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Relations between some general nth-order derivatives
by
P.S. Bullen and S. N. Mukhopadhyay * (Vancouver)

Abstract. Let f,, £, £, Jrap €c. denote various rth-order Peano derivatives of f

and 4, f, 4, f, 47f, AF_f the various rth-order Riemann derivatives defined using equally
spaced rth-order difference operators. Using an extension of a decomposition theorem
due to Marcinkiewicz, [6], various properties of these derivatives are obtained. It is
shown that if f is r-concave on a measurable set B with fiy existing and finite there,
then f,,, and (f,_,),, exist, are finite, and equal almost everywhere on E. If Fran(®)
exists and a finite ANW f(x) exists with the same value; further ﬁfr < oo on a measurable

set B, then 4" f= ( foVip = fruap = A7 f almost everywhere on H; hence {; f,(#) = oo}
is of measure zero. These last two results had been obtained for Cesiro derivatives by
Sargent [11].

1. Introduction. There is essentially only one first order derivative;
others are derived from it by changing the limit concept used; for example, -
by using upper limits, one sided limits, symmetric limits or approximate
limits. The relationships between these derivatives are trivial at a point
but deep results arise once we consider existence on sets of positive
measure [10, p. 152]. Moving to derivatives of higher order, the situation
is much more complex, since there are several natural extensions of the
first order derivative and each can be varied by changing the limit
concept as mentioned above. The extension of the first order results to
these higher order derivatives is far from complete, although some very
important results are already classical [4, 6, 7, 8]. It is the intention of
this paper to obtain further relations between higher derivatives of
several types.

2. Preliminaries. Let f be a real function defined in the closed interval
[, b]. If @y, @y, ..., % De ahy »-1 distinet points in [a, b], then the pth
divided difference of f at these points iy defined by .

w

(2.1) Ve(f; wn) = Vo(fs @9y @1y ooy ) = 2
k=0

flwe)
“(ax)

* The work of the second author was supported by an N. R. C. grant.
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‘where
r
w(z) = (—ar)
k=0
Clearly

(5 @0y Bry ores Tpg)— Vios(fs @1y Bay vy @) .

Ve
(2:2)  Vilfi ) === P

Let z, be any fixed point in [a,b] and let @, @, ..., 2» De any set of »
distinet points in [a, b] different from 2, with the property

0 < [@y— ] < @y | < e < [ Bp— 1] -
If the iterated limit

(2.3) lim lim ... im 7! V{f; )

Ly—>Tp Tr-1—*Xg  L1—>To :
exists (possibly infinite), then this limit is called the generalized derivative
of f at @y of order r and. is denoted by Dyf(w,). Taking limsup (resp. liminf)
at each stage in (2.3) we get the upper (resp. lower) derivates Dyf(x,)
- (zesp. Drf(@,)). The one sided derivates D; f(z,), D f(w,) etc. are obtained
in the usual way by taking all the points ®;, #,, ..., #» on the same side
of x,. .

‘With the point #, fixed in [a, b], if in a certain neighbourhood of
-the point x,, if f has the:representation

”»
nt
k)= D ez do(), as 10,
k=0

where oy = f(%,) and all of ax, 0 < k < r, are independent of h, then ay is
called the k-th Peano derivative [8] or the k-th de la Vallée-Poussin deriv-
ative {7] of f at xy and is denoted by fu(z,). The definition is such that
if fa(z,) exists, then fu(z,) also exists for 0 < m < n.

(2.4)

Suppose that f,'_l(mo) exists finitely. Then the upper (resp. lower)
rth Peano derivative of f at «, is defined as the upper (resp. lower) limit of

Pt ST
ﬁ;{f(wﬁ-h)—k% |

as h approaches 0 and will be denoted by fi(z,) (resp. fu,)). The one sided
Peano derivatives are obtained by suitably restricting % while taking
limits in (2.5) and these will be denoted by (@), fi(m,), ete. If all the
Peano derivates of f at #, are equal (possibly inﬁﬁite), then this value
is the Peano derivative of f at z,. From (2.4) and (2.5) it is clear that
even when fr(x,) is infinite, all the previous devivatives fu(w,), 0 < k< 7,

(2.5)
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must be finite. The approximate Peano derivative Frap(®) is the limit
of (2.5) when # is restricted to a set having 0 as a poi,nt of density. The
ordinary approximate derivative of a function ¢ ab 2y is denoted by
‘F’t’zp(wO)' )

We shall denote by A,(f,x, %) a finite difference of order for the
function f at z with increment h, defined as follows:

A(f; #, h) = f(a)

(2.6)
Af5 ©, 1) = Ay(f o+l W)= 4, (f; 0, 7), r>1.
Clearly
@.1) 4lf5 o, 1= Y (—1)*(5) f -+ Fn)
and -
(2.8) Vilfs %y @+hy ooy t7h) = ﬂ:ﬁ%’h)

It follows from (2.7) and (2.4) that if f{») exists finitely, then

(2.9) A(f; 2, h) = h’fr(m)—l—o(h') , as  hb—0
and hence )
(2.10) et ;L,w-’—h) = frlw) .

We denote by 4-f(x) the limit of (2.10) when this limit exists. Thus if
Jr(x,) exists finitely A,f(x,) also exists and have the same value. But the
converse is not true. For, consider the function f(z)= |#|. Clearly
4y(f, 0, u) = 0 and hence 4,f(0) = 0, although f,(0) does not exist. Thus
4,f(2) may be called a generalized derivative of f at @ of order r. The deri-
vates 47 f(z,), ete. are defined in the usual way.

Let B C[a, b]. If for all choices of »+1 distinet points @, #y, ..., zr
in B, we have Vi(f; @, %, ..., %) > 0, then f is called strongly r-convez,
or simply r-convex (in the sense of Popoviciu [9]) in B. If —f is - convex
in B, then f is called r-concave in B. Clearly for r = 2, the case of 2-con-
vexity of f coincides with the definition of usual convex functions.

As usual u(F) will denote the Lebesgue meagure of the measurable
set # and f® will denote the ordinary kth derivative of f, except that
the first derivative of f will be denoted by f’ istead of f*; limap will indi-
cate the approximate limit.
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3. An auxiliary theorem. The following theorem, needed later, iy an
extension of an interesting result of Marcinkiewicz [6], used by many
authors [2, 12, 13] (see also Zygmund [14, II, p. 73]).

(8.1) TrroREM. If f is measurable and fi exists finitely on a measur-
able set B C [a, b], then there exists a perfect set By C B such that u(E,— )
is arbitrarily small and two funclions g gmd h such, that

f=g+h7

where §® ewists and is continuous on [a, b with the property that if (w:, i+ 8)
is any contiguous interval of Ey and if 0 <1t < ds, then ‘

9P(@i+1)— g (@) = o(t) as 10,
GO+ 00)— g P (1) = 0(6i—1)  as 16
and ) :
hi)=0, for meBy, r=0,1,2,..,k.
In the proof of the theorem we shall very often have to consider the
above property of g™, so we state it separately.

(3.2) Given a perfect set P C[a, b], & function ¢ is said to satisfy
the property W (P) if g™ exists and is continuous in [a, b] and if (2, #-+ 5y)
is any contiguous interval of P and if 0 < t< &, then

B @i +1)—g®(@) = 0(1), Cas 0,
o™ i 00) — oM @i +-1) = 0(8i—1), a8 1—>6;.

If ¢ satisfy the property W(P) we shall write ¢® ¢ W(P).
To pr'ove the theorem we consider the following lemmas,
(3.3) Lmnmva. Under the hypotheses of Theorem (3.1) there emists a per-
fect set By C E such that u(E— B,) is arbitrarily small and two functions g
and h such that
f=g+h,
where ¢ ¢ W (B,) and

T(z)=0 for zekH,.

Proof. Since f; exists finitely on B by (2.9) there exists a perfect
set B, C B such that u(H— B,) is arbitrarily small and all the derivatives Je
- (r= 0,1, .., k) are continuous on ¥, and

p _
B4 fio) = ]jm—r(%—’—u-_)[unif.] , weB,r=1,2,..,%.
u-0

Define a funetion 1 in [a, b] such that
M@ =file), e,

) ©
Im ) Eelations between some general m-th-order derivatives 261

and if (@, #:46:) is any contiguous interval of B, and if 0 < ¢ < di, then

5 s i
May+t) = Z(mz)—f-[/»(ﬁh—i— 51)—/.(‘7};')] (U(E),
where o is a polynomial such that .
w0)=0, ol)=1,
co'(b) =(1)=0.
Let g be the indefinite integral of 1 over [a, b] of orvder k. Letting
h= f—g, it can be verified that ¢ and h have the desired property.
We suppose that for fixed 7y, 0 < 7, < %, the following lemma is true.

(8.5) Lemma. Under the hypotheses of Theorem (3.1) there exisis a per-
fect set By C B such that u(E— B,) is arbitrarily small and two functions g
and h such that

f=g+h,
where ¢ ¢ W (B,) ond

In(x) =0 for el rn<r<k.

‘We now prove

(3.6) LEMMA. Under the hypotheses of Theorem (3.1) there exists a per-
fect set By CE such that w(B—Hy) is arbitrarily small and two functions g
and h such that

: f=g+n
where g® ¢ W (B,) and
hww)=0 for wekl, ri—1<r<k.

Proof. By Lemma (3.5) there exists a perfect set B, F such that
w(B—H,) is arbitrarily small and two functions g and 7 such that

(3.7) f=g+h,
where §* ¢ W (B,) and
(3.8) @) =0 for wely, nn<r<k.

From (3.8) we conclude, as in (2.9), that

(3.9)  Apa(hy @y u) = oM, (@) +o(wh), a8 w0, meE,.
So, if #, 2+ u < B, we have by (2.6) )
(8.10) W,y (@)=, i (@)] = A4, (k, ©, w)+o (k) .
Now by (3.8) h, ()= 0 for z < E, and hence

Ay by @, u)=o(u"), as u—>0, wvech.
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Therefore (3.10) reduces to
W Ry (@ w) =Ry s ()] = 0 (W), an
Define a funetion % in [a, b] such that
A@) = Ry (@)

(3.11) U0, z, 241 e B, .

(3.12) % e By

and if (m ,wi—l—éi) is a contiguous interval of FH, and if 0 < ¢ < d;, then

Moct ) = 4o+ Ao 8)— <w¢>1w<§;>,
where o is a polynomia.l satisfying '
00 =0, o@)=1,
0'(0) = wP(0) = ... = ®=TH0) =0,
(1) = 0®(1) = ... = oFTT1) = 0.
Then by (3.10) 1 is continuous in [a, b]. Rega.rdmg the function 4 we make
the following assertion.

(8.13) ASSERTION. A%tV egists and is continuous in [a, b] and

Ne)y=0 for- zeBy, 1<r<lh—ry+1.

We shall prove the assertion by induction. Let & ¢ B,
(8) If &4 u e By, then from (3.12) and (3.11) we have

Py 1 (E410)—

U

Ry, 1(€)

w—>0 .

AE+w—AE)
A

(3.14) -0, a8

(b) If £ is not isolated from the right and &4 u e (m, @+ 6:), v >0,
then from (3 12) and from the definition of A we have

AE+w)—1()

(3.15) .
M@ =R, () | () — T (a) (5+ > m) ,
= +
U 4% 5,:
Ty (@)~ by (&) 0= £
B Cﬂi—£ u v .

Lh*o—l(wi—{_éi)—'hrn—l( i) £+ U—&; b Edyu—um;
! 04 U Ed 5 @ & ) :

icm°
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Now as % —> 0, 8;—>0 and 2;—£. Since w <1 and mi—“fj< 1
% % =
. (T)
and since —0 as T'—0, we get from (3.15) and (3.11)
) AME+u)—A(E
(8.16) M( ’bz ( )—->0 ;a8 L u—>0-4,
(e) If £ is isolated from the ught .E_m,, E+u e (m, 2+ 05), say

and hence from the definition of 1

MEEI—2E) _ Ty sfact o=y y(a) 5
% B 5 "

&)

w(T)

Since T~—>O a8 T—0, this implies

(3.17) QM————-———(E_"—M)_ME)AO , a8

” u—=>0-.
Thus from (3.14), (3.16) and (3.17)
lim AET9)—A(8) 0.

U0+ w

Similarly if 4->0—, then this limit exists and equals zero. So, we conclude
that

A@)=0 for wekH,.
By the condition imposed on the polynomial w, 1’ exists and is continu-
ous on [a, b].

Thus Assertion (3.13) is true when & = 7,. So, we suppose that r, << &
and prove that if for m, L << m < v = k—r,-+1, A exists and is continu-
ous in [a, b] and A (z)= 0, for < B, and for 1 <7 <m, then Am™*D
exists and is continuous in [e, d] and A"+ Y(z) = 0 for weEO, and this
will prove (3.13) by induction. )

To this end we suppose that 1< m< 7, A™ exigts and is continu-
ous in [a, b] and A™(z) = 0 for v ¢ H,. Let & sEO If 4w e By, then

A (E +u)— 2 (@)

w
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Tf 4w e (@, 2+ 9), % >0, and ¢ is a limit point of H, from the right,
then by (3.11)

A (& 4 u)— 1E)

(3.18) -
Am(E )
= .
_l(m:,;—l— 6¢)—l(wt)i - ™ &2 :0_[) .
a % b b
@t 0) Ryl Efu—ae b (B
- ot % Edu—amy 84
o(8F) Etu—mi b (ST U=
= . . w .
optm U ELyu—ux; é -
(m) . .
Now & IST)»O as T—0 and E_—I# < 1. Also #inee 5y~ m <k,
o (8%) "

W—m, a8 0;—0. Noting that §;—0 and z—& a8 4—0, we conclude
from these that
Z("”)(E-{« u)—l"")(rf)

=0, as wu—0-.
(]

If &fwe (@, 3+ 64), u >0, and £ is isolated from the right, then & = @
and. as above ‘

/‘1'(171)(5_{_ u)__ l(m)(&t)

U

@it 80—hp @) Etu—ay 8 (Eu—a
ot % S u—m; dz
and hence

AE ) — 2 ()

" -0, as wu—>0+4.

Considering the left-hand limit in a similar manner we see that Aot () = 0
for 4 F,. The existence of 2+ on [a,s]—J, and its continuity on

[a,b] is obvious from the definition of A Hence the agsertion (3.13)
follows.

im EBelations belween some general n-th-order derivatives 2635

Let 4 be the indefinite integral of A®—o+D gyer [a,5] of order %

Then f® = 3*~"*D on [, b]. Also by the definition of 4 and 7 we have,
as in (3.18), using (3.13) ' !

A8 a5y 4 1) — A8 ()

t

Mo D @y 1) — 26,

- t
Z(kvrg-l-l)(m_i_t)

:——-——_—‘ 7 -

a@it 00—y (@) 8 o0

R (31';7""“'('2 F 5 .

w®E=ror (1) )
Sine —————->0 as T—0, from this we conclude

T
A1) —1®(2) = 0(f), as 0.
Similarly
' IO 8)— AP (w4 1) = 0(8i—1), as  1->bs.
Hence 1™ ¢ W (H,), by (3.2). Also by (3.13)

IM@y=0 for wed,.
Set

g=g+i, h="h—1.
Then by (3.7) - ke
f=g+h.

Also since g™ e W(B,) and AI®e W (H,), §% ¢ W(H,). Finally if z e B,
and 7—1 < r < k, then by (3.8), (3.12) and (3.13)

Tup(6) = Fon()— Anl) = 0O .

This completes the proof of Lemma (3.6).
Proof of Theorem (3.1). The proof of Theorem (3.1) now follows
from Lemma (3.3), (3.5) and (8.6) by applying induction on r.

4. The Peano derivatives and the generalized derivatives. Denjoy [5] and
Corominas [3] proved that if the derivative Dyf(x,) exists finitely ab
a point u,, then the Peano derivative f,(m,) also exists finitely (and hence
all the previous derivatives fu(a,), 0 < n < 7, also exist) and is equal to
Drf(my); the converse is also proved by them for finite Drf(a,) or fu(w)-
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Recently it is shown in [2] that these remain valid if one considers one
sided finite derivatives D f(z,) or f;(%,). Here we prove that these results
are true for all the derivatives fif (@), D;f(#,), ete. and even when they
are infinite.

(4.1) Lemua. If § is continuous at @, < [a, b], then

Tim ... YmV(f; @1, Zay evey Zppr) )

Tpsy TI1IH .
P

. -' —_ I
= —ﬁi’jF {f(wr-)—l)— 2 (W—T_—Hk!‘mo_)fk(%)]

(m"'+1~ %y k=0 '

provided f,_,(w,) exists finitely.

Proof. The lemma is true for = 1. Suppose that this is true for
7= n and we prove it to be true for » = n41. Since r = n-}-1, we may
suppose, by hypothesis that fa(z,) exists finitely. Also by suppositidn,
(4.2) lim ..ol Va(f; @y oy Byay)

Tni1>Zo  Tr-+To
n—1

. 1 ('”n+1" mo)k
= mj:ffzo [m [f(mnﬂ)—‘ngk(%)”
= mfﬂ (o) .
and
(4.3) Lim ... B Va(f; @, ..., yp0)
. n+1~>Tg 0 1 n—1 (mn+2_ mo)k
= mlf@nﬂ)" }; _k'_.fk(%)’ .

Henee from (4.2) and (4.3) we have, by applying the recurrence formula (2.2)
im ... ¥mV, ,(f; %, @, .., ’

'n+2 )
Tn+1+%p  T1—>Tp

1 n—1 —, % 1
@res—ay {f R W”o)“‘ P
- Bppo~— Ty
Ly B
= @ [f(wn+2)~ D) (”—"*;k,””—’fk(mo)] :
n+2 = !

Thus the lemma is true for 7 = n-1 and the proof follows by induction.
(4.4) THEOREM. If fi(%,) ewists finitely, then

Fhralms) = Dy (), . ete

@ © .
lm Relations between some general n-th-order derivatives

0
(=]
i

and if Drf(m,) exisis fi%itply, then
51—’};1 f( ($0) = ﬁ-++1(mo) , ete.

Proof. If » = 0, this is obvious. So, assume » > 0. Since

X frlwy) exists,
f is continuous at #, and hence by (2.1) we have

m Vs (f5 @, 2, ey Bpy) = Vil f; Loy Ty eony Bpyp)
Z1—>To

Hence by Lemma (4.1)
lim .. lmV,,,(f; %, %, ..,

7+ 2)
Lyy1—>%o  Fa—Zg

o= lm ..lm 7V, (f; Ly y Byy weny Bpyp)
Dri1~r&y  T1—>Tp

1 \ ( r+27 Yo i
= Ry lf('”r‘kz)- 2%'90)_]%(%)‘ .

k=0

Multiplying by (r+1)! and letting =, +o—>%+ ‘we have
D f(@) = Fralm), ete.

Conversely, if Drf(x,) exists finitely, then by our earlier remarks, fr(z,)
exists finitely and so by repeating the above arguments the proof is
completed.

5. Convex functions. We ghall require the following' theorem on
convex funetions.

(5.1) TamorEM. If f is r-concave on a set B C[a,b] on which fee
exists, then f,_, is non-increasing on H.

Proof. Let o < @< ... < 2 and 3, < 9, < ...<< 9, be any two sets
of points in B such that @ < y; for 1 < ¢ < 7. Then as in [1]

(52) V‘T—l(.ﬁ &y, ey ‘7"1') = Vr—l(f; Yy ooy yr) .

Now if &, and y, be any two points in B such that z,< Y, then choosing
the points @, and g5, 1 <4< r, in the above manner and then taking
limit when all @;—, and all y;—+y, we get from (5.2) and Theorem (4.4)

Jrea#) = Frea(¥o)

which completes the proof.

6. Properties of derivatives and convex functions. .

(6.1) TamorEM. If f 4s r-concave on & measurable set B C [a,b] on
which f,_, exists finitely, then [, ,, and (f._,), ewists finitely and equal each
other almost every where in .

5 — Fundamenta Mathematicae LXXXV
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Proof. Since f,_, exists on B, by Theorem (5.1) f,, is non-increasing
on B. Let By C H be such that u(E;) = u(E) and a finite derivative ( frd)m
of f,_, with respect to E exists on F;. By Theorem (3.1) there exists a per-
fect set B, C B, such that p(FH,— E,) is arbitrarily small and two functiong
g and & such that

(6.2)  f=g+D,

where g% exists and is continuous in [a, b] and if (@, 2+ 8¢) is any
contiguous interval of F, and 0 <<?< 4§, then

(6.3) g+ 1)— gV w) = o(t), a8 >0,
(6.4) G i+ 6)— g N 8) = 0(0i—1), a8 >4
and

(6.5) Ix(z)=0 " for weBy, b=0,1,..,7—1.

Let £ ¢ T, be a point of density of H,. Then since g"—» ig eontinuous;

) ] finc
(6.6) o) = m Ig(s +u)— ) ;i,gk(s)}
w k=0
— lim g"“”(f—l— 'Lb)——g(r_l)(f) ‘

] w0 U
Now if u—0 with £+ ¢ B, then since (f,_,)p(£) exists, by (6.2) and (6.5)
the last limit of (6.6) exists and equals ( fro1)5E). Suppose that &£+ u ¢ By.

Then & u e (@1, m.+:), where (s, 24 0;) is a contiguous interval of H,.
Supposing u > 0, we have from (6.3)

(6.7)

e =g g m)— gV e
|

u z—§ %

0D+ u)— g Ve
w

o(§+u—a) E4u—am

Etu—m; %

0 (&4 u— @)
ftu—a; |

y a8 Edtu-—say

< y as Efu—ig .

Now since & is a point of density of By, & and fi_—f—-ﬂ a8 u—>0.
%

Hence taking limit as #-»04 and noticing that the limit (6.6) exists

[ ]
lm@) Relations between some general n-th-order derivaiives 269

and equals (f,_,)z(£) when the limit is restricted on E,, we conclude from
(6.7) that

(68) !]T(f) = lim g("—l)(f»]— "Ll,)_.g(r—l\(é,)

U0+ K4

= (fr-1)ul8) -

Similarly if »< 0, then using (6.4) it can be proved that
. (r—1) £ qg)— g1

(6.9) gr(€) = Tim? (§+u)—g" (&)

U—~0— w

= (fr—z(8) .

Thus from (6.6), (6.8), and (6.9) we conclude that g, exists and equals
(fi—1)w at all points of density of H,. Also if £ e, is a point of density
of E,, then from (6.5) and (6.2)

o =ik
(6.10) gr(§) = lim %, lg(f +u)— 2% yk(é)]
‘ Er:eoEo k=0 "

F—1
| ¥
= }tlf; {E FlE4uw)— Zﬁfk(f)l =fr,az7(5) .
Etuely k=0

Sinee ¢ is a point of density of B, C ¥ and since (f,_,),(&) exists the ap-
proximate derivative (f,_;)q,(&) exists and equals (f,_,)5(%). So from (6.9)
and (6.10) we have

(6.11)  Fo® = (o)),

whenever £ e B, is a point of density of H,. Thus (6.11) holds almost
everywhere in E,. Since u(H,) = p(H,) and since u(F—F,) can be made
arbitrarily small, we conclude that (6.11) holds almost everywhere in B,

7. The derivative 4,f(x). Now we shall establish certain relations
between the Peano derivatives and 4.f(x). We begin with a lerxma which
is an improvement of an interesting result of Marcinkiewicz and
Zygmund [7].

4 @

(7.1) Tevma. If (i) limap —’%h;«“)

u—0

emists finitely,

(ii) lim sup f]—~

®,u

k(%ﬁ—) < oo, and

U0 wr
(iii) lim ﬁ_—l—(—kf—i-fiﬂbz < o for every x on a measurable set B, then

u—+0 W

pi| X, U4 A @, % . Au(f, 2, u

(7.2) i sup 2L 20 gy gy AT D)y D2 2, )

w04 w u—0 w u-0— w

for almost all & in E.
-
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Proof. Let 4 > 0 be arbitrary. Then thereis M >0, > 0 and a sub-
set B, C B such that

(7.3) p(E+H,)<n
and

(1.4) ‘ﬁc%f—“— <M,
(1.5) A——-—"“I;{’_f”’ Y < w

for all 2 ¢ B; and 0 < |u| < 6. Let o, be a point of density of E,. We may

Ar(
suppose that @, = 0 and limap _MM _o
w0
Let @ be a subset; of B, having % =0 as & point of density and
4 0 Au(
(7.6) lim k(f;bk % _ limap atk k07 %)= 0.
u—>0 U0

ue@
Let % > 0. Choose s arbitrary such that 0 < &< 1. Then if « is sufficiently
small, there exists v, u(1—e¢) < v < % such that the points

U—0

")‘}'7.77

i, i=1,2,.

5 k—1

Lk,

.  U— .
w41 P i=1,2,.,k

all belong to @ Then by (7.4)

I
(17 D () foy =0, '
. N k
{7.8) (f: w @M) = Z (%U+% — _7)
7=0
< M(%u;c_vy for i=1,2,..,%

Now from (7.7) and (7.8)

k
Z (—1-1 Y Ak(f,O, vt ﬁ%%) ,

i=0

{7.9)

k

k
= 20 D) gii

i=0 i=0

)

icm

Relations between some general n-th-order derivatives
. k
.1 [ i (k . U—v
)k [ y YT [ s
(1R D) (=1 (B g i

i=0
> 2 (as(1, 00,47

— EH')—]— B s

=2
=3
o

.
[
-}

I

Ja.*

-

where B denotes the summation over the terms for which 4 k( Tyiv, ,{’_‘%"’)
is positive and B denotes the summation over the terms for which
Ak< £ v, i

We have from (7.9) and (7.8)

—
p ) is negative.

L U—

(7.10) Z(+)(_1)h—i<?) Ag (f, i, 14 —k—>

13

, where (= S’(f) (%)k

i=1

= MOy (u—v)*
< MO ubed

and from (7.9) and (7.5)

K2

(711) ‘E<~)(—1)k—i(§“)4k(f, i zT>
< zo(f) i%—”)—Ak_l(f; iv,ﬂ%’)l
e (A){A,H(f, i H——” /—”}63’) _/J,H(f; iv,iu—;;;).}
- (% =\
<z (Fam(s .
k—1
< MOy(u—0o)*"Y, where Cy= 2 2 (IL>

< MOpuP—2eh1,

. U—0
Apy (f; wti——,

+

A
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So, by (7.9), (7.10) and (7.11) we have

3
: U—0 | )
(r12) > (—1pifH) Ak(f; 0,04 — y) < MOyutet+ MOpui—teb—t |
i=0
U—0

j e @, we conclude
k

Since the points v+

U=, ‘ .
(7.13) Ak<f;0,v+—7c——)>=o(u’), j=0,1,..,k—1.

Hence from (7.12) and (7.13)
Bt :
2 0 (1) A(F, 0, u) < MCyulet - M Cpalt—teb=2
i=0
ie.
A6(f5 0, u) < 0 (u*) - MOy b + M CpuF~165 2,

Since ¢ is arbitrary, this implies

(7.14) Ax(f; 0, u) < o(u?).
So
lim sup w <0.
U=+04 uw
Since

. 4 0 A 0
llmsup%’—u) ;Hmapﬂ%,?’_@.___ 0,

U0 u—0
‘we have
4
(7.15) tim sup 2 LW
U0+ W

which proves the left hand equality.
If %<0, choosing ¢, 0 < e< 1, consider two cases:
(¢) Let & be even. Then as in (7.13) we deduce

(7.14a) . Ax(f; 0, u) < o(|ul")

and hence

4
Him sup k(f;ko: ) = lim sup Ag(f, (;),;, ) <0
20— w Umr0— Iu|

So, as above

(7.150) lim sup M =0
2%

U0~ L
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(8) Let k be odd. Then ingtead of relations (7.8), (7.10) and (7.11)
we have

. U= . lu—o\*
(7.88) Ak(f;w,@ k)?—MG' l), i=1,2,..,%,

k

a3 a5 05

> _‘M('““”')" }:‘ (})i
% i

i=1

= —MClu—v* = — M0, jultek
and

(7.118) ‘ﬂ”(wh’ﬁj(f) Ak(‘f; i, 3”7:-3’)

—_ k
< 2ofs) aar (i 22)
o

< MOzlu“'U!k_l
< M OyfufF2eb1,
Hence from (7.9), (7.108), (7.118) we have

k

(7.12) >~ (F) 4 (f; 0,0+

i=0

u;%) = — MO [ulfeh— M Oplufe—1ek—

and so, as in (7.14) we get
(7.148) , Ak(f; 0, u) = o(u")

showing that
il f; 0,u)\<\0.

lim su;
U0~ v u¥
So, as above, we get
Ax(f; 0, u
(7.158) lim sup% =0.
U0 — w

Relations (7.15), (7.18«) and (7.158) show that (7.2) is true at
all points of density of 7, and hence (7.2) is true almost everywhere in #,.
Since 7 is arbitrary we conclude from (7.3) that (7.2) is true almost every-
where in H.

A f; @, u)

(7.16) LammA. If fi < oo on a measurable set B, then limsap e

u—0

< oo almost everywhere in H.
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Proof. Since f; < co on H, by Theorem (4.4) D, ,f exists and D,f
< oo on F and so for any & > 0 there exists M, >0, §, > 0, and a subset
B, C FE such that
. w(B—Ey) <e
and .
lim .. lm 1 V(f; @, 2, ...,
Lp-1+2 BT
for all 4 ¢ By, and all 2., 0 < |6— 2| < J,. Hence there exists M, > M,
6, >0, 6, <, and E, C H, such that

wl(By—B) < e

@) < M,

and
m ... Hm r1V(f; @, 2y, ..o, @) < M,
Lp—g-+T BT
for all z ¢ By, and all &, ,,®,, 0<<|z,_,—o|< 6, 0< |B—au| < 4., So,

after a finite number of steps we get M,_, > M, , >0 and 0 < 6,_, < 6,_,
and E,_, C B,_, such that

14 (Er~2_Er—1) <e
and

' Velfs @, 2y, oy

for all e B, ,, and all @, @, ...

xr)< M,_,
yry 0<|mi—a| <o, 4, i=1,2,..,r
, then

Thus if 0< |u] < 6“

VS5 @y o+ vy ..., z+1u) < M,_, .

Letting u—0,
A:(f3
Iim sup M < M,_,
U0 K
for all 3¢ H, ;. Since u(H—E,_ ,)< rz and ¢ is arbitrary, we conclude

from (7.17) that

lim sup
U0

ﬁ(f’rw’ u)< 00
u

almost everywhere in E.

(7.18) TEmoREM. If f, .. (%) ewists Jinitely, then limap f]T(ij 61818
0 .
and equals f, ., (). !

Prootf. We have

Jrap(®) =

ap—lf(w+u 2 Y o

icm°

Relations between some general n-th- orders derivatives

IS
=3
ot

Hence we can write

7! I
u_rlf(w_i_u)"’;ﬁfi(m] frap + M),

where limape(u) = 0. So from (7.19)

u—0

(7.19)

120) et = S+ e+ L o).

Hence from (7.20)

Aol fy , w) = 2( 1y-7 7 flo+ju)
= W) + 2(— = (7 et
ie.
(7'21) f = .fr,ap(. )+ 2 T_:’ E(ju

Now as #—0 through a set having 0 as a point of density, it can be shown,
as in Lemma (7.1), that ju will remain on that set and hence hmapa(]u)

=0,j=0,1,..,7 and so from (7.21)

z,u)
Lim gp =22 f’ = Jrun(®) .
u->0
(7.22) TEROREM. If < oo on a measurable set B, then
Af, =, u) , . A (f, 2, u)
lim su P ——L'_ (fr-—l)ap(x) =‘fr,ap(w) = lim SUPL’T’—“
U0 U0 U

holds for almost all » in H, all the values being finite.

Proof. Since f; < oo on B, as in Lemma (7.16) for any & > 0, there
exists M >0, 6 >0, and a subset B, CE such that

u(B—E,) < e
and
(7.28) P\ Volfs @, @y .0, )<< M
for all &, @y, ..., o in B, with 0 < #,— 2 < 8,— @ < ... < £— & < 8 Writing
9(2) = f(2)— Mo’

we conclude from (7.23)

‘ Y Vilgs @, @y ey )< 0
for all u,m,, ..., % e B, with 0< 0,— 0 < B—# < ... < Br—2& < §. Hence
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g is 7-concave on every portion of B, whose diameter does not exceed g,
Hence by Theorem (6.1) grop 804 (,_y)ap exists finitely and are equal
almost everywhere in H,. Hence f, ., and (f,_,),, exists and ave equal
almost everywhere in B,. Since s is arbitrary, f, ., and (f._,),, exists
and are equal almost everywhere in F. Hence by Theorem (7.18)

limap ﬁ"_(i;;_’f”_) exists and equal f, ,,(#) for almost all # in H. Since

U0
4 T, U :
fr < oo on E, by Lemma (7.16) limsup —T%’——)< co holds for almost
U0

Ar-—l(f’ m’ /M)
w1

all z in E. Also since f,_, exists finitely 1iml — exists finitely

w0 b
for all z ¢ B. Hence applying Lemma (7.1), the proof is complete.
(7.24) CoROLLARY. The set {x: fr(z) = d-oo} is of measure zero.
We remark that Sargent [11] proved analogous results of Theo-
rem (7.22) and Corollary (7.24) for Cesdro derivatives.

References

[1] P.S. Bullen, 4 erilerion for n-convexity, Pacific J. Math. 36 (1971), pp. 81-98.

[2] — and 8. N. Mukhopadhyay, Peano derivatives and general integrals, Pacific
J. Math. (to appear).

[8] E. Corominas, Oontribution & la théorie de la dérivation &ordre supérieur, Bull.
Soc. Math. France 81 (1953), pp. 177-222.

[4] A.Denjoy, Sur Vintégration des coefficients différentiels d’ordre supérieur, Fund.
Math. 25 (1935), pp. 273-326.

(5] — Legons sur le caleul des coefficients d’une série trigonomelrique, Paris 1941.
(6] J. Marcinkiewicz, Sur les séries de Fourier, Fund. Math. 27 (1937), pp. 38-69.
[71 — and A. Zygmund, On the differentiability of funciions and the summability

of irigonometric series, Fund. Math. 26 (1986), pp. 1-43.
[8] H.W. Oliver, The ewact Peano derivative, Trans. Amer. Math. Soe. 76 (1954),
PP. 444-456.
[9] T. Popoviciu, Les fonctions comvemes, Pariz 1944.
[10] 8. Saks, Theory of the Integral, Warsaw 1937.
[11] W. L. C. Sargent, On the Oesiro derivates of o funclion, Proc. London Math. Soc.
(2) 40 (1936), pp. 235-254.
— On generalised derivatives and Oeséro-Denjoy integral, Proc. London Math. Soc.
(2) 52 (1951), pp. 365-376.
[18] M. Weiss, On symmetric derivatives in I”, Studia Math. 24 (1964), pp. 89-100.
[14] A. Zygmund, Trigonometric series, Cambridge 1968.
DEPARTMENT OF MATHEMATICS

UNIVERSITY OF BRITISH COLUMBIA
Vancouver, Canada

[12]

Regu par la Rédaction le 20. 3. 1973

icm

A note on dimension theory of metric spaces

by

T. Przymuosinski (Warszawa)

Abstract. In the second section of this paper we show, using the famous Roy
example, that the small inductive dimension ind does not satisfy the finite sum theorem
in the class of metric spaces (*). In the third section we give a relatively simple proof
of the equivalence of dimensions dim and Ind in the clags of metric spaces; on the way
we prove some well-known characterizations of these dimensions. In § 1 we consider
a natural operation on topological spaces, which is used in § 2

§ 1. A simple operation on topological spaces.

PROPOSITION 1 (3). For every topological space X and a continuous
mapping ¢: X—I of X into the interval I=1[0,1] such that ¢~(0) = 0
# qj—l(ﬁl) there ewist a topological space X, a continuous ma]}ping f: x-3%
onto X, and a continuous mapping ¢: X—1I, satisfying the following con-
ditions:

(i) the diagram

x—2 .71
\>\XK

8 commutative;

(ii) j"(zp‘l('i)) = qi, for 4 = 0, 1, where q, and g, are distinct points of X;

(iii) the restriction of F to the subspace XNe™}({0,1}) C X is a homeo-
morphism onto X\{q,, ¢:};

(iv) the families {5»“‘([0, Yn))w, and {@{(1—1fn, 1]}z, form
netghbourhood bases in X for points g, and ¢ respectively.

M oreover, the triple X7, ¢ is uniquely deterﬂlined, i.e. if a topological
space X and continuous mappings J: XX, p: X1 satisfy the counter-

(*) My attention to this problem was called by V. V. Filippov. All undefined
notions and symbols are ag in [2].
(®) Cf. [6], § 22, IV, Theorem I.
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