y}
Let A = {y € L| ¢, has non-empty interior}. Notice that 4 and F ~ G—1IL
are countable. Let ( )* be the closure operator on Ix I.

Step I. For each y e L— A, {; contains a unique sub-continuum Zy
which is irreducible between IX {1} and IX {0}.

Proof. By Proposition 11.2, p. 17 of [4], we may let H, K be irre-
dueible sub-eontinua of ¢ between Ix {1} and Ix {0}. If H s K, then
H ~ K isn’t connected, and thus H u K separates I x I into 3 components
as a result of Theorem 22, p. 175 of [3]. But then from the definition
of £y, C; must contain the middle component, a contradiction.

Step IT. For any y e L— 4, £y contains an are from I X {1} to I x {0}
iff Vg >0, %(Zy) is finite. .

Proof. The condition on ¢y is equivalent to Whyburn’s property. S,
and the assertion follows directly from Proposition 15.7, p. 23, and Theo-
rem 5.1, p. 36 of [4].

Step III. Suppose {y doesn’t contain an are and yeL—.A; then
there is an integer ¢, > 0 such that for each ¢ > ¢, and each sequence
{Za] m e 0w} in F ~ G converging to v, limla,,) = oo.

->00
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Proof. Notice that to find the desired integer q,, it suffices to first
find an integer ¢, which works for increasing sequences and a second g,
for decreasing sequences, and then set g, == max{q, g,}. ¢, for example
may be found as follows: Let &y be the intersection of C; and the boundary
of {0 (az)] ® <y}. A moment’s thought shows that &, is connected
between IX {1} and I X {0}. But it isn’t locally connected since it doesn’t
contain an are. Thus by Theorem 12.1, p. 18 of [4], we can find a point
a €&y and a number ¢ >0 so that if R is the e-disk about a, we may
then choose a sequence {Cj] jew} of disjoint components of & ~ R*
converging to a continuum containing z. It suffices to set ¢, = 6/s: Pick
g > 6/e, and let {z.| » ¢ ©} be an increasing sequence in F ~ @ converging
to y. Let p be any positive integer; let j, be such that Vj >j,, a is less
than ¢/3 from ;. For each j with j, < j <j,+p, choose a; ¢ C; so that
dist(a, a;) < /3. For any given C; and C; with i == j, there is a neighbor-
hood V of & such that C; and (; are in different components of ¥ ~ B¥;
for if not, then for each neighborhood ¥V of &y, let U, be the component
of ¥ ~n R* containing (; (and thus C; also). But then the interseetion
of the Up’s is a continwum in & ~ R* containing C; and 0j, a contra-
diction. So let 7" be a neighborhood of &, such that for i s j, with j, < 4,
j <jotp, O and C; lie in different components of ¥ n R*. For each 4,
let V; be the component of V' ~ R* containing C;. By definition of &, and
a compactness argument, we may now choose n, so that Vo >ng, 0, CV.
Choose n; > n, so that for each n >n, and each j with j,<j<j,+2,
the intersection of V; with the &/3-neighborhood. of a; meets ag,. Pick
# > n;. For each j, with j, < j < jo-+7p, let §; be a component of az, ~ V;
which comes within &3 of a;. Each f; meets the boundary. of R, so that
its diameter is greater than ¢/3. Consequently, o, contains p--1 disjoint
arcs of diameter greater than /3. Clearly, if g > 6/e, then laz,) = p/q.

Steep IV. Finally, F ~ & is an F, set.

Proof. For each p, g > 0, let Fy, be the closure of {w e L— A| (Ls)
< p/q}. Let Fy= { {Fpg] 0<<p << oo}, and let M =[] {Fy| ¢ > 0}. Then
G M ~Lis and F,; since F ~ G and P~ @ ~ L— A differ by a count-
able set, it suffices to show that FA @D G~ M NLOF G L—A,
First, if #eF n G~ L—A, then a,C;, so that each [(l,) is finite and
zeFy; hence ze M, and e @~ M ~nL. Now suppose yeGn M L,
but y ¢ F ~ G. Then for some given q,, Vg > q,, l({y) is infinite by Step II
and the fact y ¢ . Pick g > qq; since y e M, y belongs to some Fj,. Hence
there is a sequence {@.| % e w} in L ~Fy, converging to y. But then
V1, lh{az,) < p. This contradicts Step III. Hence Fn GO G M 1L
DFnGnLl—A. m

LeMumA 4. If 8 is a closed definitive access set for F, then F is an .

Proof. The first step is to establish the following: If # is a 2-sided
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limit point of ¥, and = ¢ F, then ®n >0, x “separates” 8§ ~Ix (0, 1/n]
in the sense that if yy,y, are ares in 8§ ~Ix (0,1/n] from Ix {1/n} to
points y;, ¥, € I, with 4, <2<y, then y, ~y,= 0.

Proof. Suppose to the contrary that » is a 2-sided limit point of I
and that Vn >0, there is an open arc in § ~Ix (0,1/n] from yeF to
y’ e F with y < < y'. We can show that « is a 1-access point of F. Let
{yx| e o} and {y,| n <w} be sequences in F converging to » such that
< o<y, and Vu >0, |y,—y,] <1l/n. For each n, let 8, and f, be
ares in 8 from I x {1} to ¥, and y,; let y, be an open arc in § ~ I x (0, 1/n]
which touches F' on both sides of . Then, with some thought, one can
see that there is an arc in § made from pieces of the §,’s, ,’s, and y,’s
which goes from Ix {1} to .

Now let L be the set of all 2-sided limit points of F'; I~ —1L is count-
able. For each n, let G be those points of ZL—F which “geparate” § ~ I x
X (0,1/n] in the above sense. Notice that

Fo (F-—L) = F ~(F o (I-I)
QF"nﬂFu (I— {61 new})
oF.

It suffices to show that F v (T— | J{G;| n e w}) is an F,, set since then
F-n(Fu(I—J{G, | ne })) is also, and this differs from 7 by a count-
able set. But

Fo(I— Ul newl) =N {Fo(l—-6) neow}
' =N {I-6) O (Fn6) neow).

Hence it suffices to show that for each n, F ~ @, is an F,,. Pick n; let L,

be the set of 2-sided limit points of G. Then @ — L, is countable, and
thus L, is a G, seb. Let {a;| # ¢ F ~ Ly} be a family of ares in § with each oy
from I'x {1} to #, and let f. be the component of ax ~ Ix (0, 1/n] that
touches 2. Then, by the definition of G, and Ln, {fz] © ¢ F ~ Lyn} is a dis-
joint family in 8 ~Ix(0,1/n], and 8 ~IX (0, 1/n] is in effect a closed
access set for F, since § is a deﬁ,nitive access set for F. Thus, by the
previous lemma, F ~ L, is an §,,. But then so is ' ~ @, since G —Ly
is countable. m

§ 2. Open access sets. If § is an open simply connected access set for F,
it seems likely that F must be an ¥, set in view of the similar Theo-
rem 9.10 of [1]. At any rate, the following examples due to J. Gresser
show that both the rationals and the irrationals have open access sets.
The symmetries of the construction in Example 7 are such that it will
be convenient there to work within [—1,1]x I instead of in I x I.

e ©
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ExiwvpLE 6 (of an open access set for the set @ of rational numbers
in the unit interval). Let K be a Cantor set, and let {C, ¢eQ} be the
set of components of I— K, indexed so that Vp,ge@,p < g iff Iub C,
< lub ;. Let S be the union of all open triangles with base Cpx {1} and
tip (g, 0), for ¢ ¢ Q. Then § is the required open access set for Q. &

ExavpLeE 7 (of a simply connected open access set S for a set F
C[—1,1] such that 8§~ is a definitive closed access set for F, and
[—1,1]—F is a countable dense subset of [—1, 1]). Let L, be the closure
of the graph of the polar equation

= =/8[3-Frsinfzjsin(mjr)]] for 0<r<23.

Let I =1I,w {0} x(2/3,1]. Then L is irreducibly connected between
<{0,1> and <0, 0>, converges to {0, 0)», and fails to contain any arc that
touches the origin. Let D, be the intersection of the closed unit disk
with the upper half-plane H. For each integer j > 0, let D; be the inter-
section of H with the closed unit disk of radius 1/27* centered at 3/27%%,
The sets D; are mutually disjoint, and their plane closures cover I. More-
over, each lies below the line § = =/6. For each integer j >0, let p; be
the top point of D;. Let B, be the disk of radius 1/9 about <0, 1. Let G be
the interior of the right eomponent of Dy—1L w {_f {D;] j > 0}. Since @ is
analytically equivalent to a circle, one may construct a disjoint family
{a;} j > 0} of open ares such that each o; goes from <0, 1) to p;, and
lunaj_L Then let {f;] j > 0} be a family of open neighborhoods of

the a;’s such that each jB; is contained in G and {fij— B,| j > 0} is also
disjoint, where ( )* denotes plane-closure. Finally, let M, =B,v
v [ J{fsl >0}, and let ¥, be the closure (in D,) of M, wILu
v {Dsl j >0} For M., N_., and each o; and D;, let M_, N_, a_;,
and D_; be the reflection of the corresponding set about the y-axis. Our
initial construction is then completed by setting M = M_ v M., and
N = N_ v N_.Notice that the origin is not accessible in N. This property
will be carried over to the diadic rationals in [—1,1] through a series
of transformations, and the final set § will be the union of the images
of M under these maps.

For each integer j, let f; be the afine transformation which takes D,
onto D;. Let 3 be the set of all finite sequences of integers, and for each
J= iy Jes ey dny € 3, 1ot fi=1; ofj 0o f;,. Let

8= U{f{M]} je 3} n[—1,11x(0,1].
Then § is open and simply connected. The set F = {f,(0)j je 3} is the
set of diadic rationals in the interval (-1, 1).

For the sake of argument, for each je3, let  .D;=f[D,] and

let g; = f;(0) be its center. Since the origin isn’t accessible in N, it follows
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that ¢; isn’t accessible in D; » 87 C fi(), so that g; isn’t an accessible
point of §~. On the other hand, if # ¢ [—1, 1]—F, then there is an infinite
sequence {ju| n >0} of non-zero integers such that # is in the closure
of each D, , for j,= {ju| k< m}. In this case, a= [ {f,(x)] new} is
an arc from <0, 1) to # contained in S. W o
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Semigroups which admit few embeddings
by
Kenneth D. Magill, Jr. (Amherst, N. Y.)

Abstract. S(X) is the semigroup, under composition, of all continuous selfmaps
of the topological space X. Two classes of spaces are given such that if X is from the
first and Y is from the second and ¢ is any isomorphism from §(X) into §(¥), then
there is a unique idempotent » of §(¥) and a unigue homeomorphism 4 from the range
of v onto X such that ¢{f)= hofo ko0 for each f in §(X). It follows from this that
there is a fairly extensive class of spaces such that the semigroup of precisely three
spaces from the class can be embedded in §(I) and the semigroups of precisely five
can be embedded in S(R) where I and R denote respectively the closed unit interval
and the space of real numbers.

1. Introduction. The symbol §(X) is used to denote the semigroup,
under composition, of all continuous selfmaps of the topological space X.
It is well known that there exist semigroups §(X) into which many other
such semigroups may be embedded. In fact, given any collection of semi-
groups, one need only choose a set X whose cardinality is not less than
that of any of the semigroups and then each semigroup of the collection
can be embedded in S(X) where X is given the discrete topology. In this
case, 8(X) is, of course, simply the full transformation semigroup on X.
The problem is made a bit more difficult by requiring that X satisfy
various topological conditions and when we discuss some examples, we
will see that for each collection of semigroups, one can produce an arc-
wise connected metric space X so that each semigroup of the collection
can be embedded in 8(X). However, such semigroups are really not our

- main concern here. We are much more interested in semigroups at the

other end of the spectrum, that is, in semigroups of continuous functions
into which very few other such semigroups can be embedded.

The main theorem of the paper is proven in section 4 and it gives
two classes of spaces such that if X is from the first and Y is from the
second, then for each monomorphism ¢ from §(X) into S(¥), there exists
a unique idempotent » of §(¥) and a unigue homeomorphism % from X
onto the range of v such that ¢(f)="hofoh  ov for each f in S(X).
‘We then look at some special cases in more detail and to give some idea
of the type of result we get, we mention the essential ingredients of
a result on S(I) and one on S(R) where I is the closed unit interval and
4 — Fundamenta Mathematicae T. LXXXV
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