

## Some remarks on shape properties of compacta

bу

## Karol Borsuk (Warszawa)

Abstract. It is shown that the shape of a compactum X lying in a space  $M \in AR$  is trivial if and only if for every neighborhood U of X there is a map  $f \colon M \to M$  such that  $f(M) \subseteq U$  and f(x) = x for every point  $x \in X$ .

Moreover it is shown that the shape of X is trivial if and only if X is movable and approximatively n-connected for every n = 0, 1, ...

Also some properties of the approximatively n-connected spaces are proved. In particular it is shown that a movable pointed compactum  $(X, x_0)$  is approximatively n-connected if and only if the nth fundamental group  $\pi_n(X, x_0)$  is trivial.

The aim of this note is to prove two theorems characterizing compacta with trivial shape and to establish a simple relation between the property of the approximative n-connectedness and the triviality of fundamental groups.

Concerning the basic notions of the theory of shape (as fundamental sequence, shape of a compactum, fundamental retraction, fundamental absolute retract FAR, movability, approximative map of a pointed compactum  $(X, x_0)$  towards another pointed compactum  $(Y, y_0)$ , fundamental groups  $\underline{\pi}_n(X, x_0)$  and so on) see [3]. Compare also [4], where instead of compacta lying in the Hilbert cube Q, one considers compacta lying in an arbitrary AR  $(\mathfrak{M})$ -space M.

- § 1. First theorem on compacta with trivial shape. The shape of the space consisting of only one point is said to be *trivial*. One knows ([3], p. 274) that compacta with trivial shape are the same as FAR-spaces. Some other characterizations of compacta with trivial shape are given in [2], p. 72–74 and [6], p. 38. Compare also [7], p. 91–92 and [8], p. 18. Let us prove the following
- (1.1) THEOREM. The shape of a compactum X lying in a space  $M \in AR$  is trivial if and only if for every neighborhood U of X (in M) there is a map  $f \colon M \to M$  satisfying both conditions:
  - $1^{\circ} f(M) \subset U$ ,
  - $2^{\circ} f(x) = x$  for every point  $x \in X$ .

Proof. If  $X \subset M$  and if  $\operatorname{Sh}(X)$  is trivial then there exists a fundamental retraction  $f = \{f_k, M, X\}_{M,M}$ . Then for every neighborhood U

of X (in M) there is an index k such that the map  $f = f_k : M \to M$  satisfies the conditions 1° and 2°.

On the other hand, suppose that for every neighborhood U of X (in M) there is a map  $f \colon M \to M$  satisfying  $1^{\circ}$  and  $2^{\circ}$ . First let us consider the special case when M is the Hilbert cube Q, being the subset of the Hilbert space  $E^{\infty}$  consisting of all points  $(t_1, t_2, ...) \in E^{\infty}$  with  $0 \le t_n \le 1/n$  for n = 1, 2, ... Setting

$$\lambda_n(t)=1/n \quad ext{ if } \quad t\geqslant 1/n \; , \ \lambda_n(t)=t \quad ext{ if } \quad 0\leqslant t\leqslant 1/n \; , \ \lambda_n(t)=0 \quad ext{ if } \quad t\leqslant 0 \; ,$$

and

$$r_0(t_1,\,t_2,\,\ldots) = \left(\lambda_1(t_1),\,\lambda_2(t_2),\,\ldots\right) \quad ext{ for every } (t_1,\,t_2,\,\ldots) \in E^\infty$$
 ,

one obtains a retraction  $r_0$ :  $E^{\infty} \rightarrow Q$  satisfying the condition

$$|r_{\mathbf{0}}(x)-r_{\mathbf{0}}(x')|\leqslant |x-x'|\quad \text{ for every } x,\,x'\in E^{\infty}\;.$$

Now let us consider a sequence  $U_1 \supset U_2 \supset ...$  of open neighborhoods of X (in Q) shrinking to X. By our hypothesis, there exists for every k=1,2,... a map

$$a_k: Q \rightarrow Q$$

such that  $a_k(Q) \subset U_k$  and  $a_k(x) = x$  for every point  $x \in X$ . Since  $a_k(Q)$  is a compact subset of the open set  $U_k$ , there exists a positive number  $\varepsilon_k$  such that

(1.3) if 
$$x \in Q$$
 and  $\varrho(x, \alpha_k(Q)) < \varepsilon_k$  then  $x \in U_k$ .

Since  $a_k(x) = x$  for every point  $x \in X$ , there exists a closed neighborhood  $V_k \subset U_k$  of X (in Q) such that

(1.4) 
$$\varrho(x, \alpha_k(x)) < \varepsilon_k$$
 for every point  $x \in V_k$ .

It is clear that we can assume that  $V_{k+1} \subset V_k$  for  $k=1,2,\dots$ Now let us set

$$\beta_k(x) = a_k(x) - x$$
 for every point  $x \in V_k$ .

It follows by (1.4) that  $\beta_k$  is a map of  $V_k$  into the ball  $B_k$  consisting of all points  $y \in E^{\infty}$  with  $\varrho(y, 0) < \varepsilon_k$ . Since  $B_k$  is an AR( $\mathfrak{M}$ )-set, the map  $\beta_k$  has an extension  $\beta_k'$  being a map of Q into  $B_k$ . Setting

$$\hat{a}_k(y) = r_0[a_k(y) - \beta'_k(y)]$$
 for every point  $y \in Q$ .

one sees easily (by virtue of (1.2) and (1.3)) that  $\hat{a}_k$  is a map of Q into itself such that

$$\hat{a}_k(Q) \subset U_k$$
 and  $\hat{a}_k(x) = x$  for every point  $x \in V_k$ .

By our hypothesis, there exists for every k=1 , 2, ... a map  $f_k\colon Q{\to}Q$  such that

$$f_k(Q) \subset V_k$$
 and  $f_k(x) = x$  for every point  $x \in X$ .

Setting

$$\varphi_k(y,t) = \hat{a}_k(tf_{k+1}(y) + (1-t)f_k(y))$$
 for every  $(y,t) \in Q \times \langle 0,1 \rangle$ ,

we get a homotopy

$$\varphi_k: Q \times \langle 0, 1 \rangle \rightarrow Q$$

with values in  $U_k$ . Moreover

$$\varphi_k(y, 0) = f_k(y)$$
 and  $\varphi_k(y, 1) = f_{k+1}(y)$  for every point  $y \in Q$ ,

because  $\varphi_k(y,0) = \hat{a}_k f_k(y)$ ,  $\varphi_k(y,1) = \hat{a}_k f_{k+1}(y)$  and also  $f_k(y) \in V_k$ ,  $f_{k+1}(y) \in V_{k+1} \subset V_k$  for every point  $y \in Q$ .

Thus we have shown that  $\underline{f} = \{f_k, Q, X\}$  is a fundamental sequence. Since  $f_k(x) = x$  for every point  $x \in X$ , we infer that  $\underline{f}$  is a fundamental retraction. Hence  $\operatorname{Sh}(X)$  is trivial.

Passing to the general case, we may assume that  $M \cap Q = X$ . Then there are two retractions

$$r: M \cup Q \rightarrow M$$
 and  $s: M \cup Q \rightarrow Q$ .

Let V be a neighborhood of X in Q. Then there exists a neighborhood U of X in M such that  $s(U) \subset V$ . By our hypothesis, there is a map  $g \colon M \to M$  such that  $g(M) \subset U$  and that g(x) = x for every point  $x \in X$ . Setting

$$f(y) = \operatorname{sgr}(y)$$
 for every point  $y \in Q$ ,

one gets a map  $f\colon Q \to Q$  such that  $f(Q) \subset V$  and that f(x) = x for every point  $x \in X$ . By virtue of the just settled special case, one infers that  $\mathrm{Sh}(X)$  is trivial. Thus the proof of Theorem (1.1) is finished.

- § 2. Approximatively *n*-connected compacta. Let  $S=S^n$  denote the boundary of the ball  $B=B^{n+1}$  defined in the Euclidean (n+1)-space  $E^{n+1}$  as the set of all points  $y \in E^{n+1}$  with  $|y| \le 1$ . Let  $a=(1,0,...,0) \in S$ . First let us prove the following proposition:
- (2.1) Suppose that  $x_0$  is a point of a subset  $U_0$  of a space U. A map  $f: (S, a) \rightarrow (U_0, x_0)$  is null-homotopic in  $(U, x_0)$  if and only if there exists a map  $\hat{f}: B \rightarrow U$  such that  $\hat{f}(y) = f(y)$  for every point  $y \in S$ .

Proof. If  $f: (S, a) \rightarrow (U_0, x_0)$  is null-homotopic in  $(U, x_0)$  then there exists a homotopy  $\varphi \colon S \times (0, 1) \rightarrow U$  such that  $\varphi(y, 0) = f(y)$ ,  $\varphi(y, 1) = x_0$  for every point  $y \in S$  and  $\varphi(a, t) = x_0$  for every  $0 \le t \le 1$ . Setting

$$\hat{f}(y) = \varphi\!\left(\!\frac{y}{|y|}, 1 \!-\! |y|\right) \quad \text{for every point } y \in B \backslash (0) \;,$$

$$\hat{f}(0)=x_0,$$

one gets a map  $\hat{f} \colon B \to U$  satisfying the required conditions.

One the other hand, if there exists a map  $\hat{f} \colon B \to U$  satisfying the condition  $\hat{f}(y) = f(y)$  for every point  $y \in S$ , then setting

$$\varphi(y,t) = \hat{f}(a+(1-t)(y-a))$$
 for every  $(y,t) \in S \times \langle 0,1 \rangle$ ,

one gets the required homotopy  $\varphi \colon \mathcal{S} \times \langle 0, 1 \rangle \rightarrow U$ .

Let us recall that a compactum X lying in a space  $M \in AR(\mathfrak{M})$  is said to be approximatively n-connected if for every point  $x_0 \in X$  and for every neighborhood U of X (in M) there exists a neighborhood  $U_0$  of X (in M) such that every map  $f \colon (S,a) \to (U_0,x_0)$  is null-homotopic in  $(U,x_0)$ . One sees readily that the choice of a space  $M \in AR(\mathfrak{M})$  containing X is immaterial and that the approximative n-connectedness of X implies the approximative n-connectedness of every compactum X with  $Sh(Y) \leq Sh(X)$ .

Now let us prove the following

(2.2) THEOREM. A compactum  $X \subset M \in AR(\mathfrak{M})$  is approximatively n-connected if and only if for every neighborhood U of X in M there is a neighborhood W of X (in M) such that every map  $f \colon S \to W$  is null-homotopic in U.

Proof. Suppose that X is approximatively n-connected. Let U be a neighborhood of X (in M). Then for every point  $x_0 \in X$  there exists a neighborhood  $V_{x_0}$  of X (in M) such that each map  $f \colon (S, a) \to (V_{x_0}, x_0)$  is null-homotopic in  $(U, x_0)$ . It is clear that if  $x_0'$  is a point of  $V_{x_0}$  sufficiently close to  $x_0$  then for every map  $g \colon (S, a) \to (V_{x_0}, x_0')$  there exists a homotopy

$$\vartheta \colon S \times \langle 0, 1 \rangle \to V_{x_0}$$

such that  $\vartheta(x,0) = x_0$  and  $\vartheta(y,1) = g(y)$  for every point  $y \in S$ . Setting

$$f(y) = \vartheta(y, 0)$$
 for every point  $y \in S$ ,

one gets a map  $f:(S,a)\to (V_{x_0},x_0)$ . By our hypothesis, this map is null-homotopic in  $(U,x_0)$  and we infer by (2.1) that there exists a map

$$\hat{f} \colon B {
ightarrow} U$$



such that  $\hat{f}(y) = f(y)$  for every point  $y \in S$ . Setting

$$\begin{split} \hat{g}\left(y\right) &= \hat{f}(2y) & \text{if} \quad |y| \leqslant \frac{1}{2} \;, \\ \hat{g}\left(y\right) &= \vartheta\!\left(\frac{y}{|y|}, 2\left|y\right| \! - \! 1\right) & \text{if} \quad \frac{1}{2} \leqslant |y| \leqslant 1 \;, \end{split}$$

we get a map  $\hat{g} \colon B \to U$  such that  $\hat{g}(y) = g(y)$  for every point  $y \in S$ . Applying again (2.1), we infer that g is null-homotopic in  $(U, x'_0)$ .

Thus we have shown that for every point  $x_0 \in X$  there exists a neighborhood  $G_{x_0}$  of  $x_0$  in M such that if  $x_0' \in G_{x_0}$  then every map  $f: (S, a) \to (V_{x_0}, x_0')$  is null-homotopic in  $(U, x_0')$ .

Since X is compact, there exists a finite system of points  $x_1, x_2, \ldots, x_m \in X$  such that  $G = G_{x_1} \cup G_{x_2} \cup \ldots \cup G_{x_m}$  is a neighborhood of X in M. We infer that setting

$$W_U = V_{x_1} \cap V_{x_2} \cap \ldots \cap V_{x_m} \cap G ,$$

we get a neighborhood  $W_U$  of X (in M) such that every map  $f\colon S{\to}W_U$  is null-homotopic in U.

On the other hand, if for every neighborhood U of X (in M) there exists a neighborhood  $W_U$  of X (in M) such that every map  $f \colon S \to W_U$  is null-homotopic in U, then we infer by (2.1) that for every point  $x_0 \in X$  every map  $f \colon (S,a) \to (W_U,x_0)$  is null-homotopic in  $(U,x_0)$ . Hence X is approximatively n-connected and the proof of Theorem (2.2) is finished.

- § 3. Second theorem on compacta with trivial shape. By a polyhedral pair  $(R, R_0)$  we understand a pair consisting of a finite polyhedron R and of a polyhedron  $R_0$  being the union of some simplexes of a triangulation of R. First let us prove the following
- (3.1) Lemma. Suppose that X is a compactum lying in a space  $M \in AR$  and n is an integer  $\geqslant 0$ . If X is approximatively k-connected for every k=0,1,...,n then for every neighborhood U of X in M there exists a neighborhood  $U_0 \subset U$  of X in M such that for every polyhedral pair  $(R,R_0)$  with  $\dim(R \setminus R_0) \leqslant n$  and for every map  $f_0 \colon R_0 \to U_0$  there exists a map  $f \colon R \to U$  satisfying the condition  $f(x) = f_0(x)$  for every point  $x \in R_0$ .

Proof. Let T be a triangulation of R such that  $R_0$  is the union of some simplexes belonging to T. If n=0 then  $R \setminus R_0$  consists of a finite number of points and one can get a required map f assigning to each of these points a point of X.

Assume now that n>0 and that the statement holds true if  $\dim(R \setminus R_0) \leq n-1$ . Let  $R^{(n-1)}$  denote the (n-1)-dimensional skeleton of the triangulation T, i.e. the union of all simplexes of T with dimensions  $\leq n-1$ . Let U be a neighborhood of X in M. Since X is approximatively connected in dimensions  $\leq n$ , we infer by Theorem (2.2) that there exists

191



a neighborhood  $\hat{U} \subset U$  of X (in M) such that for every map g of the boundary  $\Delta$  of any n-dimensional simplex  $\Delta$  into  $\hat{U}$  there is a map  $g' \colon \Delta \to U$  satisfying the condition g'(y) = g(y) for every point  $y \in \Delta$ . By the hypothesis of induction, there exists a neighborhood  $\hat{U}_0$  of X (in M) such that for every map  $f_0 \colon R_0 \to \hat{U}_0$  there is a map  $\hat{f} \colon R_0 \cup R^{(n-1)} \to \hat{U}$  such that  $\hat{f}(y) = f_0(y)$  for every point  $y \in R_0$ . Then for every n-dimensional simplex  $\Delta$  of T there is a map  $g_{\Delta} \colon \Delta \to U$  satisfying the condition  $g_{\Delta}(y) = \hat{f}(y)$  for every point  $y \in \hat{\Delta}$ . Setting

 $f(y) = \hat{f}(y) \quad \text{for every point } y \in R_0 \cup R^{(n-1)} \,,$   $f(y) = g_{\Delta}(y) \quad \text{for every point } y \in \Delta \in T \text{ with } \Delta \setminus A \subseteq R \setminus (R_0 \cup R^{(n-1)}) \,,$ one gets a map  $f \colon R \to U$  satisfying the required conditions.

(3.2) Theorem. The shape of a compactum X is trivial if and only if X is movable and approximatively n-connected for every n=0,1,...

Proof. It is well known that every compactum X with trivial shape is movable and approximatively n-connected for every  $n=0\,,1\,,\ldots$  Thus it remains to prove the converse.

One knows ([1], p. 240) that for every compactum X there exists an infinite polyhedron P disjoint to X and such that  $M=X \cup P$  is an AR-space. If X is movable, then for every open neighborhood U of X in M there exists a neighborhood  $U_0 \subset U$  of X in M such that the inclusion-map of  $U_0$  in U is in U homotopic to a map with all values in an arbitrarily given neighborhood V of X (in M).

Let us observe that there exists a finite polyhedron R, being the union of some simplexes of a given triangulation T of P, such that  $M \setminus R \subset U_0$ . Let R denote the boundary of R in M, that is  $R = R \cap \overline{M \setminus R}$ . It is clear that R is a finite polyhedron lying in  $U_0$ . By Lemma (3.1), there exists a neighborhood  $V \subset U_0$  of X (in M) such that for every map  $g \colon R \to V$  there is a map  $\hat{g} \colon R \to U_0$  satisfying the condition  $\hat{g}(y) = g(y)$  for every point  $g \in R$ .

Consider now the inclusion map  $j\colon R\to U_0$ . By the definition of  $U_0$ , there exists a homotopy  $\psi\colon R\times \langle 0\,,\,1\rangle \to U$  joining j with a map g with all values in V. Setting

$$f'(y) = g(y)$$
 for every point  $y \in \dot{R}$ ,  $f'(x) = x$  for every point  $x \in X$ ,

one gets a map  $f': X \cup \dot{R} \to V$  homotopic in U to the inclusion map  $j': X \cup \dot{R} \to U$ . Since the inclusion map  $\hat{j}: \overline{X \setminus R} \to U$  is an extension of j' and since U (as an open subset of M) is an ANR( $\mathfrak{M}$ )-space, we infer by the homotopy extension theorem that there exists a map

$$\hat{f} \colon \overline{X \backslash R} \to U$$

being an extension of f'. Moreover, we know already that there exists a map  $\hat{g} \colon R \to U_0$  satisfying the condition  $\hat{g}(y) = g(y) = \hat{f}'(y) = \hat{f}(y)$  for every point  $y \in \hat{R}$ . Setting

$$f(y) = \hat{f}(y)$$
 for every point  $y \in \overline{M \setminus R}$ ,

$$f(y) = \hat{g}(y) \quad \text{ for every point } y \in R \;,$$

one gets a map  $f \colon M \to M$  such that  $f(M) \subset U$  and that f(x) = x for every point  $x \in X$ . By virtue of Theorem (1.1), the shape of X is trivial. Thus the proof of Theorem (3.2) is finished.

§ 4. Approximative *n*-connectedness of movable pointed compacta and the fundamental groups. It is clear that for every approximatively *n*-connected, pointed compactum  $(X, x_0)$  the group  $\underline{\pi}_n(X, x_0)$  is trivial. Hence:

(4.1) If X is an approximatively n-connected compactum, then for every point  $x_0 \in X$  the group  $\underline{\pi}_n(X, x_0)$  is trivial.

For arbitrary compacta the converse is not true (because if X is a solenoid of van Dantzig, then  $\underline{x}_1(X,x_0)$  is trivial, but X is not approximatively 1-connected). However the following theorem (compare [3], p. 271) holds true:

(4.2) THEOREM. A movable, pointed compactum  $(X, x_0)$  is approximatively n-connected if and only if the group  $\pi_n(X, x_0)$  is trivial.

Proof. By (4.1) we have only to show that if X is not approximatively n-connected then  $\pi_n(X, x_0)$  is not trivial. Assume that X lies in an AR( $\mathfrak{M}$ )-space M. Since  $(X, x_0)$  is movable, there exists a sequence  $U_1 \supset U_2 \supset \ldots$  of neighborhoods of X in M shrinking to X and such that for every  $k=1,2,\ldots$  there is a homotopy

$$\varphi_k: U_{k+1} \times \langle 0, 1 \rangle \rightarrow U_k$$

such that  $\varphi_k(y,0) = y$ ,  $\varphi_k(y,1) \in U_{k+2}$  for every point  $y \in U_{k+1}$ , and  $\varphi_k(x_0,t) = x_0$  for every  $0 \le t \le 1$ .

If  $(X, x_0)$  is not approximatively n-connected, then there is a neighborhood U of X (in M) such that for every neighborhood V of X (in M) there exists a map

$$f: (S, a) \rightarrow (V, x_0)$$

which is not null-homotopic in  $(U, x_0)$ . Let  $k_0$  be an index such that  $U_{k_0} \subset U$ . Then there is a map

$$\xi_1: (S, a) \to (U_{k_0+2}, x_0)$$



which is not null-homotopic in  $(U_{k_0}, x_0)$ . Assume that for a natural index m a map

$$\xi_m: (S, a) \to (U_{k_0+m+1}, x_0)$$

is defined, which is not null-homotopic in  $(U_{k_0}, x_0)$ . Setting

$$\xi_{m+1}(y) = \varphi_{k_0+m} \big( \xi_m(y), 1 \big) \quad \text{ for every point } y \in S \ ,$$

we get a map

$$\xi_{m+1}: (S, a) \rightarrow (U_{k_0+m+2}, x_0)$$

homotopic to  $\xi_m$  in  $(U_{k_0+m}, x_0)$ . Hence  $\xi_{m+1}$  is not null-homotopic in  $(U_{k_0}, x_0)$ . Thus we obtain a sequence of maps  $\xi_1, \xi_1, \ldots$  of (S, a) into  $(U_{k_0}, x_0)$  such that  $\underline{\xi} = \{\xi_k \colon (S, a) \to (X, x_0)\}$  is an approximative map, being a representative of an element of the group  $\underline{x}_n(X, x_0)$ , different from zero. Hence  $\underline{x}_n(X, x_0)$  is not trivial and the proof of Theorem (4.2) is finished.

Theorems (3.2) and (4.2) give the following

(4.3) Corollary. If  $(X, x_0)$  is a movable pointed compactum for which all groups  $\pi_n(X, x_0)$  are trivial then  $\mathrm{Sh}(X)$  is trivial.

The question whether every movable compactum X with trivial fundamental groups  $\underline{\pi}_n(X, x_0)$  for every  $x_0 \in X$  is approximatively n-connected remains open.

- $\S$  5. Components of an approximatively *n*-connected compactum. Let us prove the following
- (5.1) THEOREM. A compactum X is approximatively n-connected (n > 0) if and only if every component of it is approximatively n-connected.

Proof. Assume that X lies in a space  $M \in AR(\mathfrak{M})$  and let Y be a component of X. Consider a neighborhood V of Y. Then there is a neighborhood U of X (in M) such that the component  $\hat{U}$  of U containing Y lies in V.

If X is approximatively n-connected, then we infer by Theorem (2.2) that there is a neighborhood  $U_0 \subset U$  of X such that for every map

$$f: S^n \to U_0$$

there exists apoint  $x_0 \in U$  and a homotopy

$$\varphi \colon S^n \times \langle 0, 1 \rangle \to U$$

such that  $\varphi(z, 0) = f(z)$ ,  $\varphi(z, 1) = x_0$  for every point  $z \in S^n$ .

Let  $V_0$  denote the component of  $U_0$  containing Y. If all values of f belong to  $V_0$  then the set  $\varphi(S^n \times \langle 0, 1 \rangle)$  lies in  $\hat{U} \subset V$ . Thus we have

assigned to every neighborhood V of Y (in M) a set  $V_0$  (being a neighborhood of Y in M) such that every map of  $S^n$  with values in  $V_0$  is null-homotopic in V. It follows, by Theorem (2.2), that Y is approximatively n-connected.

Now let us assume that every component of X is approximatively n-connected. Consider a point  $x_0 \in X$  and let Y be the component of X containing  $x_0$ . If U is a neighborhood of X (in M), then U is also a neighborhood of Y, hence there exists a neighborhood  $V_0$  of Y (in M) such that every map of  $(S^n, a)$  (where  $a \in S^n$ ) into  $(V_0, x_0)$  is null-homotopic in  $(U, x_0)$ . Moreover, there exists a neighborhood  $U_0$  of X (in M) such that the component  $\hat{U}_0$  of  $U_0$  containing Y lies in  $V_0$ . Then, for every map

$$f: (S^n, a) \rightarrow (U_0, x_0)$$

the values of f belong to  $\hat{U}_0$  and we infer that f is null-homotopic in  $(U, x_0)$ . Hence X is approximatively n-connected and the proof of Theorem (5.1) is finished.

- § 6. Components of a pointed movable compactum. It is clear that the movability of a pointed compactum  $(X, x_0)$  implies the movability of X. The following theorem gives a condition characterizing the movability of  $(X, x_0)$ :
- (6.1) THEOREM. Let Y be a component of a compactum X and let  $x_0 \in Y$ . In order  $(X, x_0)$  be movable it is necessary and sufficient that X and  $(Y, x_0)$  be movable.

Proof. Assume that X lies in a space  $M \in AR(\mathfrak{M})$ . Let V be a neighborhood of Y (in M). Then there exists a neighborhood U of X (in M) such that the component  $\hat{U}$  of U containing Y lies in V.

If  $(X, x_0)$  is movable then X is movable. Moreover, there exists a neighborhood  $U_0$  of X such that for every neighborhood W of X (in M) there is a homotopy

$$\varphi \colon U_0 \times \langle 0, 1 \rangle {\rightarrow} U$$

such that  $\varphi(x, 0) = x$ ,  $\varphi(x, 1) \in W$  for every point  $x \in U_0$  and  $\varphi(x_0, t) = x_0$  for every  $0 \le t \le 1$ .

Consider an arbitrarily given neighborhood  $W_0$  of Y in M. Then the neighborhood W of X can be selected so that its component  $\hat{W}$  containing Y lies in  $W_0$ . Let  $\hat{U}_0$  denote the component of  $U_0$  containing Y. Then  $\hat{U}_0$  is a connected neighborhood of Y (in M) and  $\varphi(\hat{U}_0 \times \langle 0, 1 \rangle)$   $\subset \hat{U} \subset V$ . Consequently the restriction  $\varphi(\hat{U}_0 \times \langle 0, 1 \rangle)$  is a homotopy joining in  $(V, x_0)$  the inclusion-map  $j: (\hat{U}, x_0) \to (V, x_0)$  with a map having all values in the set  $\hat{W} \subset W_0$ . Hence  $(Y, x_0)$  is movable.



Now let us assume that X and  $(Y,x_0)$  are movable. Consider an open neighborhood U of X (in M). The movability of X implies that there exists a neighborhood  $U_0$  of X (in M) such that for every neighborhood W of X (in M) there is a homotopy

$$\varphi \colon U_0 \times \langle 0, 1 \rangle \to U$$

such that  $\varphi(x, 0) = x$  and  $\varphi(x, 1) \in W$  for every point  $x \in U_0$ .

Let  $W_0$  denote the component of W containing Y. The movability of  $(Y, x_0)$  implies (because U and W are neighborhoods of Y in M) that there exists a neighborhood  $V_0$  of Y in M such that there is a homotopy

$$\psi: V_0 \times \langle 0, 1 \rangle \rightarrow U$$

satisfying the conditions:  $\psi(x,0) = x$ ,  $\psi(x,1) \in W$  for every point  $x \in V_0$  and  $\psi(x_0,t) = x_0$  for every  $0 \le t \le 1$ .

Since the neighborhood  $U_0$  of X can be replaced by any neighborhood of X contained in  $U_0$ , we may assume that  $U_0$  is open in M and that the component  $\hat{U}$  of  $U_0$  containing Y lies in  $V_0$ . Setting  $\hat{U}' = U_0 \setminus \hat{U}$ , we get two disjoint open (in M) sets. It suffices to set

$$\chi(x, t) = \varphi(x, t)$$
 if  $(x, t) \in \hat{U}' \times \langle 0, 1 \rangle$ ,  
 $\gamma(x, t) = \psi(x, t)$  if  $(x, t) \in \hat{U} \times \langle 0, 1 \rangle$ 

in order to obtain a homotopy  $\chi \colon U_0 \times \langle 0, 1 \rangle \to U$  such that  $\chi(x, 0) = x$ ,  $\chi(x, 1) \in W$  for every  $0 \le t \le 1$ . Hence  $(X, x_0)$  is movable and the proof of Theorem (6.1) is finished.

- (6.2) Remark. It is known ([5], p. 140) that there exists a movable compactum X with a non-movable component Y. If  $x_0 \in Y$  then we infer by Theorem (6.1) that  $(X, x_0)$  is not movable. Consequently the movability of X does not imply the movability of  $(X, x_0)$  for every point  $x_0 \in X$ .
- (6.3) Problem Is it true that the movability of a continuum X implies the movability of  $(X, x_0)$  for every point  $x_0 \in X$ ?

## References

- K. Borsuk, Sur le plongement des espaces dans les rétractes absolus, Fund. Math. 27 (1936), pp. 239-343.
- [2] Fundamental retracts and extensions of fundamental sequences, Fund. Math. 64 (1969), pp. 55-85.
- [3] A note on the theory of shape of compacta, Fund. Math. 67 (1970), pp. 265-278.
- [4] Some remarks concerning the theory of shape in arbitrary metrizable spaces, Proc. of the Third Prague Topological Symposium 1971, pp. 77-81.

- [5] K. Borsuk, On movable compacta, Fund. Math. 66 (1969), pp. 137-146.
- [6] T. A. Chapman, Some results on shapes and fundamental absolute retracts, Bull. Acad. Polon. Sci. 20 (1972), pp. 37-40.
- [7] D. M. Hyman, On decreasing sequences of compact absolute retracts, Fund. Math. 64 (1969), pp. 91-97.
- [8] S. Mardešić, Decreasing sequences of cubes and compacta of trivial shape, General Topology and its Applications 2 (1972), pp. 17-23.

Reçu par la Rédaction le 10. 4. 1973