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A simplicial monotone-light factorization theorem
by
J. R. Walker (Mansfield, Penn.)

Abstract. The Eilenberg—Whyburn monotone-light factorization theorem states
that under certain very general conditions a continuous function may. be factored into
the composition of two continuous functions, the first of which is monotone and the
second light. This paper establishes that if the original function is simplicial (resp.,
piecewise linear), then the factors may also be chosen to be simplicial (resp. piecewiss linear).

1. Introduction. A fiber of a mapping f from a topological space X to
a topological space Y is any non-empty set of the form f~*(y), where y ¢ ¥.
Such a mapping is semi-monotone if each fiber of f is connected; it is
monotone if, in addition, each fiber of f is compact. The mapping f is light
if each fiber of f is totally disconnected. The following theorem is a gener-
alization of the classical Monotone-light factorization theorem of Eilen-
berg [2] and Whyburn [4].

TeroREM (Bauer [1]). Let X and ¥ be locally compact topological
spaces. If f is a mapping from X to Y such that each component of each
fiber of f is compact then there is a (unique) factorization f= hg, where g is
monotone and h is light.

The current paper contains a piecewise linear (PL) analog of the
theorem above. This states that for a PL mapping the factorization can
take place within the PL category. It appears as a corollary to the main
theorem, below. ’

The notation used here follows Spanier [3]. In particular, if ¥ is
a simplicial complex, then |Y| denotes the space of ¥ and if ¢ is a simplex
in ¥, then {¢) denotes the open simplex in |¥|.

MarN THEOREM. Let f: X—Y be a simplicial mapping of simplicial
complexes. There exist subdivisions X' of X and Y’ of ¥, an induced sim-
plicial mapping f': X'—X', a simplicial complexr W and simplicial mappings
g: X'—->W and h: W—Y' such that:

a. f' = hg,

“b. f' = f as mappings of |X| to |¥|,
¢. g: | X|-|W| is semi-monotone,

d. h: |W|—|Y| has discrete fibers.
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This theorem may be converted to a monotone-light factorization
theorem by the addition.of any hypothesis which implies that the fibers
of g are compact. For example it suffices to require that X be a finite
complex or that f be a proper mapping.

CoROLLARY. Let K and L be locally finile complexes and let f: K—TI,
be a proper, PL mapping. Then there is a (unique) factorization f= hy,
where g is PL and monotone and h is. PL with discrete fibers.

The proof of the corollary consists of noting that, since f is PI,
X and Y can be subdivided in such a way that f is simplicial. We then
apply the theorem to obtain the desired factorization.

The results in this paper are a part of the author’s dissertation. The
author gratefully acknowledges the assistance of his dissertation advisor,
P. T. Church of Syracuse University.

2. Exavrre. This example will illustrate the necessity of the sub-
division in the theorem and should also aid in understanding the proof
which will follow. Let X consist of the proper faces of a single 2-simplex
{wy, vy, o} and let Y consist of a single 1-simplex {u,, u,} together with
its faces. Define f: X—Y by f(v,) = w4, and f(v,) = f(v,) = %,. The middle
space in the monotone-light factorization of f contains two “1 - simplices”
and only two “vertices”. Thus it is not a simplicial complex. Furthermore,
any attempt to subdivide this middle space so that it becomes a simplicial
complex will prevent the monotone and light factors of f from being
simplicial mappings.

3. LemmA, If f: XY is a simplicial mapping of simplicial complexes
and if By, B € o>, where o is a simplex of X, then f~Y(B,) is homeomorphic
to 7 (Ba)-

Proof. f~'(f:) consists exactly of those points ae|X| such. that

2 a(v) = Bilu)
W)y =u

for each vertex w of ¥, i=1,2.
Define 6: f~(f)—f"1(f.) by

ﬂz(f("’)) . . .
6(a)(0) = ‘ﬂl(f(w) @) A Jo) s o vertex of o,
0 otherwise .

It will be seen that 6 is the required homeomorphism

Straightforward calculations show that 6(a) e f( To see that
Ba(u)
Bu(w)|”

6 is continuous let M =— max
Ueo
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Then
8:(f(v)) _ S .
18() (v)— 0(a) (0)} < [ X z,)j( o;{v)— !12(’0)) < Moy(v)—a(®)] if f(v) eo,
: 0 otherwise .

Thus & is continuous.

Define n: f7(8,)—f"*(f) in a manner similar to the definition of 6.
Exactly as was seen for 6, u is well defined and continuous. Furthermore
it is clear that » is an inverse for 6. Thus 6 is a homeomorphism.

4. CorROLLARY. Let f,¢ {o>. Then there exists a Jzomeomorphis«;
@ FTHoY) = Bo) X <o) such that f restricted to f*({o>) is equal to @
Sfollowed by the projection m: f~YB,) X {ad—{c>. ]

Proof. For each f ¢ (o) let O;: f~(B)=>""(Bo) and nz: f~(Bo)—F"Y(B)
be as in the lemma.

Detine g: 17 (<od)~> 1 (o) X <> by 9(a) = (6,,(a), f(e)) and

P: fHBo) X Ko>—=>FH<oD) by w(y, B) = 7,(y). It is clear that ¢ and yp are

We]l defined and econtinuous. Routine ealeulafclon shows that y is an
inverse for ¢. Thus ¢ is a homeomorphism.

S. Proof of Main theorem. Let ¥’ be the first baryeentric sub-
division of Y. Let X’ be the subdivision of X constructed in a manner
similar to the barycentric subdivision with the exception that the bary-
center, b(7), of a simplex 7 will be replaced by another point of {r) chosen
a5 follows.

Let f(r) = {up, 1z, ..., ux}. For each j=0,1,..,% let z; be the
largest face of v such that f(z;) = w; and let n; be the number of vertices
of 7;. Now define ¢(r) (which will replace b(7) in the subdivision of X) by

e(r)(v) = %m, where 7vet;. -

Note that with this definition f(e(r)) = b(f(z)). Define f': X'>¥’
by f'le()) = b(f(z)). It may be seen that as mappings of |X|= |X’|
into |Y|==|Y"|, f and f' are identical. Furthermore f’ is simplicial.

For each simplex o in Y’ let {4,: y e I';} be the set of all components
of f7*((o)). For each 4,y eI, let o, be a simplex of the same dimension
as o, together with all its faces. Thus if o = {u,, %y, ..., s}, then o, con-
sists of {uf, w7, ..., 2} together with its faces.

For every simplex v of X' and every face ¢ of 7, {x) C 4, for some

€ Iy and (o) C 4, for some & e Iy, . For each such v and o We identify
f (0)s with the “oorrespondmg face” of f(z), in the “natural way”. Thus
if f(7) = {%g, ey ooy Un} and f(o) = {thy,5 Usyy oony '“1,,.1 (m < n), we identify
flo)s= {ugy, w4, ..., w2} with the face {uf , %, ..., %%} by mabching uf,
with , for each k= 0,1, ..,m.
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Call the resulting space W.
Define h: W—Y' by letting hlo, map o, onto o 1som0rph10al]y Thus

if 0= {U, Usy ..., Un}, then h sends the veltex w; of o, to the vertex w; .

of 0. The method of defining the identifications, given above, insures
that i will be well-defined.

The key point in the proof is to show that W is a simplicial complex.
The only problem is that a single set of vertices may “define” more than
one simplex. The example given in section 2 shows how this could happen
if we fail to subdivide X and Y before forming W. Let w be an “n-sim-
plex” of W. By this we mean that » was an n-simplex in the pre-identifi-
cation space from which W was obtained. Now h(w) is an n-simplex
of Y'. Hence there exists a simplex 1 of ¥ such that <h(w)>C (> and
such that the barycenter b of 2 is a vertex of h(w).

Let £ e <h(w)>. If we apply the 1emma. and. its corollary we see that
<k (w)y) is homeomorphic to f~(8) X (h(w)> which is, in turn, homeo-
morphic to FHb) X {h(w)>.

Thus there is a natural one-to-one correspondence between the
components of f‘1(<h ou))) and the components of f~*(b). Hence there is
a one-to-one correspondence between the vertices of W which are mapped
to b and the components of f’ <R ()).

Thus any “n-simplex” o of W which. is distinet from o has a vertex
which is distinet from the vertices of «. Hence W is.a simplieial
complex.

It is clear that b is a simplicial mapping.

Define g: X'—W by letting gl= map = onto f(v),, where (z) C .4,
for some y € I'y,), in the “natural way”. Thus if f maps the vertex v of ¢
to the vertex u of X', then g maps » to the vertex «* of W. Again the
method of defining the identifications guarantees that g is well-defined.
It is clear that ¢ is a simplicial mapping and that f' = hg.

The mapping % does not collapse simplices; that is, the image of
each simplex of W is a simplex of the same dimension in ¥’. Hence b is
light and has, in fact, discrete fibers.

For each simplex o, of Wg~'(<s,>) = 4,. By the corollary g~*(¢s,>)
is homeomorphic to g~(f) X {o,> for each f e {v,>. Thus the connectedness
of 4, implies the connectedness of g~*(8) for each f. Therefore ¢ is semi-
monotone. This completes the proof.

6. Remark. The proof just completed contains a characterization
of semi-monotoniety for simplicial mappings which may be stated as
follows: if f: X—+Y is any simplicial mapping, then in order for f to be
semi-monotone it is necessary and sufficient that for each vertex v of the
barycentric subdivision of ¥, f~%(v) is connected.
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