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Reflective functors via nearness
by
S. A. Naimpally (Thunder Bay, Ontario)

Abstract. Uking the concept of nearness for arbitrary families of sets, which is

_a generalization of proximity and contiguity, the well-known theorem of Taimanov

on extensions of continuous functions from dense subspaces is generalized. This result
is then used to show that all T, extensions are reflections.

1. Introduction. The concept of proximity or nearness between pairs
of subsets was first introduced by F. Riesz [22] in 1908 but was ignored
by mathematicians until the fifties when Efremovi¢ [6] and Smirnov [25]
systematically developed the now classical theory (for a compact account
see Naimpally and Warrack [21]). Lodato [20] considered a generalized
proximity which has proved to be of great value in solving many topo-
logical problems; in particular, it was used by Gagrat and Naimpally [8]
to obtain a generalization of the well-known theorem of Taimanov 273
concerning extensions of continuous functions from dense subspaces.
Another type of generrlization was discovered by Herrlich [12] who used
topological bases for closed sets.

In considering T;-extensions Ivanova and Ivanov [16] generalized
the concept of proximity to contiguity in which nearness of finitely many
sets is postulated. In this paper we further generalize the concept to
nearness of families of sets of arbitrary eardinality. This concept includes
as special cases topologies, proximities, uniformities ete. and an account
is written by Herrlich [13]. His axioms are different from ours. Our pur-
pose here is to prove, in a certain sense, an wtimate generalization of
Taimanov’s theorem which yields a general theory of reflective functors.
In our work here, a near structure is generated in either of the two ways:
(i) that induced on X by a super space aX in which X is dense and
(ii) that induced on X by separating bases of Steiner [26]. From our
general result it will follow that for sirict Hausdorff extensions the best
we can do is to get 6-continuous extensions (Fomin [7], Hunsaker and
Naimpally [14], Rudolf [23]). In case of simple Hausdorff extensions
and all T, extensions we ge continuous extensions which shows that
they are all reflections.
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‘We then show that from our results we can handle even non-compact
extensions such as Banaschewski 7',-minimal extension [3], Katétoy
extension ([9], [17]), Liu’s X [18], Liu and Strecker’s ¢X [19] ete. We
also generalize a recent result of Humnsaker and Sharma [15] concerning
the Harris regular-closed extension [11]. This should be compared with
EF -proximities and contiguities which are useful in dealing with Haus-
dorff compactifications and T)-compactifications respectively. Also we
note that the concept of nearness is related to the theory of structures
of Harris [10].

We have given a fairly representative bibliography on reflective -

functors and the interested reader will find further references in the
items included here.

2. Near structure. It is well known that every EF-proximity (see
2.3 (v)) on & Tychonotf space X is induced by the EF-proximity &, on
a suitable compact Hausdorff space «X, where 4 &, B iff their closures
in «X intersect. The most general situation that we can think of is: we
are given a topological space X which is dense in a topological space aX;
in this case we may say that a family # of subsets of X is near iff the
closures of the members of % in oX have a common point. This then pro-
vides a motivation for defining a near structure on X; indeed with certain
additional assumptions every near structure on X is obtained in the
above manner from some superspace aX; see Thron [28] for a similar
result concerning LO-proximities and Herrlich [13].

We now axiomatize the cbncept of nearness and the veader will
find the axioms natural if the above example is kept in view. For notation
we write “ is near” by “nA” and “+ is not near” by “ya”, We write By
for n{{B} v 4} and CL, A= {weX: {w}nd}. P"X denotes the power set
PrX for meN, where P°X = X. #, B denote subsets of PX. #v%H
={AUB:A5:€,B€33}. ) ’

2.1. DzFinrrion. Let X be a non-empty set and n C P2X. Then 7 is
called a Cech near structure or (ech nearness on X iff

(@) M {4: A e} + O implies nst.

(b) n# and 7% implies 7 (#4v3).

(¢) 7+ and for all B « % there is an A e 4 such that 4 C B implies 7%.

() 9 e A implies 7.

The pair (X, 4) is called a (ech near space. If X is a topological space
and CL, 4D A~ (the topological closure) for each 4 C X, then 7 is said
to be associated with the space X. If further 4— — ClL, 4, then 7 is said
to be compatible with the space X.

2.2. Remarks. The term “Cech nearness” is an obvious analogue
of “Cechvproximity” studied by Thron and Warren [29]. The most im-
portam Cech near structure 7, associated with a topological space X is
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defined as follows:
nt I N{d7: deA} =0,

Further if X is an R,-space (i.e. e {y}” implies ye{z}~ for all =,y
in X), then %, is compatible with X.
Notation. A7 = {47: 4 e#A}.
2.3. Derintrions. A Cech near structure # on X is ealled:
(i) LO iff yotes nt~.

(i) T, iff 5 is LO and = = y= {z} 5 {y}.

(iii) H iff # # y implies the existence of an B C X such that {z} 9 ¥
and (X—8)7 {y}.

(iv) R iff 5 is T; and @ ¢ A~ implies the existence of an ¥ C X such
that {#}% B and (X—F) 7y A. (Note that this is patterned after Harris’
R-proximity [11]; however, an R-proximity need not be a LO - proximity.)

(v) BFiff n is T, and A 7 B implies the existence of an #C X such
that A5 B and (X—E)n B.

Obviously EF = R = H = T, = LO = Cech.

2.4. DEFINITION. Let % be an arbitrary infinite cardinal. A' Cech
near structure # is called a k- Cech near structure iff 74 implies there exists
$C 4 such that |B|< k and 7B, and k is the smallest cardinal having
this property. The contiguity of Ivanova and Ivanov [16] is an -T
near structure.

2.5. ExaMPLE. Another important method of constructing ecom-
patible near structures on T,-spaces is through the separating bases of
Steiner [26]. A separating or Sy base £ on a T;-space X is a ring of closed
subsets of X such that whenever « ¢ A, a closed subset of X, there exist
Ly, Laef such that @ ely, ACLs and Dy nLa=0@. An ASjl-balse ’is (1)
8, iff & 5= 4 implies the existence of Iy, I ¢ L such t]-lat @ éLo, Yy QZU and
LiuL,=X (i) 8, iff ¢ 4 a closed subset of _IX Lm?hes the"gmstence
of I.,I, such that @¢I,, AnL;=0 and LyvLl,=X (m)’;S;’(or
normal) iff L, L, et and I, ~L,= @ implies the existence of I, I, el
such that L, nLl =@, Iy~ Li=@ and I;uL;= X.

Given an S;-base £ we define a Cech near structure 5 = 7(f) as
follows: 7+ iff there is a function f: L such thab ACf(4) and
M{f(4): A et} =0. It is easily verified thab 7n(L) is a‘lwaxys a com-
patible T,-near structure; in fact, #(€) is H, B or EF according as L is
8., 8 or §,. Conversely, every T,-space (e=1,2, 3,4) X h::.\.s an as-
sociated §,-base £ (a=1,2,3,4) which induces the comptible near
structure % (L) on X. It is an open problem whether every EF space has
a compatible §, base. We may define analogously %-Cech near structure
7K(L); in particular, the contiguity 7,(L).

-
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2.6. DrFINITION. Let (X, ) and (¥, n,) be two Cech near spaces,
A function f: X—Y is called a near map iff for all £#C PX, 9,4 implies
7af (#), Where f(€) = {f(4): 4 }.

2.7. TEROREM. Let X and Y be topological spaces, n, the associaied
Cech near structure on X (see 2.2) and 7, be any LO near structure on Y.
Then f: XY is a near map if f is continuous and the converse holds if 5, is
compatible with Y. .

Proof. Suppose f is continuous; then

Mok = (V{A™: A ek} £0
= A7) Aes) 20

= {flA)": Aet} #0
since f is continuous

= N, (#)
= oS ()

Thus f is.continuous implies f is a near map.
Conversely, if f is a near map, then

xe A" = {w} ny A= {f(2)} nf(4
and f is continuous.

2.8. CororLARY. (Necessity of the generalized Taimanov Theorem.)
Let X be dense in a topological space oX and let X be assigned the Jech
near structure 7, induced by ny on oX . Let 7;2 be a compatible LO near structure
on Y. Then a necessary condition that f: (X, n)— (¥, n,) has o continuous
extension fi aX—>Y is that f is a near map.

Our motivation for the introduction of the concept of a near clan
is again the situation with which we began this section. Suppose X is
dense in a topologlcal space aX and that we have information only
about X. In order to explore aX we must express each # e oX in terms
of certain objects formed from subsets of X and the most natural one
is o% {ECX #eClzB}. Two simple properties satisfied by o® in
terms of the Cech near structure 7 induced on X by 7, on aX results in
the following definition.

)= f(@) e f(A

2.9. DEFINITION. A near clan ¢ in a Cech near space (X, ) is a sub-
seb of PX satisfying:

(a) na,

(b) (AwB)eo iff Aeo or Beo.

A near bunch is a near clan o such that 4 e o iff 4~

A near cluster ¢ is a near bunch in which

(e} 4 ¢ o implies the existence of & B ¢ ¢ such that A 7 B.

e
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2.10. Exavprre. The most important example of a near clan is ¢
defined in the paragraph just preceeding 2.9. If oX is eompact Haus-
dortf, then ¢® is a near cluster.

We state below several results which are either known or follow
easily from our definitions: ‘ '

2.11. LemumA. Tet 7 be a Gech near structure associated with a topological
space X. In case X~ = oX we assume that n is induced by 7, on aX.

(i) If & is an ultrafilter and % is a LO-contiguity, then
b(F)={ACX: A~ «F}
is a near bunch called contiguity bunch.

(i) If £ is a separating base on X, 5 = #,(C) is the contignity induced
by £, and ¥ is an L-ultrafilter on X, then

={ECX: Eq5},
is a near cluster called contiguity cluster in [4].

(iii) Every contiguity clan is contained in a maximal contiguity clan.
If 5 is EF, then each contiguity bunch is contained in a unique maximal
contiguity bunch which is a contiguity cluster (ef. [8]).

(iv) For each # ¢ X,

oz={BCX: zeE}, :
is a near bunch called point near bunch. If n is compatible with X, then
oz is a near cluster called point near cluster.
. (v) If n is compatible with X, ¢ is & near bunch and {z}eo,
then o= 04.

(vi) If o is a near bunech, 4 eo and 4 CB, then Beo. In par-
ticular, X € o.

(vii) If  is H and ¢ is a near bunch, then there is at most one x ¢ X
such that {z} % o.

(viil) It «X is T,, then for each e X, ¢ is a near cluster.

(ix) If «X is compact, then » is a contiguity.

2.12. DEFINITIONS. Suppose X~ = oX and the Oech near structure
on X is induced by 5 on aX. We say that X is relatively clan (vesp. cluster)
complete in o X iff for every near clan (resp. cluster) in (X, 5) there corre-
sponds an e aX such that {#} 5 o. If X = oX we drop the word “rela-
tively”; note that in this case if o is a near cluster, then {z} # ¢ implies
{#}eoc and ¢ = os.

2.13. Remarks. The most important example of a relatively clan
complete space is X~ = aX and «X has the (lech near structure 7,. In
case oX is compact Haunsdorff, X is relatively cluster complete in aX and
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we have the classical EF proximity theory, due to- Leader [30], of
Efremovié—Smirnov ([6], [25]). Another important example is: suppose £
is a separating base on a 7T-space X and w(X,f) is the corresponding
Wallman eompactification of X; then X is relatively .clus'ter complete in
w(X,£) when X is assigned the comtiguity 7,(€) which s the subspace
contiguity induced by 7, on w(X,£) (see [4] for details). Note that
(X, n(£)) is bunch-complete. )

2.14. DEFINTTIONS. Let 4 be a Cech near structure associated with
a topological space X and let Zx denote the set of all near clans in X.
Tor PC Xy and AC X we say that 4 absorbs P iff A e o' for each o' ¢ P.
It isvea.sy to verify that, “o e C1P iff whenever 4 absorbs P, 4 ¢o,” de-
fines a Kuratowski closure operator on Zy. The resulting topology is
called the absorption or A-topology.

2.15. THEOREM. Let X~ = aX and let n be the Cech mear structure
on X induced by n, on oX. The map ®: «X—Zx defined by D(x)= ¢®
= {BCX: {x} n, B} is continuous. .

Proof. Let # e aX, BEC oX and P () ¢ ¢(¥). Then there is an ACX
which absorbs &(E) and 4 ¢ $(z). This implies that B CCl A and
2¢Clz4, ie. 2¢Cl B, showing thereby that & iy continuous.

2.16. CoROLLARY. If oX is T, and {Cl,xA: A C X} is a base for closed
sets of aX (i.e. aX has the strict extension topology, see Banaschewski [2]),
then @ is o homeomorphism.

Proof. @ is obviously one-to-one. We ghow that @ is closed. Suppose
@ ¢ CLE; then there is an A C X such that ¢ Cl,x4 and ClE CClzA.
So A ¢ ® and A absorbs @ (&), i.e. @(z) ¢ CLO(E).

2.17. TerorREM. Let 7;, 7, be two Cech near structures associated with
topological spaces X and Y respectively. If f: X—=Y is a near map, then
the function fy: Xx—>2y defined by

() ={ECY: [ (B) e},
is continuous. .

Proof. Tt is easily checked that fy(c) e Zy. Let o ¢ Zx, P C Jx and
fz(0) ¢ C1f5(P). Then there is an A C Y such that 4 absorbs f=(P) and
A ¢ fx(0). Clearly f~*(A) absorbs P and f~*(4) ¢ 0, 1e.0 ¢ OLP, thus showing
that fr is eontinuous. . ’

2.18. Remark. If in the above theorem, f is also continuous, then
it is easily checked that

felog) = Oy »

and we may consider fy to be a continuous extension of f.

We recall that a function f: XY is called 6-continuous (Fomin [7])
iff for each xe X, f(x) e V' open in ¥ implies the existence of an open
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set U in X such that z ¢ U and f(U-)CV~. An important problem in
Topology is to find conditions for §-continuous extensions of continuous
functions (see Rudolf [23]).

2.19. THEOREM. Let X be dense in oX and let 7 be a near structure

on X induced by an H near structure n on oX. Let X be relatively clan
complete in aX. Then the map

p: Yg—+aX,
where y(o) = ®, the unique point such thai {#}n o, is 8- continuous.
Prooi. Suppose U is an open nbhd. of # in «X and let U,=U,nX.
Then {«}7nF, where F'= X—U, and F¢o implies oe Zx—F*, where
F* = {b e Zx: F ¢ b}. We must show that if ¢, Cl(Zx—F*), then #, « C1 U/,

where {z,} 7 0,. Suppose ¢ U, open in aX; U,=U,~X and 7,
= X—U,,. {#}nF, implies

a¢Fi=>o e Zx—F}
= (Zx—T}) A (Zx—FY) % 0
= uoF+X
=UyunU,+#0
=umeClU,.
2.20. Remark. Herrlich’s Example 3 in § 2 [12] shows that we cannot
hope to get continuity of 4.
2.21. COROLLARY. If u is R, then the map v is continuous.
2.22. THEOREM. (Generalized Taimanov Theorem.) Suppose X is dense
in a topological space aX and has an associated Cech mear structure m
induced by n, on «X. Let Y be relatively bunch complete in \Y and let 5,
on Y be induced by an R near structure n on 1Y. Then a necessary and
sufficient condition that a continuous function f: X—¥ has a continuous
estension f: aX~>1Y is that f is a near map.
Proof. The result follows from the following:

ELING } Sy AN |
(2.15) 2.17) (2.21)
.
f
X_ N, 4
f=vigp.

2.23. Remark. The above result includes, as special cases, several
previously known generalizations of Taimanov’s theorem; this is what
we propose to show below.

4 — Fundamenta Mathematicae LXXXV
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First suppose that 5= #, and AY is compact. Then fror}a 2..11 (ix)
it follows that 7, is a contiguity and we may take f to be a contiguity map.
If further AY is Hausdorff, then », is EF and AY ig the Smirnov com-
pactification of (¥, 8,), where 8,is the natural proximity associated with #,.
We now show that in this case we may further reduce the map f to
a proximally continuous map. We need only show that if f: X>¥ is
proximally continuous, then f is a contiguity map. Suppose b

k2
(et 1<i<n), 4CY. Then () Clip4d:=@ and so for each p 1Y,

sl - .
there corresponds a jye {1, ..,n} such that p¢ Olu,-Al-?. Smcfa 7 is EF
and hence R, there is a nbhd. U, of p such that Upn 4,,. Since 1Y is

n
compact, there are p;e 1Y, 1<<i<n such that A¥Y =) Uy. If V;
=1
=U, Y, then Y= V; and Vin, 4;; (where we write 4, for Ajpi).
i=1

Clearly X = 0 77UV and fUV) 7 fM(Ay). Sinee X is dense in oX,
=1 '

it follows that 7, {f~*(4y): 1 <4 < n} and so f is & contiguity map.
Thus we have shown:
2.24, LmvmA, If in Theorem 2.22, 2Y is compact Hausdorff and 5= n,
on AY, then f is @ near map if and only if f is prozimally continuous.
The main result of [8] viz. Theorem 5.1 now follows from 2.22 and
2.24; in fact, we get a slightly more general result since we do not as-

sume oX to be R,. It was shown in [8] how the above mentioned result

includes as special cases several of the known results on extensions of
continuous functions from dense subspaces. However, proximities as
they deal with only #wo sets at a time, were found to be rather awkward
in dealing with Lindelof or real compact extensions, where countably
many sets occur (see e:g. Theorem (6.1) of [8]). The concept of nearness
is, on the other hand, capable of handling such cases, as we' show
below.

' Suppose AY is T, Lindelof (and hence normal) and % = 7, on AY.
Clearly in this case 7, is EF and if 7,4, then there exist $ = {d,: n e N}
C # such that 7,%. Thus 5, is «-contiguity (see [5]) or c-nearness and
f: X=Y is a near map iff f is ¢-near. Proceeding in a similar m%nner,
we may take a strong delta normal base £ on ¥ and take AY to De the

£-realcompactification of ¥ (see Ald and Shapiro [1]). In this case, again -

72 = 7,(L) and f is a near map iff f is ¢-near.

3. Reflective functors. Tn this section we show how, in contrast to
the main result (5.1) of [8], our Theorem 2.22 enables us to handle non-
compact extensions with ease. In particular, some of the results of [14]
follow easily.

@ ©
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In this section we suppose that all topological spaces are Havysdorff
and that each space X is dense in some prescribed extension oX. Further
each oX is assigned the H -near structure 70 and each X is assigned the
near structure induced by s,. An important class of problems is to find
necessary and sufficient conditions on f: X—¥ to have a continuous
extension f: aX—a¥; in other words, to find a class of maps for which
aX is a reflection of X,

3.1. SIRICT EXTENSIONS. If each X is a strict extension of X, then

- Theorems 2.15, 2.17, 2.19 show that each near map f: XY has

a 0-continuous extension f: aX¥—>a¥. Examples of this type are the
Banaschewski 7,-minimal extension [3] and the Fomin extension [71.
In this connection we note that every A-map of [14] is a near map (the
proof of this is similar to that of “p-map implies near map” proved below)
and so our present theory includes some of the results of [14].

3.2. SMPLE BXTENSIONS. If each extension oX is simple, then
Theorems 2.15, 2.17, 2.19 show that a necessary and sufficient condition
that f: X—Y has a continuous extension f: aX->a¥ is that fis a near
map. We now discuss the case of Katétov extension [17] and relate our
results to those of Harris [9]; we do not consider here X of Liu, oX of
Liu and Strecker [19] which are discussed in [14].

Let «X = 7X the Katétov extension of X and let 7, be the near
structure induced on X by 7, on vX. The following is obvious:

3.3. THEOREM. For 4 C PX, n 4 iff there is a p-filter F in X such
that A nF + @ for each A e # and each F e F iff for every p-cover a of X
there is an B e o such that E~ 4 # @ for each A e £. Further u, #£ implies

the existence of a finite subset {ds: 1< i< n} of 4 such that (n] A7 = 0.
. i=1

3.4. THEOREM. A function f: (X, n)~>( Y, n.) is & near map if and
only if fis a p-map. (Here uy, u, are induced by my on X, ©Y respectively.)

Proof. Suppose f is a p-map and 4 for 4 C PX. Then there exists
a p-filter & on X such that £~ F £ 0 (le. A~F =0 for all 4 e &,
FeF). Clearly f()~f(F) =0 and so f(#) ~ fUF) = 0, where fO(F)
={ECY: I open and f~Y(H) ¢ F} is the p-filter in ¥ (see Harris [97).
Thus 7,f(+€) and f is a near map.

Conversely if f is a near map and ¥ is a p-filter in X, then #, ¥ and
80 7,f(F). Hence there is a p-filter ¢ in ¥ such that f(F) ~ G == @. Hence
fF) is a p-filter in ¥ and fis a P-map.

3.5. Ty EXTENSIONS. If each oX is T, then Theorem 2.22 shows
that, irrespective of whether oX is simple or striet, f: X—Y has a continu-
ous extension f: aX - ¥ if and only if [ i8 a near map. Thus the category
of objects {«X} and contihuous functions as morphisms is the largest
epireflective subcategory of T spaces and near maps. We will now show
.
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how this can be used to obtain arecent solution to Problem IT of Harris [11]
by Hunsaker and Sharma [1B] (also see [24]).

First consider a slightly general situation. Let aX consist of some
distinguished or d-clusters in X with the absorp_tion‘topology. Then an
argument similar to Theorem 2 of [4] shows that f: aA_T —aY i3 a continu-
ous extension of fi X—Y iff for each o e aX f(o) C f(o), Le.

(%)
Let a proximally continuous map satisfying (x) be:ca.ﬂed strongly
p-continuous. Obviously, every near map is strongly »-continuous.
Oonversely every strongly p-continumous map is a near map: z,4 for
#C PX implies there is a o caX such that £Co. Since f is strongly
p-continuous it satisties (x) and so f(#£)Cflo) Co’ and 7,f(«). (We
note 7,4 iff there is a o ¢ aX sueh that 4 Co.) In particular, if aX is the
Harris regular-closed extension of an ROC-regular space X, then oX is
the space of all contractive clusters (Hunsaker and Sharma [15]) and
hence oX is an epireflection.

The author is grateful to Worthen Hunsaker and Lamar Bentley
with whom he had numerous discussions and who generously let the
author publish these results here although they were a part of a joint
project. He also thanks Horst Herrlich and Prem Sharma for several

suggestions.

for each o ¢ X there is a unique o” e oY such that f(e¢) C o'
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