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Some remarks on shape properties of compacta
) oy

Karol Borsuk (Warszawa)

Abstract. It is shown that the shape of a compactum X lying in a space M ¢ AR
is trivial if and only if for every neighborhood U of X there is a map f: MM such
that (M) C U and f(z) = = for every point » ¢ X.

Moreover it is shown that the shape of X is trivial if and only if X is movable and
approximatively n-connected for every n= 0,1,

Also some properties of the apprommatwely n-connected spaces are proved.
In particular it is shown that a movable pointed compactum (X, ) is approximatively
n-conneeted if and only if the mth fundamental group ma(X, @,) is trivial.

The aim of this note is to prove two theorems characterizing com-
pacta with trivial shape and to establish a simple relation between the
property of the approximative n-connectedness and the triviality of
fundamental groups.

Concerning the basic notions of the theory of shape (as fundamental
sequence, shape of a compactum, fundamental retraciion, fundamental
absolute retract FAR, movability, approwimative map of a pointed com-
pactum (X, a,) towards another pointed compactum (X, y,), funda-

mental groups m.(X, x,) and so on) see [3]. Compare also [4], where instead

of compacta lying in the Hilbert cube @, one considers compacta lying
in an arbitrary AR (IR)-space M.

§ 1. First theorem on compacta with trivial shape. The shape of the space
consisting of only one point is said to be rivial. One knows ([3], p. 274)
that compacta with trivial shape are the same as FAR-spaces. Some
other characterizations of compacta with trivial shape are given in [2],
p. 72-74 and [6], p. 38. Compare also [7], p. 91-92 and [8], p. 18 Let us
prove the following

(1.1) TEEoREM. The shape of a compactum X lying in a space M « AR
48 trivial if and only if for every neighborhood U of X (in M) there is a map
f: M——>JJ[ satisfying both conditions:

1° f(M)CU,

2° f(2) = = for every point xeX.

Proof. ¥ X C M and if Sh(X) is trivial then there exists a funda-
mental retraction f= {fr, M, X}z 5. Then for every neighborhood U
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of X (in M) there is an index % such that the map f= fr: M—M satisfies
the conditions 1° and 2°. !

On the other hand, suppose that for every neighborhood U of X
(in B) there is & map f: M—M satistying 1% and 2°. First let us consider
the special case when M is the Hilbert cube ¢, being the subset of the
Hilbert space B consisting of all points (%, %, ...)¢ E* with 0 < t, < 1/n
for n=1, 2, ... Setting

In)=1n i t>=1/n,
In(t)y =1 if 0<i<l/n,
In(t) =0 if <0,

and

for every (i, &, ...) e B®,

Toltes &y o) = (M(t), Zelta), --.)
one obtains a retraction r,: E®-Q satisfying the condition

(1.2) Iro(@)—ro(a)} < Jx—a’|  for every x,a < B®.

Now let us consider a sequence U;D U,D ... of open neighborhoods
of X (in @) shrinking to X. By our hypothesis, there exists for every
k=1,2,.. a map

o Q—>Q

such that a(@)C Uy and ox(z) = 2 for every point ve X. Since ax(Q) is
a compact subset of the open set U, there exists a positive number ¢
such that

(13) if xeQ and Q(w, ak(Q))< & then we U, .

Since ax(x) = » for every point z e X, there exists a cloged neighbor-
hood Vi C Ur of X (in @) such that
(1.4) o(#, ax(@)) < &  for every point zeV, .
It is clear that we can assume that Vi CVyfor 5=1,2, ...

Now let us set

Bu(@) = ax(®)—z  for every point ze V3.

It foll‘ows by (1.4)'that Bx is & map of Vi into the ball B, consisting of
all points yeIfJ“ with o(y, 0) < &. Since By is an AR(M)-set, the map f
has an extension g, being a map of Q. into By. Setting

a(y) = rfaly)—Py(y)]  for every point ye@,
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one sees easily (by virtue of (1.2) and (1.3)) that a is a map of @ into
itself such that

a(@) C Uy and ax(w)=ax for every point zeVy.

By our hypothesis, there exists for every k= 1,2, ... a map fi: Q—Q
such that

@) CVi and fi(x) =  for every point ze¢ X .

Setting

oy, 1) = &k(tfk—l—l(y)'{_(l_t)fk(y))
we get a homotopy

for every (y,%)eQx <0,1>,

Px: QX <07 1>_)Q
with values in Uj. Moreover

?x(y, 0) = fily) #x(¥s 1) = Frealy)

because ¢i(y, 0) = axfu(y), Px(y, 1) = akfk+1(y)
Sue1(y) € Vi CV, for every point y e Q.

Thus we have shown that f = {f, @, X} is a fundamental sequence.
Since fi(x) = « for every point z e X, we infer that f is a fundamental
retraction. Hence Sh(X) is trivial. -

Passing to the general case, we may assume that M ~ @ = X. Then
there are two retractions

re Mo@Q->M s: Mu@Q—>Q.

Let ¥V be a neighborhood of X in Q. Then there exists a neighbox-
hood U of X in M such that s(U)CV. By our hypothesis, there is a map
g: M—M such that g(M)C U and that g(x)= & for every point z e X.
Setting

and for every point y €@,

and also fi(y) € Vg,

and

fly) = sgr(y)

one gets a map f: @—@ sueh that f(Q) CV and that f(z) =  for every
point z e X. By virtue of the just settled special case, one infers that
Sh(X) is trivial. Thus the proof of Theorem (1.1) is finished.

for every point y €@,

§ 2. Approximatively 7-connected compacta. Let § = S™ denote the
boundary of the ball B = B"** defined in the Euclidean (n-1)-space A+
as the set of all points y ¢« B*™ with [y <1. Let a= (1,0, .y 0)e 8.
First let us prove the following proposition:

(2.1)  Suppose that @, is @ point of a subset U, of a space U. A map f: (8 , )
(U, @) is null-homotopic in (U, z) if and only if there ewists

a map f: B—U such that f(y) = f(y) for every point y < S.
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Proof. If f: ( —(Uy,y %) is null- homotopic m (o, wo) ’ohen there
exists a homotopy tp S % <0, 1>—U such that ¢(y, 0 f (v), =,
for every point y e S and ¢(a,?) = @, for every 0< t 1. bettmg

foy =9 (l i’ lyl) for every point y € B\(0),
FO) =2,

one gets a map f: BT satisfying the requlred conditions.
One the other hand, if there exists a map f: B—~U satisfying the
condition (y) = f(y) for every point y ¢ S, then setting

Py, )= f(a'!'( ) (y— )) for every (y,1) e Sx<0,1,

one gets the required homotopy ¢: §x<0,1)—U.

Let us recall that a compactum X lying in a space M ¢ AR (M) is
said to be approzimatively n-connected if for every point @, ¢ X and for
every neighborhood U of X (in M) there exists a neighborhood U, of X
(in M) such that every map f: (S, a)—»(Uo,wo) is null-homotopic in
(U, x,). One sees readily that the choice of a space M ¢ AR (M) containing
X is immaterial and that the approximative =-connectedness of X
implies the approximative n-connectedness of every compactum Y with
Sh(Y) < Sh(X).

Now let us prove the following

(2.2) TarorEM. A compactum X C MeAR(IMM) is approvimatively
n-~connected if and only if for every meighborhood U of X in M there is
a neighborhood W of X (in M) such that every map f: S—W is null-homo-
topic in U.

Proof. Suppose that X is approximatively n-connected. Let U be
a neighborhood of X (in M). Then for every point #,e¢ X there exists
& neighborhood V,, of X (in M) such that each map f: (8, a)—(V,,, %)
is null-homotopic in (T, x,). It is clear that if #; is a point of V,, sutficiently
close to z, then for every map g¢: (8, a)—(V,,, ;) there exists a homotopy

9: 8% 0,1V,
such that (e, 0) = , and 9(y, 1) = ¢(y) for every point g 8. Setting
fly) =H4(y,0) for every point ye &S,

one gets a map fi (8, @)=(V,,, ). By our hypothesis, this map is null-
homotopic in (U, z,) and we infer by (2.1) that there exists a map

J: B>U
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such that f(y) = f(y) for every point y ¢ S. Setting
i = ey it <%,

(z/)~1?(ﬂ lyl— 1) i oi<lyl<i,
we get a map g§: B->T such that g(y)=g(y) for every point yeS.
Applying again (2.1), we infer that g is null-homotopic in (U, ;).

Thus we have shown that for every point 2, ¢ X there exists a neighbor-
hood @,, of %, in M such that if #; &, then every map f: (S, a)—(V,,, ;)
is null- homotopm in (U, z)-

Since X is compact, there exists a finite system of points zy, 'vz,

., &m € Xsuch that G = G, v @, v ...w @, is a neighborhood of X in
_M . We infer that setting

W=V V0 wnV,, nG,

we gebt a neighborhood Wy of X (in M) such that every map f: S—>Wyp
is null-homotopic in U. .

On the other hand, if for every neighborhood U of X (in M) there
exists a neighborhood Wy of X (in M) sueh that every map f: S—Wy
is null-homotopic in U, then we infer by (2.1) that for every point #, ¢ X
every map f: (8, a)—(Wuy, %,) is null-homotopic in (U, z,). Hence X is
approximatively =-connected and the proof of Theorem (2.2) is finished.

§ 3. Second theorem on compacta with trivial -shape. By a polyhedral
pair (R, R,) we understand a pair consisting of a finite polyhedron E and
of a polyhedron R, being the union of some simplexes of a triangulation
of R. First let us prove the following

(8.1) Lienmwa. Suppose that X is a compactum lying in a space M « AR
and n is an integer =0. If X is approvimatively k-connected for every
E=0,1,..,n then for every meighborhood U of X in M there erists
a neighborhood U, C U of X in M such that for every polyhedral pair (B, E,)
with dim(B\R,) <# and for every map fy: By—>U, there exisis a map
f: R=>U satisfying the condition f(x) = fo(x)- for every point x e Fy.

Proof. Let T be a triangulation of R such that R, is the union of
some simplexes belonging to T. If » = 0 then R\E, consists of a finife
number of points and one can get a required map f assigning to each

- of these points a point of X.

Assume now that » >0 and that the statement holds true if
dim (R\R,) < n—1. Let R™Y denote the (n—1)-dimensional skeleton
of the triangulation 7, i.e. the union of all simplexes of T with dimensions
<n—1. Let U be a neighborhood of X in M. Since X is approximatively
connected in dimensions < n, we infer by Theorem (2.2) that there exists
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a neighborhood UCU of X (in M) such that for every map ¢ of the
boundary 4 of any m-dimensional simplex 4 into U there is a map
g': A->U satisfying the condition g "(y) = g(y) for every pomt yed. By
the hypothesis of induction, there exists a nelghbmhood U, of X (in M )
such that for every map fy: R,—T, there is a map f Ry w RV fr
such that F(y)=fily) for every point yeR,. Then for every n-di-
mensional smplex 4 of T there is a map ¢,: A—-TU satisfying the con-
dition g,(y) = f(y) for every point y e A. Setting

f)=7F) for every point y e By R®Y,
Fly) = guly) for every point ye 4 e T with ANA C RN(R, v R0y |

one gets a map f: BE—U satisfying the required conditions.

(8.2) TeroREM. The shape of a compactum X is trivial if and only
if X dis movable and approwimatively n-connected for every n= 0,1, ..

Proof. It is well known that every compactum X with trivial shape
is movable and approximatively - connected for every n = 0,1, ... Thus
it remains to prove the converse.

One knows ([1], p. 240) that for every compactum X there exists
an infinite polyhedron P disjoint to X and such that M = X o P is an
AR-space. If X is movable, then for every open neighborhood U of X
in M there exists a neighborhood U,C U of X in M such that the
inclusion-map of U, in U is in U homotopic to a map with all values
in an arbitrarily given neighborhood V of X (in IM).

Let us observe that there exists a finite polyhedron R, being the
union of some simplexes of a given triangulation 7 of P, such that
M\RC U,. Let E denote the boundary of R in M, that is B = R ~ JMNR.
It is clear that R is a finite polyhedron lying in U,. By Lemma (3.1),
there exists a ne1ghb0rhood VCU, of X (in M) such that for every map
g: R—V there is a map §: R—T, satisfying the condition 7)) = g
for every point y ¢ R.

Consider now the inclusion map j: B—U,. By the deﬂmuon of Ty,

there exists a homotopy p: R X <0, 1>~TU joinin, with a
m
all values in V. Setting ] gJ ap ¢ with

Fw)y=g¢) for every point y ¢ R ,
f'x) == for every point ze X,
one gets a map f: X U RV homotoplc in U to the mcluslon map

3 X W R—U. Since the inclusion map j: INR—U is an extension of J’

and since U (as an open subset of M) is an ANR () -space, we infer by
the homotopy extension theorem that there exists a map

7+ INE->T
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being an extension of f'. Moreover, we know already that there exists
a map g: B->U, satistying the condition §(y) = g(y) =f'(y) = fly) for
every point y ¢ R. Setting

=J(y) for every point y e U\E,
fly)=g(y) for every point y eR,

one gets a map f: M—M such that f(M)C U and that f(x) = « for every
point z e X. By virtue of Theorem (1.1), the shape of X is trivial. Thus
the proof of Theorem (3.2) is finished.

§ 4. Approximative »-connectedness of movable peinted compacta and the
fundamental groups. It is clear that for every approximatively #%-con-
nected, pointed compactum (X, z,) the group m(X, o) is trivial. Hence:

(41) If X is an approwimatively n-connected compactum, then for every
point @€ X the group ma(X, ) is tivial.’

For arbitrary compacta the converse is not true (because if X is
a solenoid of van Dantzig, then (X, a,) is trivial, but X is not ap-
proximatively 1-connected). However the following theorem (compare 3],
p. 271) holds true:

(4.2) THEOREM. 4 movable, pointed compactum (X, ;) is approxi-
matively n-connected if and only if the group za(X, %) is trivial.

Proof. By (4.1) we have only to show that if X is not approxi-
matively n-connected then m.(X,,) is not trivial. Assume that X lies
in an AR (9)-space M. Since (X, z,) is movable, there exists a sequence
U,D U,D ... of neighborhoods of X in I shrinking to X and such that
for every k=1, 2, ... there is a homotopy i
75t U X 03 15—>Ts

such that gu(y,0) =19, @sy,1)e Uy, for every point ye U,.1, and
or(T,, 1) = m, for every 0 << 1.

If (X, x,) is not approximatively #-connected, then there is a neigh-
borhood U of X (in M) such that for every neighborhood V of X (in M)
there exists a map

fo (8, ) >(V, 2)

which is not nnll-homotopic in (U, ,). Let &k, be an index such that
U, C U. Then there is & map

&: (SJ a’)_>(Uko+21 ;)
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which is not null-homotopic in ( Uy, %,). Assurhe thab for a natural index m
2, map

£, (8, @)= (Uppgmers )
is defined, which is not null-homotopic in (Upys %) Setiting
Epaly) = PrormlEml¥)s 1) for every point y € 8,
we get a map ‘
&t (8, &)= (Upypmezs @)

homotopic t0 &, in (U ym, %) Hence &,., is not null-homotopic in
(U %). Thus we obtain a sequence of maps &, &, ... of (§,a) into
(Uy,y @) such that &= {&: (8, a)>(X, %)} is an approximative map,
being 2 representative of an element of the group (X , ), different
from zero. Hence -z,,(X mo) 1s not trivial and the proof of Theorem (4.2)
ig finished.

Theorems (3.2) and (4.2) give the following

(4.3) Coro1LARY. If (X, m,) 48 @ movable pointed compactum for whwh
all groups ma(X, 4,) are t'rwml then Sh(X) 4s trivial.

The question whether every movable compactum X with trivial
fundamental groups m.(X, %,) for every x, ¢ X is approximatively n-con-
nected remains open.

§ 5. Components of an approximatively n-connected compactum. Let us
prove the following

(5.1) TemoREM. A compactum X s approvimatively n-connected
(n>>0) if and only if every component of 4t is approzimatively n-connected.

Proof. Assume that X lies in a space M ¢ AR(IMM) and let Y be
a component of X. Consider a neighborhood ¥ of ¥. Then there is
a neighborhood U of X (in M) such that the component {7 of U con-
taining ¥ lies in V.

If X is approximatively #-connected, then we infer by Theorem (2.2)
that there is a neighborhood U,C U of X such that for every map

fi 8"=TU,
there exists apoint #, ¢ U and a homotopy
p: 8" x<0,1y>TU

such that p(z, 0) = f(2), ¢(z,1) = , for every point z e S
Let V, denote the component of U, containing Y. If all values of f
belong to V, then the set ¢(8"x<0,1>) lies in U CV. Thus we have
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assigned to every neighborhood ¥ of ¥ (in M) a seb V, (being a neighbor-
hood of ¥ in M) such that every map of 8§ with values in ¥, is null-
homotopic in V. It follows, by Theorem (2.2), that ¥ is approximatively
n-connected.

Now let us assume that every component of X is approximatively
n-connected. Consider a point #, ¢ X and let ¥ be the component of X
containing x,. If U is a neighborhood of X (in 1f), then U is also a neigh-
borhood of ¥, hence there exists a neighborhood ¥V, of ¥ (in M) such
that every map of (8%, a) (where a e 8™) into (Vy, %) is null-homotopic
in (U, #,). Moreover, there exists a neighborhood U, of X (in M) such
that the component U, of U, containing ¥ lies in V,. Then, for every map

f2 (8" a)—=>(Uy, mo)

~the values of f belong to U, and we infer that f is null-homotopic in

(U, m). Hence X is approximatively =-connected and the proof of
Theorem (5.1) is finished.

§ 6. Components of a pointed movable compactum. Tt is clear that the
movability of a pointed compactum (X, x,) implies the movability of X.
The following theorem gives a condition characterizing the movability
of (X, x,):

(6.1) TerorEM. Let Y be a component of a compactum X -and let
@oe Y. In order (X, ;) be movable 4t is mecessary amd sufficient that X
and (Y, 2,) be movable.

Proof. Assume that X lies in a space M « AR (). Let V be a neigh-
borhood of ¥ (in M). Then there exists a neighborhoed U of X (in M)
such that the component U of U containing ¥ lies in V.

If (X, w,) is movable then X is movable. Moreover, there exists
a neighborhood T, of X such that for every neighborhood W of X (in J)
there is a homotopy

@ Uyx<0,1)->TU

such that ¢(z, 0) = 2, p(z,1) ¢ W for every point z ¢ U, and <p(:v0, 1) = @,
for every 0 <?t< 1.

Consider an arbitrarily given neighborhood W, of ¥ in M. Then
the neighborhood W of X can be selected so that its component W
containing Y lies in. W,. Let U, denote the component of U, containing Y.
Then U, is a connected neighborhood of ¥ (in M) and rp(UoX(O 1))
C U CV. Consequently the restriction ¢[(T,x<0,1)) is a homotopy
joining in (V, #,) the inclusion-map j: (U, 25)—(V, @) with-a map having
all values in the set W C W,. Hence (¥, x,) is movable.
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Now let us assume that X and (Y, w,) are movable. Consider an
" open neighborhood U of X (in M). The movability of X implies that
there exists a neighborhood U, of X (in M) such that for every neighbor-
hood W of X (in M) there is a homotopy

@ Uyx<0,15>=>T .

such that @z, 0)= & and @(z,1) ¢ W for every point % e U,.
Let W, denote the component of W containing Y. The movability

of (¥, x,) implies (because U and W are neighborhoods of ¥ in M) that
there exists a neighborhood V, of ¥ in M such that there is a homotopy

p: Vox<K0,1>—=TU

satisfying the conditions: y(z,0) = &, v(z,1) ¢ W for every point z ¢V,
and (2, 1) = 2, for every 0 << 1.

Since the neighborhood U, of X can be replaced by any neighbor-
hood of X contained in U, we may assume that U, is open in .M and
that the component I of U, containing ¥ lies in V. Setting U'= U\T,
we get two disjoint open (in M) sets. It suffices to set

2@, ) =gt i (2,1) e T'x0,1),
1@ ) =y@,1) i (2,1)eTx0,1y

in order to obtain & homotopy yx: Uyx<0,1>»—U such that y(z, 0) = x,
x(x,1) e W for every 0 << 1. Hence (X, %) is movable and the proof
of Theorem (6.1) is finished.

(6.2) Remark. It is known ([5], p. 140) that there exists a movable
compactum X with a non-movable component ¥. If z, ¢ ¥ then we infer
by Theorem (6.1) that (X, z,) is not movable. Consequently the mova-
bility of X does not imply the movability of (X, a,) for every point z, ¢ X.

(6.3) PrOBLEM Is it true that the movability of a contimwum X implies
the movability of (X, m,) for every poimt m,e X9
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