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n-movable compacta and ANR-systems
by ‘
G. Kozlowski and J. Segal (Seattle, Wash.)

Abstract, K. Borsuk recently introduced a nmew shape invariant for metric com-
pacta called n-movability. In this paper we give an alternate description in terms of
ANR -systems and generalize the notion to (Hausdorff) compacta. Using this approach
we answer two questions raised by Borsuk. We also show that an n-dimensional
n-movable compactum, is movable.

1. Introduction. K. Borsuk [1] introduced & new shape invariant
for metric compacta called n-movability. In this paper we give an alternate
description in terms of ANR-systems and generalize the notion to (Haus-
dorff) compacta. We then apply this method to answer two questions
raised by Borsuk in [1]. It is also shown that an #-dimensional n-movable
compactum is movable.

A compactum X lying in the Hilbert cube I® is said to be n-movable
(in the sense of Borsuk) if for every neighborhood U of X in I® there
exists a neighborhood V of X (in I*) such that for every compactum
OC7V with dimC < n and every neighborhood W of X (in I*) there
exists a homotopy @: ¢x[0,1]—>U satisfying both conditions: @(x, 0)
= g and @ (x, 1) ¢ W for every point » « (. Borsuk [1] showed. that #-mov-
ability is a shape invariant for metric compacta.

An ANR-system is an inverse system X = {X,,P,., A}, Where
each X, is an ANR, ie., a compact ANR for metric spaces and Po, o
<da,a,a €A, are ma,ps from X, into X,; (4,<) is a eclosure-finite
dueeted set [8]. If X = Inviim X, we say tha.t X zs associated with X and
we denote by p,;: X—X, the " natural projections. A map of systems
fi XY = {¥,, gy, B} consists of an inereasing funetion f: B—~4 and
of a collection {f;, B} of maps fp: Xy, such that < p’ implies the
homotopy relation

TePiwey = Ty - U

The identity map 1x: X—X is given by 1(o) = @, 1, = lx,- The compo-
sition of ma,psf X->Y, g: Y—>7 {%,,,,C} is the map b= gf X7z
given by h(y) = fg(y) and b, = ¢,fsq)- TWO maps of systems [, 9 1,9: XY
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are said to be homofopic, f~ g, provided for every f ¢ B there ig an index
acd, a=f(B), g(f) such that fipye, ~ gs Poee- ANR-systems X and ¥
are said to be of the same homotopy type, X ~ ¥, provided there exigtg
maps of systems fi X—=¥, ¢g: ¥Y—X, such that gf~1x, fg ~ly. If the
second homotopy relation fg~1ly holds, then we say that X (shape)
dominates Y. Any two ANR-systems. X, X' associated with a com-

. pactum X are of the same homotopy type [8]. Therefore, if Y is associated
with & compactum ¥ and X dominates ¥, then so does X’. Similaly,
-we gee if ¥’ is also associated with ¥, then X dominates ¥, 50 we can
say X dominates Y. -

2. Complexes and nerves. By a complex K is meant a finite simplicial
complex K, and when the dimension of K is at most , it is called an
n-complex. No distinetion will be made between a complex and its under-
Iying space. We shall use some facts and conventions congerning open
covers. An open cover of a space X here will be a finite collection U of
non-empty open subsets of X whose union is X. The nerve K () of U
is the simplicial complex whose vertices are the members of U and whose
simplices are the finite subsets s of U which have non-empty inter-
sections: (s = @. If U refines W, then there are projections z: U -+Us
which satisfy the condition V CaV for all Ve Q. Any projection defines
a unique simplicial map a: K (V)—K (W) (also a projection). A canonical
map p: X—K (W) is a map such that all vertices of the smallest simplex

containing ¢ (z) contain  (for every point v eX). Any two canonical

maps from X into K (W) are homotopic.

For f: X—7Y continuous and U an open cover of Y, ffv
={fTVVeU}l I U vefines f~'U, then there are simplicial maps
0: K (U)K (V) defined by any vertex assignment g: U—V satisfying
fUC oU and ‘any two such maps are contiguous. These maps are induced
by f. When Y = K is a complex and U = 0 is the cover of K by open
stars of vertices of K, then because K can be naturally identified with
K(0), we can speak of a map g: K(U)— ¥ being induced by f. If g is
induced by f and ¢: XK (W) is any canonical map, then gp ~f.

3. »n-movable ANR-systems. We mnow
7-movability in terms of ANR-gystems.

give the

DrrINITion 1. An ANR-system X ={X,, P, 4} is said to he
n-movable, provided for every « e A there is an o e A, o > o, such that
?or every o' e 4, " 2> a, and every map ¢': K—=X_. of an n-complex K
into X, there is a map ¢’ KX with

(1) Pagr® X Do’

definition of \
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In keeping with the view point of this definition we can also give
a new formulation of movability (in the sense of Mardeii¢ and Segal [7]).
DEFINITION 2. An ANR-system X = {X_, p_., 4} is said to be
movable, provided for every a ¢ A there is an o' ¢ 4, o' ¢ 4, o’ == «, such
that for every o'’ ¢ 4, o’ = o, and every map ¢': K— X, of a complex K
into X, there is a map ¢'': K—X_, with

2) Par®’ =2 Doar”’

LemmaA 1. Movability in the sense of Marde$ié and Segal and mov-
ability are equivalent.

Proof. If X is movable in the sense of Mardefié and Segal, then
for every a e 4, there is an o', a’ > «, and there are maps r**": X,,—»X .

for each o' = a such that p. ~p,. %% If ¢': K—X, is any map of

a complex K into X, we define ¢" =1"*"¢/ and so (2) is obviously
satisfied.

Conversely, assume X is movable. For a given ce¢ 4 choose o' as
in Definition 2. Since the compact ANR X, is dominated by a complex XK,
there are maps ¢': K—X_ and yp: X_—+K such that ¢'p~1g,. Also by
Definition 2 for any a'’ = « there is a map ¢': K—X_, such that p,.¢
2P’ Let 19 = ¢"y. Then ‘

D™ = DoV = P 7P = Do
ie., X is movable in the sense of Marde§ié and Segal.

Remark 1. Tt follows from Definition 2 that if X is movable, then
it is m-movable, n =1, 2, ... Moreover, if X is n-nﬁvable, then X is
(n—1)-movable.

Exampre 1. Every ANR-system X = {X,,7,., 4} with finite
sets X, and onto bonding rhaps is movable because for every o’ >«
there is a map r**": X,—~X,. satisfying p,.1**" = 1x,= p,,. But then
the above remark implies X is n-movable, n=1,2, ..

TEEoREM 1. Let X = {X,, Dy, 4} and ¥ = {¥;, g, B} be ANR-
systems. If X dominates ¥ and X is n-movable, then Y is also n-movable. .

Proof. Let f: X—¥ and g: ¥—X be maps of ANR-systems such
that fg ~1y. We need to show that for every 8 « B there is a f’ = f§ such
that for e;ery g = p and every map y': K— ¥, of an n-complex K
into ¥, there is a map 9"+ K— Y, with

(3) Qg = G-

From the #-movability of X we have that there is an o' = a = f(§)
such that for every o'’ = a and every map ¢': K— X, there is a map
¢'": K— X, satistying (1).
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Since fy~1ly, there exists a B> B, g(u) such that

(4) T39uyep = 958 -

Since g increases, « <C o implies g(e) < g(¢). B being directed, there
exists & B/ = g(«’), B. Just as in [7, Theorem 1] we have the relation
(8) FoPaar Gor Qutarypr = Qo »

Now let 8" = f. Since f is increasing, we have o'’ = f(8"”) = f(8) = a.
Therefore, by the definition of of, for every map ¢': K—~X  there is
a map ¢’ K—~X_. satisfying (1). So letting

(6) ' = G Gy ?’
we have there exists a map ¢': K— X, such that

) Paa P = Do’
Finally we define p': K— Y. to be

8) Y =fpo"

Then using (5), (6), (7), the fact that f: X—Y, and (8) we get

Qoo = JpPowr G Qyterpr ¥’
= [3Dur®’
= fpPuurp”’
& Gagnfprr "
= Qggrp’’.
This is the desireq relation (3) so ¥ is n-movable.
CorOLLARY 1. Let X and X' be ANR-systems associated with o com-
pactum X. If X is n-movable, then so is X'

Proof. Since X and X' are of the same homotopy type each
dominates the other.

Derinrrion 3. A compactum X is said to be n-movable provided
there is an n-movable ANR-system X associated with it. It follows
from Corollary 1 that the n-movability of a compactum is independent -
of the choice of the associated ANR-gystem X. As an immediate conge-
quence of Definition 3 and Theorem 1 we have

Exawpre 2. Every 0-dimensional compactum is n-movable,
n=1,2,.., because there is an n-movable ANR -system X, as in Bx-
ample 1, a.ssocla.ted with X (see also [8, Section 117).

TemorEM 2. Let X and Y be compacte. If X dominates ¥ and X s
n-movable, then Y is also n-movable.
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Since we prove in the next section that our definition of - movability
agrees with that of Borsuk on metric compacta, Theorem 2 is a generaliz-
ation to the non-metric ease of Borsuk’s result [1, Theorem (2.1)].

" 4. n-movability in the metric case. Every compact metric space X ad-
mits an associated ANR-sequence, i.e., an inverse sequence X = {Xm, Dmm}
of ANR’s X, such that X = Invlim X.-X is n-movable if and only if
it admits an associated ANR-sequence X which is n-movable. In particu-
lar, if X is embedded in the Hilbert cube I, we can define a decreasing
sequence of ANR’s X, CI® such that each Xm is a neighborhood of X

and X = ﬂ K.
m=1

= {Xm, imm}, Where imm: Xm—>Xm, m<m’, is the inclusion map. We

call such an X an inclusion ANR-sequence for X and note that X is

n-movable if and only if the sequence is n-movable.

TeEEOREM 3. A melric compactum X CI® is n-movable if and only
if it is n-movable in. the sense of Borsuk.

Proof. First assume that X is n-movable and choose an inclusion
ANR-sequence X = {Xpm, imm} for X which is n-movable by Theorem 1.
If Uis a nelgthIhood of X in I*®, there is an m with X, C U. By Defi-
nition 1 there is an m’ = m with the property that for every m’ = m a.nd
every map ¢': K—>Xm, of an n-complex K into X there iz & map ¢:
E— X With fmm @’ = tmme@'’. Let V= X, and leb-g: NV Dbe a re-
traction of an epen neighborhood N of ¥ onto V. If W is a neighborhood
of X, there is an m” > m such that X,. C W. Let ¢ CV be a compactum
with dim € < n. Let & = dist(V, I°—XN) and let U be a cover of ¢ by
open sets in ¢ of diameter <& such that K () has dimension <n. For
each vertex U of K(W) choose a point #e U and define the map

Then X is the inverse hm_lt of the sequence X

¢: E(U)—>I° linearly on the simplices of K (U): if Uyy Uyy oony Ur are
the vertices of a simplex of K (W), then
r v r
o> uU) = Xtu,
=0 7=0 ‘
where ¢; > 0for j= 0,1, ,randth 1. Since Uy~ Uy n ... n Ur # 9,
there is a point z in O common ’ﬁo aJl the sets U; (j=0,1,...,7). Then

the distance of the lmage point Z’ tyu; from o is
=0

H S:t;:a——t;u;” < Zr: bl o— wll<e,
P~ =

where ]1p|[ = V3% .0} for p= (s, Py, -o) € I; hence p(E(W) C N
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Let n: O—HX(W) be any canonical map. For any x ¢ ¢ the image

r
@(n(®)) has the form }' tu; as above, where z ¢ Uy~ U, A ... » Uy; hence
=0

as above cl(m,zp(n(m))) < e. Since the segment with endpoints # and
¢(n(z)) lies in ¥, the map

g;: OXI—>I®
defined by
(1—t)z+tp(n()

is & homotopy in N between the inclusion map C—N and ¢n.

Now there is a map 9'": K(U)-+>Xpu, C W such that " ~gp in U;
hence p' 5=~ opy in U. Since gy, gives a homotopy in ¥ between the
inclusion C—V and ogy, it follows that there is a deformation h;: C—U
such that Iy(x) = @ and A (C) CW. So X is n-movable in the sense of
Borsuk. ‘

Now assume X is n-movable in the sense of Borsuk, and let m be
given. Put U = X, and find an open neighborhood V' C U of X such
that for every neighborhood W of X any compactum ¢ C V with dimC < »
can be deformed in U into W. Choose m' so that m' = m and X, CV.
I m"” > m, put W= Xp. and consider any map ¢’: K—> X, of an n-com-
plex K into X.. Let ¢ = dist (X, , I°—7T). Since ¢’ is uniformly continu-
ous, there is a 6 >0 such that any two points of K whose distance is
less than ¢ have images under ¢’ whose distance is less than &/6. Let K’
be a subdivision of X, every simplex of which hag diameter << 4. For each
vertex v of K’ let ¢(v) be a point of V' whose distance from ¢'(v) is less
than /6. We assume the choice of ¢(v) made so that all the points ¢(v),
‘where v is a vertex of XK', are in general position. Then the vertex assign-
ment v—>@(v) extends linearly on each simplex of K’ to give a homeo-
morphism ¢ of K’ into I*°. The diameter of the ¢-image of any simplex
of K’ is less than /2, because the distance between the ¢-images of any
two vertices of a simplex of K’ is less than 2. The diameter of the
@'-images of any simplex of K’ is less than ¢/6. Since |jp(v)— ¢'(v)]| < ¢/6
for every vertex of K’, it then follows that |jp(p)—¢'(p)|<C ¢ for every
point of K'. By the choice of ¢ the homotopy

gy(w) =

g p) = (1—1)o'(p)+-1p(p) ,

oceurs in V. Put ¢ = @(K'). By Borsulk’s definition there is a deformation

pell’

it 0T = Xy

such that hy(C)C W. Define ¢"': K'—> Xy by ¢ = 7L1rp Then in X,, we
have ¢ ~hyp = p~p”
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5. Finite dimensional movable compacta. In this section we show that
an n-movable compactum of dimension <« is movable,

LenvMA 2. Let X be the inverse limit of the inverse system {X,, p, A}
of compacta, and let f: X—7T and f,: X~ 7T (for each a < A) be maps into
a compact ANRY such that f=f,p,, for all a e A, where p;: X—X, is
the natural projection. If the (covering) dimension of X is at most m, then
there exist an n-complex K, an index 3 € A, and maps h: X;—~K, g: E->Y
such that gh= f;.

Proof. Since Y is a compact ANR, there is a finite complex L and
maps p: Y—L and ¢: L—Y such that gp~1y. If the Lemma is true
when Y is replaced by L and f, f, replaced by pf, »f,, respectively, then
it is also true for ¥, because we take map the g: K—1 given by the modi-
fied Lemma and define g= ¢j. Since gh~pf;, gh= qih ~ qpfy ~ f;.
Therefore it suffices to prove the Lemma for the case when ¥ is
a complex L.

Let O be the open star cover of L and let W be a cover of X refining
f7'0 whose nerve K () is an n-complex. Take K = K (W), ¢ any can-
onical map X— K (W), and g any map K (W)—L induced by f.

By Lemma 3.8 of [2, p. 263] there exist an index e A, an open
cover U of X, such that p;*VU refines W, and a ps-induced map
o: K (pz*V)—K (W) which is a simplicial isomorphism. Let m: K (p; V)
— K (U) be a projection and yp: Xz—K (V) a canonical map, and define
h = mo M.

Since p; 'V refines f10 = p;f;*0, U refines f;0. Leb gp: K (V)—~L
be induced by fs. It is easily seen that both gz and g0 are maps
K (p;'V)—L which are induced by f= f;ps; hence gm=gso. Therefore
gh = gmop = fs.

THREOREM 4. If X 4s an n-movable compactum of (covering) dimension
<n, then X is movable.

Proof. Let X = {X,, p.v; A} be an ANR-gystem associated with X
such that each X:is a compact ANR (see [8, Theorem 7]). We shall show
that for any « e 4 there is a § = « such that for each o'’ > a there is
a map 7' Xy X, With p.r* ~p,. For a given « choose o' as in
the definition of n-movable. By taking ¥ = X, f= 2y, [, = Dar» a,nd
the inverse system associated with X eonsistmg of those X with y =o'
we find by Lemma 2 that there exist § > o', an n-complex K and maps
g: K—~X,, h: Xp—HK such that gh~py,. By the definition of n-mov-
ability for every a" > a there is a map g: E—X_, with 9,.¢ ~D..g.
Then taking 7% = @h yields the desired relation

Do ¥ = P R = Py Gl 2 P oy Porp = Dog -
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Remark 2. It would have been convenient if the compactum X of
dimension < in Theorem 4 could have been represented as the inverse
limit of an inverse system of polyhedra of dimension <n. However, this
is not possible in general (see [6]).

6. n-movability ‘and sphere-Jike contimua. Let @ = (g1, ¢z, ...) be a se-
quence of primes and let 8§ = {Xm, Dpyp )t De an inverse sequence of
n-spheres X, = 8", where the bonding maps are maps of S§" into 8" of
degree g . Then the shape of the inverse limit 87 of S7 is completely de-
- termined. It was proved in [8, Theorem 19] that every metric §"-like
continuum X is of the shape of a point, 8" or some 87 . The first two shapes
are obviously movable but the third is not [7]. Wee will show that the
85 is (n—1)-movable but not n-movable. This gives a positive answer
to problem (4.6) of [1]. 87 is (n—1)-movable: since all mappings of a space
of dimension <C# info S™ are inessential [4, Theorem VI.4] they are homo-
topic. By Theorem 4 87 is not n-movable it is #-dimensional but not
movable [7].

7. n-movability and an example of Kahn. In [3] it was shown that
% continnum X = Invlim{X, , 9.} described by Kahn in [5] is not
movable. (Actually a family of such continua was deseribed.) Here we
show that X is n-movable for » =1, 2, ... This yields a positive answer
to problem 4.7 of [1]. - .

Given any positive integer m, there is an m’ > m such that any
map ¢ of any polyhedron P of dimension <n into X, is inessential.
(Since the connectivity of Xy, increases as m does we just choose m’ large
enough so that the conmectivity of X, is greater than n.) So p,,..¢' is
also inessential. For any m” >m' let ¢'’: P— X, be any constant map.
Then

?mm’qj/ :pmm"‘p”'
Hence X is n-movable for n = 1,2,..

Added in proof. The referee has pointed out that some of these results are included.
in the paper of A. Kodama and T. Watanabe, 4 note on Borsul's n-movability, Bull.
Acad. Polon. Sci. 8ér. Sci. Math. Astronom. Phys. (to appear).
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