

Closure-preserving covers

bу

Rastislav Telgársky (Bratislava)

Abstract. Let X be a paracompact space. If X is σ -locally compact (σ -discrete), then X has a closure-preserving cover consisting of compact (resp. finite) sets. If X has a closure-preserving cover by finite sets, then X is totally paracompact. These and some more general results are established by considering order locally finite and order star-finite covers.

The present paper is concerned with covering properties of topological spaces. We shall study the properties

- (1) the space X has a closure-preserving cover consisting of compact subsets of X,
- (2) the space X has a closure-preserving cover consisting of finite subsets of X, and some related ones.

H. Tamano [10] put forward the question whether (1) implies the paracompactness of X. This question has been answered negatively by H. B. Potoczny [7]. In paper [8] he describes the remarkable structural characteristics of spaces possessing property (1). We dealt with property (1) and its related property in [12]. Paper [14] (announced in [13]) contains several results concerning (1) and (2) established by game-theoretical methods.

The topological terminology is that of [2]. Each space is assumed to be completely regular. Natural numbers are denoted by the letters m, n, k, \ldots and ordinal numbers are denoted by the letters $\alpha, \beta, \gamma, \ldots$ $\ldots, \xi, \eta, \zeta, \ldots$

Recall that a collection $\{A_i\colon i\in I\}$ of subsets of a space X is said to be order locally finite if we can introduce a well-ordering < in the index set I so that for each $i\in I$ the family $\{A_j\colon j< i\}$ is locally finite at each point of A_i .

Since every well-ordered set is order-isomorphic to an initial segment of ordinal numbers, we shall use the notation $\{A_{\xi}\colon \xi < a\}$ instead of $\{A_{i}\colon i \in I\}$. Order locally finite covers were introduced and studied by Y. Katuta [3].

We say that a collection $\{A_{\xi}\colon \xi<\alpha\}$ of subsets of a space X is order star-finite if for each $\xi<\alpha$ the set A_{ξ} meets at most finitely many A_{η} with $\eta<\xi$.

Clearly, every order star-finite collection of open sets in \boldsymbol{X} is order locally finite.

Lemma 1. Let X be a paracompact space with $\dim X = 0$. If X has two order locally finite covers $\{E_{\xi} : \xi < \alpha\}$ and $\{U_{\xi} : \xi < \alpha\}$, where E_{ξ} is closed in X and U_{ξ} is an open nbhd of E_{ξ} for each $\xi < \alpha$, then X has two order star-finite covers $\{F_{\eta} : \eta < \beta\}$ and $\{V_{\eta} : \eta < \beta\}$, where $\{F_{\eta} : \eta < \beta\}$ refines $\{E_{\xi} : \xi < \alpha\}$, $\{V_{\eta} : \eta < \beta\}$ refines $\{U_{\xi} : \xi < \alpha\}$, and F_{η} is closed in X and V_{η} is an open nbhd of F_{η} for each $\eta < \beta$.

Proof. We define, by induction with respect to ξ , two discrete families $\{E_{\underline{\epsilon},i}\colon i\in I_{\underline{\epsilon}}\}$ and $\{U_{\underline{\epsilon},i}\colon i\in I_{\underline{\epsilon}}\}$ of subsets of X so that $E_{\underline{\epsilon}}$ $=\bigcup \{E_{\xi,i}: i \in I_{\xi}\} \text{ and } E_{\xi,i} \subseteq U_{\xi,i} \subseteq U_{\xi} \text{ for each } i \in I_{\xi}. \text{ We set } \{E_{0,i}: i \in I_{0}\}$ $=\{E_0\}$ and $\{U_{0,i}: i \in I_0\}=\{U_0\}$. Let us assume that for some $\xi < \alpha$ and for each $\eta < \xi$ the families $\{E_{n,i} \colon \ i \in I_n\}$ and $\{U_{n,i} \colon \ i \in I_n\}$ are defined. For each point $x \in E_{\varepsilon}$ there is an open nebhd U_x , where $U_x \subset U_{\varepsilon}$ and U_x meets at most finitely many U_{η} with $\eta < \xi$. Thus the set $K_x = \{ \eta < \xi \colon U_x \cap U_{\eta} \}$ $T_n \neq 0$ is finite. Let $\eta \in K_x$. The family $\{U_{n,i} : i \in I_n\}$ is discrete (in X), therefore there exists an open nbhd $U_{x,\eta}$ of x, where $U_{x,\eta} \subseteq U_x$ and $U_{x,\eta}$ meets at most one $U_{n,i}$ with $i \in I_n$. Let us put $V_x = U_x$ if $K_x = 0$, and $V_x = \bigcap \{U_{x,n}: \eta \in K_x\}$ if $K_x \neq 0$. Then V_x is an open nebd of x and V_x meets at most finitely many sets $U_{\eta,i}$ with $i \in I_{\eta}$ and $\eta < \xi$. Since $\{V_x: x \in E_{\xi}\}$ is an open cover of E_{ξ} and X is a paracompact space with $\dim X = 0$, there is a discrete family $\{U_{\xi,i}: i \in I_{\xi}\}$ of closed-open subsets of X, where $\{U_{\xi,i}: i \in I_{\xi}\}$ covers E_{ξ} and refines $\{V_x: x \in E_{\xi}\}$. Let us put $E_{\xi,i} = E_{\xi} \cap U_{\xi,i}$ for each $i \in I_{\xi}$. Now the families $\{E_{\xi,i} : i \in I_{\xi}\}$ and $\{U_{\varepsilon,i}: i \in I_{\varepsilon}\}$ have the desired properties. Thus $\{E_{\xi,i}: i \in I_{\varepsilon} \text{ and } \xi < a\}$ and $\{U_{\varepsilon,i}: i \in I_{\varepsilon} \text{ and } \xi < a\}$ are defined. Let $<_{\varepsilon}$ be a well-ordering of I_{ε} , where $\xi < a$. Then we define a well-ordering \leq of $\{(\xi, i): i \in I_{\xi} \text{ and } \xi < a\}$ as follows: $(\xi, i) < (\eta, j)$ if and only if $\xi < \eta$, or $\xi = \eta$ and $i <_{\xi} j$. Hence the covers $\{E_{\xi,i}: i \in I_{\xi} \text{ and } \xi < a\}$ and $\{U_{\xi,i}: i \in I_{\xi} \text{ and } \xi < a\}$ are order star-finite. Thus we may write $E_{\xi,i} = F_{\eta}$ and $U_{\xi,i} = V_{\eta}$, where $i \in I_{\xi}$, $\xi < \alpha, \eta < \beta \text{ and } \{(\xi, i) : i \in I_{\xi} \text{ and } \xi < \alpha\} \text{ is order-isomorphic to } \{\eta : \eta < \beta\}.$ The covers $\{F_n: n < \beta\}$ and $\{V_n: \eta < \beta\}$ satisfy our requirements.

Remark 1. Lemma 1 will remain true if we replace "X is paracompact and $\dim X = 0$ " by "X is strongly paracompact" or by "X is paracompact and E_{ε} is a locally compact closed subset of X for each $\xi < a$ ".

Recall that a collection $\{A_i\colon i\in I\}$ of subsets of a space X is said to be *closure-preserving* if for each $J\subseteq I$ we have $\operatorname{cl}\bigcup\{A_i\colon i\in J\}$ $=\bigcup\{\operatorname{cl} A_i\colon i\in J\}.$

LEMMA 2. If X has two order star-finite covers $\{E_{\xi}\colon \xi < a\}$ and $\{U_{\xi}\colon \xi < a\}$, where E_{ξ} is closed in X and U_{ξ} is an open nbhd of E_{ξ} for each $\xi < a$, then there is a family $\{T_{\xi}\colon \xi < a\}$ of finite subsets of $\{\xi\colon \xi < a\}$ so that $\{\bigcup \{E_{\eta}\colon \eta \in T_{\xi}\}\colon \xi < a\}$ is a closure-preserving cover of X.

Proof. Let $\{E_{\xi}\colon \xi < a\}$ and $\{U_{\xi}\colon \xi < a\}$ be the order star-finite covers. We set $T_{\xi}^{0} = \{\xi\}$ and $T_{\xi}^{n} = \{\eta < \xi\colon U_{\eta} \cap U_{\xi} \neq 0\}$ for each $\xi < a$. Assume that T_{ξ}^{n} is defined for some $n \geq 0$. Then we set $T_{\xi}^{n+1} = \bigcup \{T_{\eta}^{n}\colon \eta \in T_{\xi}^{n}\}$. It is easy to prove (by induction with respect to n) that each T_{ξ}^{n} is a finite set. Now let us put $T_{\xi} = \bigcup \{T_{\xi}^{n}\colon n \geq 0\}$. It is also easy to prove (by induction with respect to ξ) that each T_{ξ} is a finite set. Let us put $F_{\xi} = \bigcup \{E_{\eta}\colon \eta \in T_{\xi}\}$, where $\xi < a$. We shall now prove that the family $\{F_{\xi}\colon \xi < a\}$ is closure-preserving. Let $S \subset \{\xi\colon \xi < a\}$, let

$$x \in \operatorname{cl} \bigcup \{F_{\xi} \colon \xi \in S\}$$

and let $\beta=\inf\{\xi\colon x\in E_\xi\}$. Since $x\in E_\beta\subseteq U_\beta$, it follows that $U_\beta\cap\cap\cup\{F_\xi\colon \xi\in S\}\neq 0$. However,

$$\bigcup \left\{ F_{\xi} \colon \, \xi \in S \right\} = \, \bigcup \left\{ E_{\eta} \colon \, \eta \in T_{\xi}^{n}, \, \, n \geqslant 0 \, \, \, \text{and} \, \, \xi \in S \right\}.$$

Thus the set $R = \{\eta\colon U_{\beta} \cap E_{\eta} \neq 0, \ \eta \in T_{\xi}^{m}, \ n \geqslant 0 \ \text{and} \ \xi \in S\}$ is non-void. Case 1. $\sup R \leqslant \beta$. Then R is finite, because the family $\{U_{\xi}\colon \xi < a\}$ is order star-finite. Hence $x \in \bigcup \{E_{\eta}\colon \eta \in R\} \subseteq \bigcup \{F_{\xi}\colon \xi \in S\}$.

Case 2. $\sup R > \beta$. Then there exist a $\eta \in R$ with $\eta > \beta$. Hence there exist a $n \ge 0$ and $\xi \in S$ such that $\eta \in T_{\xi}^{n}$ and $\beta \in T_{\xi}^{n+1}$, because $U_{\beta} \cap U_{\eta} \ne 0$ and $\beta < \eta$. Since $x \in E_{\beta}$, $\beta \in T_{\xi}$ and $\xi \in S$, thus $x \in \bigcup \{F_{\xi} : \xi \in S\}$. Therefore $\{F_{\xi} : \xi < a\}$ is closure-preserving.

LEMMA 3 (K. Nagami [6]). For each paracompact space X there is a paracompact space X' with $\dim X' = 0$, so that there is a perfect map f from X' onto X.

THEOREM 1. If X has two order locally finite covers $\{E_{\xi}\colon \xi < a\}$ and $\{U_{\xi}\colon \xi < a\}$, where E_{ξ} is compact and U_{ξ} is an open nbhd of E_{ξ} for each $\xi < a$, then X has a closure-preserving cover by compact sets.

Proof. By a theorem of Y. Katuta [3] the space under the assumption of Theorem 1 is paracompact. Thus, by Lemma 3, there is a paracompact space X' with $\dim X'=0$, so that there is a perfect map f from X' onto X. It is easy to verify that $\{f^{-1}(E_\xi): \xi < \alpha\}$ and $\{f^{-1}(U_\xi): \xi < \alpha\}$ are order locally finite covers of X', where $f^{-1}(E_\xi)$ is compact and $f^{-1}(U_\xi)$ is an open nbhd of $f^{-1}(E_\xi)$ for each $\xi < \alpha$. Applying Lemma 1, we get two order star-finite covers $\{F_\eta\colon \eta < \beta\}$ and $\{V_\eta\colon \eta < \beta\}$ of X', where F_η is compact and V_η is an open nbhd of F_η for each $\eta < \beta$. Applying Lemma 2, we get the family $\{T_\eta\colon \eta < \beta\}$ of finite subsets of $\{\eta\colon \eta < \beta\}$ so that the family $\{H_\eta\colon \eta < \beta\}$, where $H_\eta = \bigcup \{F_\xi\colon \xi \in T_\eta\}$, is closure-preserving and covers X'. Since f is continuous and closed, $\{f(H_\eta)\colon \eta < \beta\}$ is a closure-preserving cover of X by compact sets (see [12], Theorem 2).

Example 1. A paracompact scattered space X^* having a closure-preserving cover by finite sets and having no two order locally finite

covers $\{E_{\xi}\colon \xi < a\}$ and $\{U_{\xi}\colon \xi < a\}$, where E_{ξ} is compact and U_{ξ} is an open nbhd of E_{ξ} for each $\xi < a$.

At first we shall construct a space X by a modification of the construction which has been used by H. B. Potoczny [7]. We set

$$X = \{(\alpha, \beta) : \alpha \leqslant \beta < \omega_2\}, \quad D = \{(\alpha, \alpha) : \alpha < \omega_2\},$$

and

$$G_a = \{(\alpha, \alpha)\} \cup \{(\alpha, \xi): \alpha < \xi < \omega_2\} \cup \{(\xi, \alpha): \xi < \alpha\}$$
 for each $\alpha < \omega_2$.

We define a topology of X as follows: if $(\alpha, \beta) \in X$ —D, then the singleton $\{(\alpha, \beta)\}$ is a basic open set; if $(\alpha, \alpha) \in D$, then $G_a - H_a$, where H_a is a countable subset of X - D, is a basic open set. It is clear that the sets described above constitute a basis for a topology of X.

Every point of X-D is an isolated point and $G_a \cap D = \{(\alpha, a)\}$ for each $a < \omega_2$. Therefore D is a closed discrete subset of X. Thus the space X is scattered.

Every countable subset H of X is closed, because

$$X-H = \bigcup \{G_a - H \colon \alpha < \omega_2\}$$
.

The basic open sets in X are simultaneously closed, because

$$X - \{(\alpha, \beta)\} = \bigcup \{G_{\gamma} - \{(\alpha, \beta)\}: \gamma < \omega_2\}$$
 whenever $\alpha < \beta < \omega_2$

and

$$\begin{split} X - (G_a - H_a) &= H_a \cup \bigcup \left\{ G_{\beta} - \{ (\beta \,,\, a) \} \colon \, a < \beta \right\} \cup \\ &\quad \cup \bigcup \left\{ G_{\beta} - \{ (\alpha \,,\, \beta) \} \colon \, a < \beta < \omega_2 \right\} \quad \text{for each } \, \alpha < \omega_2 \,. \end{split}$$

X is a Hausdorff space, because the basic open sets separate the points. Since each countable subset of X is closed, there is no infinite compact subset in X; i.e. each compact subset of X is finite.

Since each set G_a has the Lindelöf property, X is a locally Lindelöf space.

 $\{G_a\colon a<\omega_2\}$ is a point-finite cover of X, because $G_a\cap G_\beta=\{(a,\beta)\}$, where $a<\beta<\omega_2$.

The space X is metacompact, because it has the point-finite cover $\{G_a\colon a<\omega_2\}$ by the closed-open Lindelöf sets G_a .

For each countable subset H of X there is a closed-open Lindelöf subset U of X such that $H \subseteq U$ and $U \cap D = H \cap D$. Namely, we set $U = (H-D) \cup \bigcup \{G_a : (\alpha, \alpha) \in H \cap D\}$. Since H-D is a countable set of isolated points, H-D is a closed-open set. Since $\bigcup \{G_a : (\alpha, \alpha) \in H \cap D\}$ is open, it remains to show that the set is closed. If $(\beta, \beta) \in D-H$, then

 $G_{\beta} \cap \bigcup \{G_a\colon (\alpha, \alpha) \in H \cap D\}$ is a countable subset of X-D. Thus $G_{\beta} - \bigcup \{G_a\colon (\alpha, \alpha) \in H \cap D\}$ is a basic nbhd of (β, β) . Clearly,

$$X - \bigcup \{G_a: (a, a) \in H \cap D\}$$

$$= \bigcup \{G_{\beta} - \bigcup \{G_{\alpha} : (\alpha, \alpha) \in H \cap D\} : (\beta, \beta) \in D - H\}$$

and hence the assertion follows.

We set $F_{a,\beta} = \{(a,a),(a,\beta),(\beta,\beta)\}$ for each $(a,\beta) \in X-D$. The family $\{F_{a,\beta}\colon (a,\beta) \in X-D\}$ covers X. We shall prove that the family is a closure-preserving one. Let $S \subseteq X-D$ and let $x \in c \cup \{F_{a,\beta}\colon (a,\beta) \in S\}$. If x is an isolated point of X, then obviously $x \in \bigcup \{F_{a,\beta}\colon (a,\beta) \in S\}$. Thus we may assume that $x = (\gamma,\gamma) \in D$. Since G_{γ} is a basic nbhd of (γ,γ) , we have $G_{\gamma} \cap \bigcup \{F_{a,\beta}\colon (a,\beta) \in S\} \neq 0$. Hence $G_{\gamma} \cap F_{a,\beta} \neq 0$ for some $(a,\beta) \in S$. Since $F_{a,\beta}$ is a three-point set, we shall consider three cases.

Case 1. $(\alpha, \alpha) \in G_{\gamma}$. Then $\alpha = \gamma$ and so $(\gamma, \gamma) \in F_{\alpha, \beta}$.

Case 2. $(\alpha, \beta) \in G_{\gamma}$. Since $\alpha < \beta$, we have $\alpha = \gamma$. Thus $(\gamma, \gamma) \in F_{\alpha, \beta}$.

Case 3. $(\beta, \beta) \in G_{\gamma}$. Then $\beta = \gamma$ and so $(\gamma, \gamma) \in F_{\alpha, \beta}$.

The space X is not normal, because the sets $\{(a,a): a \leq \omega_1\}$ and $\{(a,a): \omega_1 < a < \omega_2\}$ cannot be separated by open sets. In order to prove this, let U be an open nbhd of $\{(a,a): a \leq \omega_1\}$ in X. For each $a \leq \omega_1$ there is a basic open set U_a with $(a,a) \in U_a \subseteq U$. For each $a \leq \omega_1$ we have $U_a = G_a - H_a$, where H_a is a countable subset of X - D. Let us set

$$S_1 = \{ \xi < \omega_2 : (\eta, \xi) \in H_a \text{ for some } \eta < \omega_2 \text{ and for some } a \leqslant \omega_1 \}$$

$$S_2 = \{ \xi < \omega_2 : (\xi, \eta) \in H_a \text{ for some } \eta < \omega_2 \text{ and for some } a \leqslant \omega_1 \}$$

and

$$S = \{\xi \colon \xi \leqslant \omega_1\} \cup S_1 \cup S_2.$$

Then $\operatorname{card} S < \aleph_2$. Hence there is an ordinal $\gamma < \omega_2$ for which $\sup S < \gamma$. Clearly $(\gamma,\gamma) \notin \bigcup \{U_a\colon \alpha \leqslant \omega_1\}$. Since $\gamma \notin S$, we have $(\alpha,\gamma) \notin H_\alpha$ for each $\alpha \leqslant \omega_1$. Thus $(\alpha,\gamma) \in U_\alpha$ for each $\alpha \leqslant \omega_1$. Finally, we shall show that $(\gamma,\gamma) \in \operatorname{cl} \bigcup \{U_a\colon \alpha \leqslant \omega_1\}$. Let $U_\gamma = G_\gamma - H_\gamma$ be any basic nbhd of (γ,γ) . Since H_γ is countable and $\{(\alpha,\gamma)\colon \alpha \leqslant \omega_1\}$ is an uncountable subset of G_γ , there exists an $\alpha \leqslant \omega_1$ with $(\alpha,\gamma) \in U_\gamma$. Thus $U_\gamma \cap U_\alpha \neq 0$. It follows that $(\gamma,\gamma) \in \operatorname{cl} U$.

We define X^* as a one-point extension $X \cup \{p\}$ of X as follows: U is a basic open nbhd of $x \neq p$ in X^* if and only if U is a basic open nbhd of x in X; U is a basic open nbhd of p in X^* if and only if $X^* - U$ is a closed-open Lindelöf set in X.

It follows from the definition of X^* that the basic open sets are simultaneously closed and they separate points. Thus X^* is a regular space.

Let U be a basic open set in X^* . Then U has the Lindelöf property if and only if $p \notin U$; $X^* - U$ has the Lindelöf property if and only if $p \in U$. Thus X^* is a Lindelöf space. Since X^* is a regular Lindelöf space, it is paracompact (see [2], p. 211).

Each countable subset of X^* is closed. To prove this, let H be a countable subset of X^* . Since $H - \{p\}$ is a countable subset of X, there exists a closed-open Lindelöf nbhd U of $H - \{p\}$ in X. Since $H - \{p\}$ is closed in U and U is closed in X^* , the set $H - \{p\}$ is closed in X^* . Thus $H = \{p\} \cup (H - \{p\})$ is closed in X^* .

Since each countable subset of X^* is closed, there is no infinite compact set in X^* ; i.e. each compact subset of X^* is a finite set.

Since $\{F_{a,\beta}\colon (\alpha,\beta)\in X-D\}$ is a closure-preserving cover of X, $\{\{p\}\cup F_{a,\beta}\colon (\alpha,\beta)\in X-D\}$ is a closure-preserving cover of X^* (by four-point sets).

Finally, let us suppose that X^* has two order locally finite covers $\{E_\xi\colon \xi<\alpha\}$ and $\{U_\xi\colon \xi<\alpha\}$ where E_ξ is compact and U_ξ is an open nbhd of E_ξ in X^* for each $\xi<\alpha$. Since E_ξ is finite, $E_\xi-\{p\}$ is compact. Hence the space X has two order locally finite covers $\{E_\xi-\{p\}\colon \xi<\alpha\}$ and $\{U_\xi-\{p\}\colon \xi<\alpha\}$ where $E_\xi-\{p\}$ is compact and $U_\xi-\{p\}$ is an open nbhd of $E_\xi-\{p\}$ in X for each $\xi<\alpha$. Thus X is paracompact by a theorem of Y. Katuta [3]. This is a contradiction, because X is not normal (see [2], p. 207).

Recall that X is said to be σ -locally compact if X has a countable cover $\{X_n: n \ge 0\}$ where each X_n is a locally compact closed subset of X. These spaces were studied by K. Morita [5] and A. H. Stone [9].

LEMMA 4 (Y. Katuta [3]). If X is paracompact and σ -locally compact, then X has two order locally finite covers $\{E_{\xi}\colon \xi < a\}$ and $\{U_{\xi}\colon \xi < a\}$ where E_{ξ} is compact and U_{ξ} is an open n-bhd of E_{ξ} in X for each $\xi < a$.

THEOREM 2. If X is paracompact and σ -locally compact, then X has a closure-preserving cover by compact sets.

Proof. By Lemma 4 the space X has two order locally finite covers $\{E_{\xi}\colon \xi<\alpha\}$ and $\{U_{\xi}\colon \xi<\alpha\}$ where E_{ξ} is compact and U_{ξ} is an open nbhd of E_{ξ} for each $\xi<\alpha$. Thus, by Theorem 1, the space X has a closure-preserving cover by compact sets.

Recall that X is said to be σ -discrete if X has a countable cover $\{X_n: n \ge 0\}$ where each X_n is a discrete closed subset of X.

EXAMPLE 2. A σ -discrete, locally compact, scattered, non-normal space X with ind X=0 that has no closure-preserving cover by compact sets. As an example of the space X it suffices to take the space defined in [0], p. 167. This space X is zero-dimensional, locally compact, σ -discrete, separable and contains a closed discrete uncountable subset F; X-F is countable, isolated and dense in X.

The proof is immediate.

Recall that X is said to be C-scattered if for each non-void closed subset E of X there is a point $x \in E$ and an open nbhd U of x for which $E \cap \operatorname{cl} U$ is compact. C-scattered spaces were studied in [11].

THEOREM 3. Let X be a paracompact space. If X has two order locally finite covers $\{E_{\xi}\colon \xi < a\}$ and $\{U_{\xi}\colon \xi < a\}$ where E_{ξ} is a C-scattered closed subset of X and U_{ξ} is an open nbhd of E_{ξ} for each $\xi < a$, then X has a countable cover $\{X_n\colon n>0\}$ where X_n is a C-scattered closed subset of X for each n>0.

Proof. By Lemma 3 there are a paracompact space X' with $\dim X'=0$ and a perfect map f from X' onto X. The set $E'_\xi=f^{-1}(E_\xi)$ is C-scattered (see [11], Theorem 1.3) and closed in X' and $U'_\xi=f^{-1}(U_\xi)$ is an open nbhd of E'_ξ in X' for each $\xi < a$. It is easy to check that $\{E'_\xi\colon \xi < a\}$ and $\{U'_\xi\colon \xi < a\}$ are order locally finite covers of X'. By Lemma 1 there exist two order star-finite covers $\{F_\eta\colon \eta < \beta\}$ and $\{V_\eta\colon \eta < \beta\}$ where $\{F_\eta\colon \eta < \beta\}$ refines $\{E'_\xi\colon \xi < a\}$, $\{V_\eta\colon \eta < \beta\}$ refines $\{U'_\xi\colon \xi < a\}$, and F_η is closed in X' and V_η is an open nbhd of F_η for each $\eta < \beta$. Since F_η is a closed subset of some E'_ξ , it is C-scattered. By Lemma 2 there is a collection $\{T_\eta\colon \eta < \beta\}$ of finite subsets of $\{\eta\colon \eta < \beta\}$ such that $\{H_\eta\colon \eta < \beta\}$, where $H_\eta = \bigcup \{F_\xi\colon \xi \in T_\eta\}$, is a closure-preserving cover of X'. Since H_η is the union of a finite family of C-scattered sets, it is also C-scattered (see [11], Theorem 1.1). Let us remark that card $T_\eta \geqslant 1$, because $\eta \in T_\eta$. For each n > 0 we set

 $A_n = \{\eta < \beta \colon \operatorname{card} T_\eta \leqslant n\} \;, \quad X_n' = \bigcup \{H_\eta \colon \eta \in A_n\} \quad \text{and} \quad X_n = f(X_n') \;.$ Since $\bigcup \{A_n \colon n > 0\} = \{\eta \colon \eta < \beta\}$, it follows that $\bigcup \{X_n' \colon n > 0\} = X'$. Thus $\bigcup \{X_n \colon n > 0\} = X$. Since the family $\{H_\eta \colon \eta < \beta\}$ is closure-preserving and each H_η is closed, the set X_n' is closed for each n > 0. Thus each X_n is closed, because f is a closed map. By Theorem 1.3 of [11] X_n is G-scattered if and only if X_n' is G-scattered. Now we prove (by induction with respect to n) that X_n' is G-scattered.

$$X_1' = \bigcup \{H_n : \eta \in A_1\} = \bigcup \{F_n : \eta \in A_1\}.$$

The family $\{F_\eta\colon \eta\in A_1\}$ is closure-preserving and its members are pairwise disjoint. Therefore, by Lemma 5, it is a discrete family. Hence X_1' is locally C-scattered and therefore C-scattered. Assume that for some n>0 the set X_n' is C-scattered. Let us set $B_{n+1}=\{\eta<\beta\colon\operatorname{card} T_\eta=n+1\}$. Then $A_{n+1}=A_n\cup B_{n+1}$. Let us set

$$\begin{array}{lll} Y_n'=\bigcup\left\{F_{\eta}\colon \eta \in B_{n+1}\right\} & \text{and} & Z_n'=\bigcup\left\{F_{\eta}\colon \eta \in T_{\xi}-\{\xi\}\right\} \text{ and } \xi \in B_{n+1}\right\}. \\ \text{Then } X_{n+1}'=X_n'\cup Y_n'\cup Z_n'. \text{ We claim that } Z_n'\subseteq X_n'. \text{ If } \eta \in T_{\xi}-\{\xi\} \text{ and } \xi \in B_{n+1}, \text{ then } \eta < \xi. \text{ Hence } T_{\eta}\subseteq T_{\xi} \text{ and } \operatorname{card} T_{\eta} < \operatorname{card} T_{\xi}=n+1. \text{ Thus} \end{array}$$

 $\eta \in A_n$ and $F_\eta \subseteq H_\eta \subseteq X_n'$. We claim that Y_n' is C-scattered. Since F_η with $\eta \in B_{n+1}$ is C-scattered, it suffices to prove that the family $\{V_\eta\colon \eta \in B_{n+1}\}$ consists of pairwise disjoint sets. Let us suppose that we have ξ and η in B_{n+1} with $\xi < \eta$ and $V_\xi \cap V_\eta \neq 0$. Then $T_\xi \subseteq T_\eta$ and so card $T_\eta \geqslant n+2$. This is a contradiction. Hence Y_n' is C-scattered. Since X_{n+1}' is the union of C-scattered sets X_n' and Y_n' , it is also C-scattered (see [11], Theorem 1.1).

Remark 2. If $\{E_n\colon n\geqslant 0\}$ is a countable cover of X with E_n closed, then X has two order locally finite covers $\{E_n\colon n\geqslant 0\}$ and $\{U_n\colon n\geqslant 0\}$ where $U_n=X$ for each $n\geqslant 0$.

Remark 3. Theorem 3 is surprising if we look at Theorem 2.5 of [11]; roughly speaking, the countable covers are sufficient to define the class of spaces.

As a corollary of Theorem 3 we have

THEOREM 4. If X has two order locally finite covers $\{E_{\xi}\colon \xi < a\}$ and $\{U_{\xi}\colon \xi < a\}$ where E_{ξ} is compact and U_{ξ} is an open nbhd of E_{ξ} for each $\xi < a$, then X has a countable cover $\{X_n\colon n\geqslant 0\}$ where X_n is a C-scattered closed subset of X for each $n\geqslant 0$.

Theorem 5. Each paracompact σ -discrete space has a closure-preserving cover by finite sets.

Proof. If X is paracompact and σ -discrete, then dim X=0 (see [2], p. 274). X is σ -discrete, i.e. $X = \bigcup \{X_n : n \ge 0\}$ where each X_n is a discrete closed subset of X. Remark that $X_n - \bigcup \{X_k: k < n\}$ is closed in X. Hence we may assume, without loss of generality, that $X_m \cap X_n = 0$ for $m \neq n$. There is a well-ordering $\{x_{\xi}: \xi < a\}$ of X where $\xi < \eta$ holds whenever $x_{\xi} \in X_m$, $x_n \in X_n$ and m < n. Let us put $E_{\xi} = \{x_{\xi}\}$ for each $\xi < a$. The family $\{E_{\xi}: x_{\xi} \in X_n\}$ is discrete for each $n \ge 0$. Since X is paracompact, it is collectionwise normal (see [2], p. 214). Thus there is a discrete family $\{U_{\xi}\colon x_{\xi}\in X_n\}$ of open sets in X with $E_{\xi}\subseteq U_{\xi}$. It is easy to check that the covers $\{E_{\xi}\colon \xi<\alpha\}$ and $\{U_{\xi}\colon \xi<\alpha\}$ of X are order locally finite. By Lemma 1 we get two order star-finite covers $\{F_{\eta}: \eta < \beta\}$ and $\{V_{\eta}\colon\, \eta<\beta\}$ of X where F_{η} contains at most one point and V_{η} is an open n
bhd of F_n for each $\eta < \beta.$ By Lemma 2 there is a family
 $\{T_n\colon \eta < \beta\}$ of finite subsets of $\{\eta\colon\eta<\beta\}$ for which $\{\bigcup\{F_{\xi}\colon\,\xi\in T_{\eta}\}\colon\,\eta<\beta\}$ is a closure-preserving cover of X. Thus X has a closure-preserving cover by finite sets.

LEMMA 6. For any family $\{E_i\colon i\in I\}$ of non-void sets there exists a $J\subseteq I$ for which the family $\{E_j\colon j\in J\}$ is pairwise disjoint and where for each $i\in I$ there exists a $j\in J$ with $E_i\cap E_j\neq 0$.

The proof is a standard application of the Kuratowski-Zorn Lemma.

THEOREM 6. If X has a closure-preserving cover by finite sets, then X has a countable cover $\{X_n: n \geq 0\}$ where X_n is a scattered closed subset of X and it is the union of n discrete (not necessarily closed) subsets for each $n \geq 0$.

Proof. Let $\{E_i: i \in I\}$ be a closure-preserving cover of X, where E_i is finite for each $i \in I$. Let us set $I_n = \{i \in I : \operatorname{card} E_i \leq n\}$ and X_n $=\bigcup \{E_i: i \in I_n\}$ for each $n \ge 0$. Then X_n is a closed subset of X, because $\{E_i: i \in I\}$ is a closure-preserving family of closed subsets of X. Now it suffices to prove the following auxiliary statement S(n): If X has a closure-preserving cover $\{E_i: i \in I\}$ with $\operatorname{card} E_i \leq n$ for each $i \in I$, then X is scattered and it is the union of n discrete subsets. Clearly, S(0)holds. By Lemma 5, S(1) holds. Assume that S(n) holds for some n > 0. We shall prove that S(n+1) also holds. So let X be a space with a closurepreserving cover $\{E_i: i \in I\}$ where $\operatorname{card} E_i \leq n+1$ for each $i \in I$. We may assume, without loss of generality, that $E_i \neq 0$ for each $i \in I$. By Lemma 6 there exists a $J \subseteq I$ for which the family $\{E_j: j \in J\}$ is constituted by pairwise disjoint sets and where for each $i \in I$ there exists a $j \in J$ with $E_i \cap E_j \neq 0$. Let us put $Y = \bigcup \{E_j: j \in J\}$. Since $\{E_i: i \in I\}$ is a closurepreserving family of closed sets, Y is a closed subset of X. By Lemma 5 the family $\{E_j: j \in J\}$ is discrete. Thus Y is a discrete closed subset of X. Let us fix $i \in I$. Since $E_i \cap Y \neq 0$, $\operatorname{card}(E_i - Y) \leq n$. Thus X - Y has the closure-preserving cover $\{E_i - Y: i \in I\}$ with $\operatorname{card}(E_i - Y) \leq n$ for each $i \in I$. Hence, by S(n), X-Y is a scattered space and it is the union of n discrete subsets. Thus $X = (X - Y) \cup Y$ is also scattered, because the union of two scattered spaces is a scattered space (see [4], p. 79). Clearly, X is the union of n+1 discrete subsets.

PROBLEM 1. Let X be a paracompact space with a closure-preserving cover by compact sets. Does X have a countable cover by C-scattered closed subsets?

Remark 4. We may consider Theorem 4 (according to Theorem 1) and Theorem 6 as partial solutions of Problem 1.

Example 3. A compact scattered space X that has no closure-preserving cover by finite sets. We take $X=\{\xi\colon \xi\leqslant\omega_1\}$ endowed with the order (interval) topology. X is a compact scattered space. Assume that $\{E_i\colon i\in I\}$ is a cover of X by finite sets. The set $\{i\in I\colon \operatorname{card} E_i=1\}$ is finite, because X is compact. Let us set $I'=\{i\in I\colon \operatorname{card} E_i>1\}$. We define $f\colon I'\to X$ as follows: $f(i)=\max\{a<\omega_1\colon a\in E_i\}$. Clearly, there is a sequence $\{i_n\colon n\geqslant 0\}\subseteq I'$ for which $f(i_0)< f(i_1)< f(i_2)<\dots$ Let $\alpha=\sup\{f(i_n)\colon n\geqslant 0\}$. Then $\alpha\notin\bigcup\{E_{i_n}\colon n\geqslant 0\}$ and $\alpha\in \operatorname{cl}\bigcup\{E_{i_n}\colon n\geqslant 0\}$. Hence $\{E_i\colon i\in I\}$ is not closure-preserving.

Remark 5. Let X be the Aleksandrov compactification of the space defined in Example 2. Then X is another example of a compact scattered space that has no closure-preserving cover by finite sets.

Recall that X is said to be totally paracompact if each open basis of X contains a locally finite cover of X.

Theorem 7. If X is paracompact and if X has a closure-preserving cover by finite sets, then X is totally paracompact.

Proof. By Theorem 6 the space X has a countable cover by its scattered closed subsets. By Theorem 3.1 of [11] each paracompact scattered space is absolutely paracompact. By Theorem 1.7 of D. Curtis [1] a paracompact space having a countable cover by its closed absolutely paracompact subsets is totally paracompact.

THEOREM 8. If X has two order locally finite covers $\{E_{\xi}\colon \xi < a\}$ and $\{U_{\xi}\colon \xi < a\}$ where E_{ξ} is compact and U_{ξ} is an open nbhd of E_{ξ} for each $\xi < a$, then X is totally paracompact.

Proof. By a theorem of Y. Katuta [3] the space X is paracompact. By Theorem 4 the space X has a countable cover by its C-scattered closed subsets. By Theorem 3.1 of [11] and Theorem 1.7 of [1] the space X is totally paracompact if it is paracompact and if it has a countable cover by its C-scattered closed subsets.

PROBLEM 2. Let X be a paracompact space with a closure-preserving cover by compact sets. Is X totally paracompact?

Remark 6. Theorem 7 and Theorem 8 (according to Theorem 1) can be considered as partial solutions of Problem 2.

Recall that a family $\{E_i: i \in I\}$ is said to be σ -closure-preserving if I is the union of such a countable family $\{I_n: n \geq 0\}$ that $\{E_i: i \in I_n\}$ is closure-preserving for each $n \geq 0$.

Example 4. A paracompact scattered space X for which the following holds: (a) X has no closure-preserving cover by compact sets, but yet (b) X has a σ -closure-preserving cover by compact sets. X is the space S_0 defined in [11], p. 71. This space X is paracompact (even Lindelöf) and scattered. It is uncountable and has a countable dense open subset N. Each compact subset of X is finite. Hence (a) follows. The family $\{\{p, p_{\sigma}\}: \sigma < \omega_1\}$ is closure-preserving and covers X-N. Obviously, N has a cover by singletons. Hence (b) follows.

Remark 7. Let X be the Aleksandrov compactification of the space defined in Example 2. Then X is an example of a compact space satisfying (a) and (b).

Added in proof. Example 1 provides an improvement of the result of H. B. Potoczny [7] in the following sense. The auxiliary space X, which is constructed in Example 1, has a closure-preserving cover consisting of three-point sets but X is even not subparacompact.

Let us recall that X is said to be subparacompact if each open cover of X has a σ -locally finite closed refinement (D. K. Burke, On subparacompact spaces, Proc. Amer. Math. Soc. 23 (1969), pp. 655-663). It is easy to check that (a) each F_{σ} -set in X

is closed; (b) if each F_{σ} -set is closed, then each σ -locally finite family is closure-preserving. Thus, if X were subparacompact, then it would be paracompact by Theorem 1 of E. Michael, Another note on paracompact spaces, Proc. Amer. Math. Soc. 8 (1957), pp. 822–828. But X is even not normal. Hence the assertion follows.

References

- [0] A. V. Arhangel'skii, Mappings and spaces, Uspehi Mat. Nauk 21 (1966), 4 (130), pp. 133-184 (Russian).
- D. Curtis, Total and absolute paracompactness, Fund. Math. 77 (1973), pp. 277-283.
- [2] R. Engelking, Outline of General Topology, Amsterdam 1968.
- [3] Y. Katuta, A theorem on paracompactness of product spaces, Proc. Japan Acad. 43 (1967), pp. 615-618.
- [4] K. Kuratowski, Topology, Vol. I, New York-London-Warszawa 1966.
- [5] K. Morita, On the product of paracompact spaces, Proc. Japan Acad. 39 (1963), pp. 559-563.
- [6] K. Nagami, A note on Hausdorff spaces with the star-finite property, II, Proc. Japan Acad. 37 (1961), pp. 189-192.
- [7] H. B. Potoczny, A nonparacompact space which admits a closure-preserving cover of compact sets, Proc. Amer. Math. Soc. 32 (1972), pp. 309-311.
- [8] Closure-preserving families of compact sets, General Topology and its Applications 3 (1973), pp. 243-248.
- [9] A. H. Stone, Absolute F_{σ} -spaces, Proc. Amer. Math. Soc. 13 (1962), pp. 495-499.
- [10] H. Tamano, A characterization of paracompactness, Fund. Math. 72 (1971), pp. 189-201.
- [11] R. Telgársky, C-scattered and paracompact spaces, Fund. Math. 73 (1971), pp. 59-74.
- [12] Concerning two covering properties, Proc. Japan Acad. (in press).
- [13] On topological properties defined by games, Colloquia Mathematica Societatis János Bolyai 8, Topics in Topology, Keszthely (Hungary), 1972, pp. 617-624.
- [14] Spaces defined by topological games, Fund. Math. (in press).

INSTITUTE OF MATHEMATICS, SLOVAK ACADEMY OF SCIENCES

Reçu par la Rédaction le 2. 2. 1973