

n-movable compacta and ANR-systems

bv

G. Kozlowski and J. Segal (Seattle, Wash.)

Abstract. K. Borsuk recently introduced a new shape invariant for metric compacta called n-movability. In this paper we give an alternate description in terms of ANR-systems and generalize the notion to (Hausdorff) compacta. Using this approach we answer two questions raised by Borsuk. We also show that an n-dimensional n-movable compactum is movable.

1. Introduction. K. Borsuk [1] introduced a new shape invariant for metric compacta called n-movability. In this paper we give an alternate description in terms of ANR-systems and generalize the notion to (Hausdorff) compacta. We then apply this method to answer two questions raised by Borsuk in [1]. It is also shown that an n-dimensional n-movable compactum is movable.

A compactum X lying in the Hilbert cube I^{∞} is said to be n-movable (in the sense of Borsuk) if for every neighborhood U of X in I^{∞} there exists a neighborhood V of X (in I^{∞}) such that for every compactum $C \subset V$ with dim $C \leqslant n$ and every neighborhood W of X (in I^{∞}) there exists a homotopy $\Phi: C \times [0,1] \rightarrow U$ satisfying both conditions: $\Phi(x,0) = x$ and $\Phi(x,1) \in W$ for every point $x \in C$. Borsuk [1] showed that n-movability is a shape invariant for metric compacta.

An ANR-system is an inverse system $\underline{X} = \{X_a, p_{a\alpha'}, A\}$, where each X_a is an ANR, i.e., a compact ANR for metric spaces and $p_{a\alpha'}$, $\alpha \leq \alpha'$, α , $\alpha' \in A$, are maps from $X_{\alpha'}$ into X_a ; (A, \leqslant) is a closure-finite directed set [8]. If $X = \text{Inv}\lim\underline{X}$, we say that \underline{X} is associated with X and we denote by p_a : $X \to X_a$ the natural projections. A map of systems $f \colon \underline{X} \to \underline{Y} = \{Y_\beta, g_{\beta\beta'}, B\}$ consists of an increasing function $f \colon B \to A$ and of a collection $\{f_\beta, B\}$ of maps $f_\beta \colon X_{f(\beta)} \to Y_\beta$ such that $\beta \leqslant \beta'$ implies the homotopy relation

$$f_{\scriptscriptstyle\beta} p_{_{f(\beta)f(\beta')}} \simeq q_{\scriptscriptstyle\beta\beta'} f_{\scriptscriptstyleeta'}$$
 .

The identity map $\underline{1}_{\underline{X}}$: $\underline{X} \to \underline{X}$ is given by 1(a) = a, $1_a = 1_{X_a}$. The composition of maps f: $\underline{X} \to \underline{Y}$, g: $\underline{Y} \to \underline{Z} = \{Z_p, r_{,\gamma'}C\}$ is the map $\underline{h} = \underline{g}f$: $\underline{X} \to \underline{Z}$ given by $h(\gamma) = fg(\gamma)$ and $h_{\gamma} = g_{\gamma}f_{g(\gamma)}$. Two maps of systems $\underline{f}, \underline{g}$: $\underline{X} \to \underline{Y}$

are said to be homotopic, $\underline{f} \simeq \underline{g}$, provided for every $\beta \in B$ there is an index $a \in A$, $a \geqslant f(\beta)$, $g(\beta)$ such that $f_\beta p_{f(\beta)a} \simeq g_\beta p_{g(\beta)a}$. ANR-systems \underline{X} and \underline{Y} are said to be of the same homotopy type, $\underline{X} \simeq \underline{Y}$, provided there exists maps of systems $\underline{f} \colon \underline{X} \to \underline{Y}$, $g \colon \underline{Y} \to \underline{X}$, such that $\underline{g} f \simeq \underline{1}_{\underline{X}}$, $\underline{f} g \simeq \underline{1}_{\underline{Y}}$. If the second homotopy relation $\underline{f} g \simeq \underline{1}_{\underline{Y}}$ holds, then we say that \underline{X} (shape) dominates \underline{Y} . Any two ANR-systems \underline{X} , \underline{X}' associated with a compactum X are of the same homotopy type [8]. Therefore, if \underline{Y} is associated with a compactum Y and Y dominates Y, then so does Y. Similarly, we see if Y is also associated with Y, then Y dominates Y, so we can say Y dominates Y.

2. Complexes and nerves. By a complex K is meant a finite simplicial complex K, and when the dimension of K is at most n, it is called an n-complex. No distinction will be made between a complex and its underlying space. We shall use some facts and conventions concerning open covers. An open cover of a space K here will be a finite collection $\mathbb Q$ of non-empty open subsets of K whose union is K. The nerve $K(\mathbb Q)$ of $\mathbb Q$ is the simplicial complex whose vertices are the members of $\mathbb Q$ and whose simplices are the finite subsets K of $\mathbb Q$ which have non-empty intersections: $K \in \mathbb Q$. If $\mathbb Q$ refines $\mathbb Q$, then there are projections $K \in \mathbb Q$ which satisfy the condition $K \in \mathbb Q$ for all $K \in \mathbb Q$. Any projection defines a unique simplicial map $K \in \mathbb Q$: (also a projection). A canonical map $K \in \mathbb Q$: $K \in \mathbb Q$: Any two canonical maps from $K \in \mathbb Q$: contain $K \in \mathbb Q$: Any two canonical maps from $K \in \mathbb Q$: are homotopic.

For $f: X \rightarrow Y$ continuous and $\mathfrak V$ an open cover of Y, $f^{-1}\mathfrak V$ = $\{f^{-1}V | V \in \mathfrak V\}$. If $\mathfrak V$ refines $f^{-1}\mathfrak V$, then there are simplicial maps $\varrho: K(\mathfrak V) \rightarrow K(\mathfrak V)$ defined by any vertex assignment $\varrho: \mathfrak V \rightarrow \mathfrak V$ satisfying $fU \subset \varrho U$ and any two such maps are contiguous. These maps are induced by f. When Y = K is a complex and $\mathfrak V = \mathfrak O$ is the cover of K by open stars of vertices of K, then because K can be naturally identified with $K(\mathfrak O)$, we can speak of a map $g: K(\mathfrak V) \rightarrow Y$ being induced by f. If g is induced by f and $g: X \rightarrow K(\mathfrak V)$ is any canonical map, then $gg \simeq f$.

3. n-movable ANR-systems. We now give the definition of n-movability in terms of ANR-systems.

DEFINITION 1. An ANR-system $\underline{X} = \{X_{\alpha}, p_{\alpha\alpha'}, A\}$ is said to be n-movable, provided for every $\alpha \in A$ there is an $\alpha' \in A$, $\alpha' \geqslant \alpha$, such that for every $\alpha'' \in A$, $\alpha'' \geqslant \alpha$, and every map $\varphi' \colon K \to X_{\alpha'}$ of an n-complex K into $X_{\alpha'}$ there is a map $\varphi'' \colon K \to X_{\alpha''}$ with

$$p_{\alpha\alpha'}\varphi'\simeq p_{\alpha\alpha''}\varphi''.$$

In keeping with the view point of this definition we can also give a new formulation of movability (in the sense of Mardešić and Segal [7]).

DEFINITION 2. An ANR-system $X = \{X_{\alpha}, p_{\alpha\alpha'}, A\}$ is said to be movable, provided for every $\alpha \in A$ there is an $\alpha' \in A$, $\alpha' \in A$, $\alpha' \geqslant \alpha$, such that for every $\alpha'' \in A$, $\alpha'' \geqslant \alpha$, and every map $\varphi' \colon K \to X_{\alpha'}$ of a complex K into $X_{\alpha'}$ there is a map $\varphi'' \colon K \to X_{\alpha''}$ with

$$(2) p_{\alpha\alpha'}\varphi' \simeq p_{\alpha\alpha''}\varphi''$$

LEMMA 1. Movability in the sense of Mardešić and Segal and movability are equivalent.

Proof. If \underline{X} is movable in the sense of Mardešić and Segal, then for every $a \in A$, there is an $a', a' \geqslant a$, and there are maps $r^{a'a''}: X_{a'} \rightarrow X_{a''}$ for each $a'' \geqslant a$ such that $p_{aa'} \simeq p_{aa''} r^{a'a''}$. If $\varphi' \colon K \rightarrow X_{a'}$ is any map of a complex K into $X_{a'}$, we define $\varphi'' = r^{a'a''} \varphi'$ and so (2) is obviously satisfied.

Conversely, assume X is movable. For a given $a \in A$ choose a' as in Definition 2. Since the compact ANR $X_{a'}$ is dominated by a complex K, there are maps $\varphi' \colon K \to X_{a'}$ and $\psi \colon X_{a'} \to K$ such that $\varphi' \psi \simeq 1_{X_{a'}}$. Also by Definition 2 for any $a'' \geqslant a$ there is a map $\varphi'' \colon K \to X_{a''}$ such that $p_{aa'} \varphi' \simeq p_{aa''} \varphi''$. Let $r^{a'a''} = \varphi'' \psi$. Then

$$p_{aa^{\prime\prime}}r^{a^{\prime}a^{\prime\prime}}=p_{aa^{\prime\prime}}\varphi^{\prime\prime}\psi\simeq p_{aa^{\prime}}\varphi^{\prime}\psi\simeq p_{aa^{\prime}}$$
 ,

i.e., \underline{X} is movable in the sense of Mardešić and Segal.

Remark 1. It follows from Definition 2 that if \underline{X} is movable, then it is n-movable, n=1,2,... Moreover, if \underline{X} is n-movable, then \underline{X} is (n-1)-movable.

Example 1. Every ANR-system $\underline{X} = \{X_a, p_{aa'}, A\}$ with finite sets X_a and onto bonding maps is movable because for every $a'' \geqslant a$ there is a map $r^{aa''}$: $X_a \rightarrow X_{a''}$ satisfying $p_{aa''}r^{aa''} = 1_{X_a} = p_{aa}$. But then the above remark implies X is n-movable, n = 1, 2, ...

Theorem 1. Let $\underline{X} = \{X_a, p_{aa'}, A\}$ and $\underline{Y} = \{Y_b, q_{\beta\beta'}, B\}$ be ANR-systems. If \underline{X} dominates \underline{Y} and \underline{X} is n-movable, then \underline{Y} is also n-movable.

Proof. Let $\underline{f} \colon \underline{X} \to \underline{Y}$ and $\underline{g} \colon \underline{Y} \to \underline{X}$ be maps of ANR-systems such that $\underline{fg} \simeq \underline{1}_{\underline{Y}}$. We need to show that for every $\beta \in B$ there is a $\beta' \geqslant \beta$ such that for every $\beta'' \geqslant \beta$ and every map $\psi' \colon K \to Y_{\beta'}$ of an n-complex K into $Y_{\beta'}$ there is a map $\psi'' \colon K \to Y_{\beta''}$ with

$$q_{\beta\beta'}\psi'\simeq q_{\beta\beta''}\psi''.$$

From the *n*-movability of \underline{X} we have that there is an $\alpha' > a = f(\beta)$ such that for every $\alpha'' > a$ and every map φ' : $K \to X_{\alpha'}$ there is a map φ'' : $K \to X_{\alpha''}$ satisfying (1).

Since $fg \simeq 1_Y$, there exists a $\overline{\beta} \geqslant \beta$, g(a) such that

$$f_{\beta}g_{\alpha}q_{g(\alpha)\bar{\beta}} \simeq q_{\beta\bar{\beta}}.$$

Since g increases, $\alpha \leqslant \alpha'$ implies $g(\alpha) \leqslant g(\alpha')$. B being directed, there exists a $\beta' \geqslant g(\alpha')$, $\overline{\beta}$. Just as in [7, Theorem 1] we have the relation

(5)
$$f_{\beta} p_{\alpha \alpha'} g_{\alpha'} q_{g(\alpha')\beta'} \simeq q_{\beta\beta'}.$$

Now let $\beta'' \geqslant \beta$. Since f is increasing, we have $\alpha'' = f(\beta'') \geqslant f(\beta) = \alpha$. Therefore, by the definition of α' , for every map φ' : $K \rightarrow X_{\alpha'}$ there is a map φ'' : $K \rightarrow X_{\alpha''}$ satisfying (1). So letting

(6)
$$\varphi' = g_{\alpha'} q_{g(\alpha')\beta'} \psi'$$

we have there exists a map φ'' : $K \rightarrow X_{\alpha''}$ such that

$$(7) p_{aa'}\varphi' \simeq p_{aa''}\varphi''.$$

Finally we define ψ'' : $K \rightarrow Y_{a''}$ to be

$$\psi^{\prime\prime} = f_{\beta^{\prime\prime}} \varphi^{\prime\prime}.$$

Then using (5), (6), (7), the fact that $f: \underline{X} \to \underline{Y}$, and (8) we get

$$\begin{split} q_{\beta\beta'}\psi' &\simeq f_{\beta}p_{\alpha\alpha'}g_{\alpha'}q_{\beta(\alpha')\beta'}\psi' \\ &= f_{\beta}p_{\alpha\alpha'}\varphi' \\ &\simeq f_{\beta}p_{\alpha\alpha'}\varphi'' \\ &\simeq q_{\beta\beta''}f_{\beta''}\varphi'' \\ &= q_{\beta\beta''}\psi''. \end{split}$$

This is the desired relation (3) so Y is n-movable.

COROLLARY 1. Let \underline{X} and \underline{X}' be ANR-systems associated with a compactum X. If \underline{X} is n-movable, then so is \underline{X}' .

Proof. Since \underline{X} and \underline{X}' are of the same homotopy type each dominates the other.

DEFINITION 3. A compactum X is said to be n-movable provided there is an n-movable ANR-system \underline{X} associated with it. It follows from Corollary 1 that the n-movability of a compactum is independent of the choice of the associated ANR-system \underline{X} . As an immediate consequence of Definition 3 and Theorem 1 we have

EXAMPLE 2. Every 0-dimensional compactum is n-movable, n=1,2,..., because there is an n-movable ANR-system \underline{X} , as in Example 1, associated with X (see also [8, Section 11]).

Theorem 2. Let X and Y be compacta. If X dominates Y and X is n-movable, then Y is also n-movable.

Since we prove in the next section that our definition of n-movability agrees with that of Borsuk on metric compacta, Theorem 2 is a generalization to the non-metric case of Borsuk's result [1, Theorem (2.1)].

4. n-movability in the metric case. Every compact metric space X ad-

mits an associated ANR-sequence, i.e., an inverse sequence $\underline{X} = \{X_m, p_{mm'}\}$ of ANR's X_m such that $X = \text{Invlim }\underline{X}$. X is n-movable if and only if it admits an associated ANR-sequence \underline{X} which is n-movable. In particular, if X is embedded in the Hilbert cube I^∞ , we can define a decreasing sequence of ANR's $X_m \subset I^\infty$ such that each X_m is a neighborhood of X and $X = \bigcap_{m=1}^\infty X_m$. Then X is the inverse limit of the sequence $\underline{X} = \{X_m, i_{mm'}\}$, where $i_{mm'} \colon X_{m'} \to X_m$, $m \leqslant m'$, is the inclusion map. We call such an \underline{X} an inclusion ANR-sequence for X and note that X is n-movable if and only if the sequence is n-movable.

THEOREM 3. A metric compactum $X \subset I^{\infty}$ is n-movable if and only if it is n-movable in the sense of Borsuk.

Proof. First assume that X is n-movable and choose an inclusion ANR-sequence $\underline{X} = \{X_m, i_{mm'}\}$ for X which is n-movable by Theorem 1. If U is a neighborhood of X in I^{∞} , there is an m with $X_m \subset U$. By Definition 1 there is an $m' \geqslant m$ with the property that for every $m'' \geqslant m$ and every map $\varphi' \colon K \to X_{m'}$ of an n-complex K into X_m , there is a map $\varphi'' \colon K \to X_{m''}$ with $i_{mm'}\varphi' \simeq i_{mm''}\varphi''$. Let $V = X_{m'}$, and let $\varrho \colon N \to V$ be a retraction of an epen neighborhood N of V onto V. If W is a neighborhood of X, there is an $M'' \geqslant m$ such that $X_{m''} \subset W$. Let $C \subset V$ be a compactum with $\dim C \leqslant n$. Let $\varepsilon = \operatorname{dist}(V, I^{\infty} - N)$ and let $\mathfrak A$ be a cover of C by open sets in C of diameter K such that K in K has dimension K. For each vertex K of K inearly on the simplices of K in K and define the map K inearly K inearly on the simplices of K in K

$$\varphi\left(\sum_{j=0}^r t_j U_j\right) = \sum_{j=0}^r t_j u_j ,$$

where $t_j \ge 0$ for j = 0, 1, ..., r and $\sum_{j=0}^r t_j = 1$. Since $U_0 \cap U_1 \cap ... \cap U_r \ne \emptyset$, there is a point x in C common to all the sets U_j (j = 0, 1, ..., r). Then the distance of the image point $\sum_{j=0}^r t_j u_j$ from x is

$$\Big\|\sum_{j=0}^r t_j x - t_j u_j\Big\| \leqslant \sum_{j=0}^r t_j \|x - u_j\| < \varepsilon,$$

where $\|p\| = \sqrt{\sum_{k=1}^{\infty} p_k^2}$ for $p = (p_1, p_2, ...) \in I^{\infty}$; hence $\varphi(K(\mathcal{U})) \subset N$.

Let $\eta \colon C \to K(\mathfrak{A})$ be any canonical map. For any $x \in C$ the image $\varphi(\eta(x))$ has the form $\sum_{j=0}^{r} t_j u_j$ as above, where $x \in U_0 \cap U_1 \cap \ldots \cap U_r$; hence as above $d(x, \varphi(\eta(x))) < \varepsilon$. Since the segment with endpoints x and $\varphi(\eta(x))$ lies in N, the map

$$g_t: C \times I \rightarrow I^{\infty}$$

defined by

240

$$g_{t}\!\left(x\right)=\left(1-t\right)x+t\varphi\!\left(\eta\left(x\right)\right)$$

is a homotopy in N between the inclusion map $C \rightarrow N$ and $\varphi \eta$.

Now there is a map $\psi''\colon K(\mathfrak{A})\to X_{m'}\subset W$ such that $\psi''\simeq \varrho\varphi$ in U; hence $\psi''\eta\simeq \varrho\varphi\eta$ in U. Since ϱg_t gives a homotopy in V between the inclusion $C\to V$ and $\varrho\varphi\eta$, it follows that there is a deformation $h_t\colon C\to U$ such that $h_0(x)=x$ and $h_1(C)\subset W$. So X is n-movable in the sense of Borsuk.

Now assume X is n-movable in the sense of Borsuk, and let m be given. Put $U=X_m$, and find an open neighborhood $V\subset U$ of X such that for every neighborhood W of X any compactum $C \subseteq V$ with dim $C \leq n$ can be deformed in U into W. Choose m' so that $m' \geqslant m$ and $X_{m'} \subset V$. If $m'' \ge m$, put $W = X_{m'}$ and consider any map $\varphi' : K \to X_{m'}$ of an n-complex K into $X_{m'}$. Let $\varepsilon = \operatorname{dist}(X_{m'}, I^{\infty} - V)$. Since φ' is uniformly continuous, there is a $\delta > 0$ such that any two points of K whose distance is less than δ have images under φ' whose distance is less than $\varepsilon/6$. Let K'be a subdivision of K, every simplex of which has diameter $<\delta$. For each vertex v of K' let $\varphi(v)$ be a point of V whose distance from $\varphi'(v)$ is less than $\varepsilon/6$. We assume the choice of $\varphi(v)$ made so that all the points $\varphi(v)$, where v is a vertex of K', are in general position. Then the vertex assignment $v \rightarrow \varphi(v)$ extends linearly on each simplex of K' to give a homeomorphism φ of K' into I^{∞} . The diameter of the φ -image of any simplex of K' is less than $\varepsilon/2$, because the distance between the φ -images of any two vertices of a simplex of K' is less than $\varepsilon/2$. The diameter of the φ' -images of any simplex of K' is less than $\varepsilon/6$. Since $\|\varphi(v)-\varphi'(v)\|<\varepsilon/6$ for every vertex of K', it then follows that $\|\varphi(p)-\varphi'(p)\|<\varepsilon$ for every point of K'. By the choice of ε the homotopy

$$\varphi_t(p) = (1-t)\varphi'(p) + t\varphi(p), \quad p \in K'$$

occurs in V. Put $C = \varphi(K')$. By Borsuk's definition there is a deformation

$$h_t: C \rightarrow U = X_m$$

such that $h_1(\mathcal{O}) \subset W$. Define $\varphi'' \colon K' \to X_{m''}$ by $\varphi'' = h_1 \varphi$. Then in X_m we have $\varphi'' \simeq h_0 \varphi = \varphi \simeq \varphi'$.

5. Finite dimensional movable compacta. In this section we show that an n-movable compactum of dimension $\leq n$ is movable.

LEMMA 2. Let X be the inverse limit of the inverse system $\{X_{\sigma}, p_{aa'}, A\}$ of compacta, and let $f\colon X\to Y$ and $f_a\colon X_a\to Y$ (for each $a\in A$) be maps into a compact ANR Y such that $f=f_ap_a$, for all $a\in A$, where $p_a\colon X\to X_a$ is the natural projection. If the (covering) dimension of X is at most n, then there exist an n-complex K, an index $\beta\in A$, and maps $h\colon X_\beta\to K$, $g\colon K\to Y$ such that $gh\simeq f_\beta$.

Proof. Since Y is a compact ANR, there is a finite complex L and maps $p\colon Y{\to}L$ and $q\colon L{\to}Y$ such that $qp\simeq 1_Y$. If the Lemma is true when Y is replaced by L and f,f_a replaced by pf,pf_a , respectively, then it is also true for Y, because we take map the $\bar g\colon K{\to}L$ given by the modified Lemma and define $g=q\bar g$. Since $\bar gh\simeq pf_{\beta},\ gh=q\bar gh\simeq qpf_{\beta}\simeq f_{\beta}$. Therefore it suffices to prove the Lemma for the case when Y is a complex L.

Let 0 be the open star cover of L and let $\mathbb Q$ be a cover of X refining $f^{-1}\mathbb O$ whose nerve $K(\mathbb Q)$ is an n-complex. Take $K=K(\mathbb Q)$, φ any canonical map $X\to K(\mathbb Q)$, and g any map $K(\mathbb Q)\to L$ induced by f.

By Lemma 3.8 of [2, p. 263] there exist an index $\beta \in A$, an open cover $\mathfrak V$ of X_β such that $p_\beta^{-1}\mathfrak V$ refines $\mathfrak U$, and a p_β -induced map $\varrho \colon K(p_\beta^{-1}\mathfrak V) \to K(\mathfrak U)$ which is a simplicial isomorphism. Let $\pi \colon K(p_\beta^{-1}\mathfrak V) \to K(\mathfrak U)$ be a projection and $\psi \colon X_\beta \to K(\mathfrak V)$ a canonical map, and define $h = \pi \varrho^{-1} \psi$.

Since p_{β}^{-1} O refines $f^{-1}O = p_{\beta}^{-1}f_{\beta}^{-1}O$, O refines $f_{\beta}^{-1}O$. Let g_{β} : $K(\mathfrak{V}) \rightarrow L$ be induced by f_{β} . It is easily seen that both $g\pi$ and $g_{\beta}\varrho$ are maps $K(p_{\beta}^{-1}\mathfrak{V}) \rightarrow L$ which are induced by $f = f_{\beta}p_{\beta}$; hence $g\pi \simeq g_{\beta}\varrho$. Therefore $gh = g\pi\varrho^{-1}\psi \simeq f_{\beta}$.

Theorem 4. If X is an n-movable compactum of (covering) dimension $\leq n$, then X is movable.

Proof. Let $\underline{X}=\{X_{\alpha},p_{a\alpha'},A\}$ be an ANR-system associated with X such that each X_{α} is a compact ANR (see [8, Theorem 7]). We shall show that for any $a\in A$ there is a $\beta\geqslant\alpha$ such that for each $\alpha''\geqslant\alpha$ there is a map $r^{\beta\alpha''}\colon X_{\beta}{\to} X_{\alpha''}$ with $p_{\alpha\alpha''}r^{\beta\alpha''}{\simeq} p_{\alpha\beta}$. For a given α choose α' as in the definition of n-movable. By taking $Y=X_{\alpha'},\ f=p_{\alpha'},\ f_{\gamma}=p_{\alpha'\gamma},\$ and the inverse system associated with X consisting of those X_{α} with $\gamma\geqslant\alpha'$ we find by Lemma 2 that there exist $\beta\geqslant\alpha'$, an n-complex K and maps $g\colon K\to X_{\alpha'},\ h\colon X_{\beta}\to K$ such that $gh\simeq p_{\alpha'\beta}$. By the definition of n-movability for every $\alpha''\geqslant\alpha$ there is a map $\varphi\colon K\to X_{\alpha''}$ with $p_{\alpha\alpha''}\varphi\simeq p_{\alpha\alpha'}g$. Then taking $r^{\beta\alpha''}=\varphi h$ yields the desired relation

$$p_{aa^{\prime\prime}}r^{eta a^{\prime\prime}}=p_{aa^{\prime\prime}}\varphi h\simeq p_{aa^{\prime}}g h\simeq p_{aa^{\prime}}p_{a^{\prime}eta}=p_{aeta}$$
 .

Remark 2. It would have been convenient if the compactum X of dimension $\leq n$ in Theorem 4 could have been represented as the inverse limit of an inverse system of polyhedra of dimension $\leq n$. However, this is not possible in general (see [6]).

6. n-movability and sphere-like continua. Let $Q=(q_1,q_2,\ldots)$ be a sequence of primes and let $\underline{S}_Q^n=\{X_m,p_{mm+1}\}$ be an inverse sequence of n-spheres $X_m=S^n$, where the bonding maps are maps of S^n into S^n of degree q_m . Then the shape of the inverse limit S_Q^n of \underline{S}_Q^n is completely determined. It was proved in [8, Theorem 19] that every metric S^n -like continuum X is of the shape of a point, S^n or some S_Q^n . The first two shapes are obviously movable but the third is not [7]. We will show that the S_Q^n is (n-1)-movable but not n-movable. This gives a positive answer to problem (4.6) of [1]. S_Q^n is (n-1)-movable: since all mappings of a space of dimension < n into S^n are inessential [4, Theorem VI.4] they are homotopic. By Theorem 4 S_Q^n is not n-movable it is n-dimensional but not movable [7].

7. n-movability and an example of Kahn. In [3] it was shown that a continuum $X=\operatorname{Invlim}\{X_m,p_{mm'}\}$ described by Kahn in [5] is not movable. (Actually a family of such continua was described.) Here we show that X is n-movable for $n=1,2,\ldots$ This yields a positive answer to problem 4.7 of [1].

Given any positive integer m, there is an $m' \geqslant m$ such that any map φ' of any polyhedron P of dimension $\leqslant n$ into $X_{m'}$ is inessential. (Since the connectivity of X_m increases as m does we just choose m' large enough so that the connectivity of $X_{m'}$ is greater than n.) So $p_{mm'}\varphi'$ is also inessential. For any m'' > m' let $\varphi'' \colon P \to X_{m''}$ be any constant map. Then

$$p_{mm'}\varphi' \simeq p_{mm''}\varphi''$$
.

Hence X is n-movable for n = 1, 2, ...

Added in proof. The referee has pointed out that some of these results are included in the paper of A. Kodama and T. Watanabe, A note on Borsuk's n-movability, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. (to appear).

References

- K. Borsuk, On the n-movability, Bull. Acad. Polon. Sci. Sci. Sci. Math. Astronom. Phys. 20 (1972), pp. 859-864.
- [2] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton 1952.
- [3] D. Handel and J. Segal, An acyclic continuum with non-movable suspensions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), pp. 171-172.

W. Hurewicz and H. Wallman, Dimension Theory, Princeton 1948.

[5] D. S. Kahn, An example in Čech cohomology, Proc. Amer. Math. Soc. 16 (1956), p. 584.

 [6] S. Mardešić, On covering dimension and inverse limits of compact spaces, Illinois J. Math. 4 (1960), pp. 278-291.

[7] — and J. Segal, Movable compacta and ANR-systems, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 18 (1970), pp. 649-654.

[8] - Shapes of compacta and ANR-systems, Fund. Math. 72 (1972), pp. 41-59.

Reçu par la Rédaction le 21. 2. 1973