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g is 7-concave on every portion of B, whose diameter does not exceed g,
Hence by Theorem (6.1) grop 804 (,_y)ap exists finitely and are equal
almost everywhere in H,. Hence f, ., and (f,_,),, exists and ave equal
almost everywhere in B,. Since s is arbitrary, f, ., and (f._,),, exists
and are equal almost everywhere in F. Hence by Theorem (7.18)

limap ﬁ"_(i;;_’f”_) exists and equal f, ,,(#) for almost all # in H. Since

U0
4 T, U :
fr < oo on E, by Lemma (7.16) limsup —T%’——)< co holds for almost
U0

Ar-—l(f’ m’ /M)
w1

all z in E. Also since f,_, exists finitely 1iml — exists finitely

w0 b
for all z ¢ B. Hence applying Lemma (7.1), the proof is complete.
(7.24) CoROLLARY. The set {x: fr(z) = d-oo} is of measure zero.
We remark that Sargent [11] proved analogous results of Theo-
rem (7.22) and Corollary (7.24) for Cesdro derivatives.
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A note on dimension theory of metric spaces

by

T. Przymuosinski (Warszawa)

Abstract. In the second section of this paper we show, using the famous Roy
example, that the small inductive dimension ind does not satisfy the finite sum theorem
in the class of metric spaces (*). In the third section we give a relatively simple proof
of the equivalence of dimensions dim and Ind in the clags of metric spaces; on the way
we prove some well-known characterizations of these dimensions. In § 1 we consider
a natural operation on topological spaces, which is used in § 2

§ 1. A simple operation on topological spaces.

PROPOSITION 1 (3). For every topological space X and a continuous
mapping ¢: X—I of X into the interval I=1[0,1] such that ¢~(0) = 0
# qj—l(ﬁl) there ewist a topological space X, a continuous ma]}ping f: x-3%
onto X, and a continuous mapping ¢: X—1I, satisfying the following con-
ditions:

(i) the diagram

x—2 .71
\>\XK

8 commutative;

(ii) j"(zp‘l('i)) = qi, for 4 = 0, 1, where q, and g, are distinct points of X;

(iii) the restriction of F to the subspace XNe™}({0,1}) C X is a homeo-
morphism onto X\{q,, ¢:};

(iv) the families {5»“‘([0, Yn))w, and {@{(1—1fn, 1]}z, form
netghbourhood bases in X for points g, and ¢ respectively.

M oreover, the triple X7, ¢ is uniquely deterﬂlined, i.e. if a topological
space X and continuous mappings J: XX, p: X1 satisfy the counter-

(*) My attention to this problem was called by V. V. Filippov. All undefined
notions and symbols are ag in [2].
(®) Cf. [6], § 22, IV, Theorem I.
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parts of (1)~(iv), then there ewisis a homeomorplhism h: XX such that

the diagram
?/
Ko

[
X — I
TN

?\ N
s commutative.

Proof. Let £ = X\¢™1({0, 1}) u {80, ¢}, Where g, % g, and g, ¢, ¢ X;
for every x ¢ X assume

\

e ———- b4

h

R z, it @eX\g™({0,1}),
J@)=1q, ]:f zegp(0),
G, i oe ‘p—l(l) ’

and for every y e X put p(y) = o7 () .
Consider X with the topology generated by the base

B={U: U is open in X\p~({0, )XY
w {700, 1/m)2., w o~ (1—1jn, 17}, .

It is easy toﬂ verify that the triple - y f , ¢ satisties conditions (1)-(iv).
To prove that X, f, ¢ are uniquely determined it suffices to put

My) =) for yeX.m

Remark 1. Let X be a completely regular space and ¢: X-—>I
a continuous mapping. Assume that p: aX—T is a continuous extension
of ¢ onto a compactitication «X of X. Tf we identify compact subsets
e 0)and g (1) of T= X ?71({0, 1}) C aX to points, then the obtained
quotient space is homeomorphic to X (cf. Examples 1 and 2). |

Remark 2. In general the mapping f: X—>% is not quotient and
it need not be a homeomorphism when it is one-to-one. Tt ig quotient
if and only if the families {e7Y([0, 1)), and oY (1—1/m, 1)1,
form neighbourhood Dbases for the sets ~H0) and ¢~Y(1) respectively.
It follows from [7], that if X ig normal and f is quotient, then the sets
Fro='(i) are countably compact for §=— 0,1. m

DErINITION. A dlags & of topologieal spaces will be called invariont
under the A -operation it for every X ¢e® and a continuous mapping
@: X—>I such that ¢=%(0) £ @ = ¢7'(1), the space X belongs to K.

Owing to the fact that 7 in general differs from the natural quotient

ap, many classes of topological Spaces are invariant under the A-op-
eration; below we list some of them.

@ N
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PROPOSITION 2. Bach of the following classes is inpar
A -operation;
(a) metrizable spaces;

iant under the

(e) Ti-spaces, for i — 0,1,2, 3,3%,4;

(b) paracompact spaces; (£) - spaces complete in the sense of C‘ech;

(c) perfectly mormal spaces;  (g) spaces of weight not greater than
M = Ny;

() totally normal spaces; (h) spaces of character not greater than
M 2 Ny;

Proof. As a sample, we shall prove invariance of the class
for all remaining classes are not harder.

Let B be a o-locally finite base in a metrizable space X. Define

(a); proofs

B = {F(BNGTHO0, 1n] © [1~1fn, 1])): B e B} L
~ {93—1([0, 1/”))5 &—]((1—1/77': 1])} .

One can easily check that B = B, is a o-locally finite base in ¥,

-~ n=1
As X is obviously regular it is & metrizable space. m

§ 2. The sum theorem for the smail inductive dimension,

DEriNIrion. A dimension function D defined on a class ! of topo-
logical spaces satisfies the finite (o-locally finite) sum theorem in &, it for
every X ¢ and a finite (o-locally finite) closed covering & of X such
that D(F) < n, for every F e§, we have D(X) < n.

It is well known that in the class of metric spaces the dimensions
dim and Ind coincide and satisfy the o-locally finite sum theorem
(ef. § 3). We shall show that the small induetive dimension ind does not
satisfy the finite sum theorem in the class of metric spaces.

TerorREM 1. Let K be a class of normal spaces invariant under the
A-operation and hereditary with respect to closed subspaces.

If the small inductive dimension ind satisfies the finite sum theorem
wm R, then dimensions ind and Ind coincide in K.

Proof. Assume that dimensions ind and Ind do not coincide in the
class &. Let n bo the smallest integer such that for some X in & we have
mdX = n< Ind.X. There exist two disjoint non-empty closed subsets
Py, P, C X such that for every neighbourhood U of P, satifying U~ Py
=@, we have IndFr U = n. As § is heveditary with respect to closed
subspaces, by the definition of #n we have also indFr U > n. Let p: XTI
be a continuous mapping of X into I such that ¢~%(s)D Py for i =0, 1.
Take a triple X, f, ¢ and points gy, ¢ satistying conditions (i)-(iv) of
Proposition 1 and for i= 0,1 put Fy = ¢~*(Cy), where C, and (; are
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cloged subsets of I defined by

© 1 1 © 1 1
o= {0}u U [ém,%] UanJ} [1*%; 1—- %_I‘—J v {1},

n=1

© 1 1 o 1 1 1 1 1
01={°}U,%i1[27+“2’2‘ﬁi]”£1[' 201’ 2n+2]”{'}'

One can easily check that F; are closed, I= oo I and iAnsz <n
for ¢ =0, 1. On the other hand our assumptions imply that X ¢ & and
that for every neighbourhood VA of g, not containing ¢,, we have
indFrV > n. It follows that indX > n41, so the dimension ind does
not satisfy -the finite sum theorem in K. ® ‘

The next theorem follows from Proposition 2, Theorem 1 and the
existence of a (complete) metric space 4 such that indd = 0 < Ind4
=1[9].

TemorEM 2. The small inductive dimension ind does not satisfy the
finite sum theorem in the class of (complete) metrizable spaces. @

Arguing as in the proof of Theorem 1 we obtain

THEOREM 3. Let ] be a class of normal spaces imvariant wnder the
A -operation.

The following propositions are equivalent:

(i) for every X e, we have: indX = 0« IndX = 0« dim X = 0;

(i) in the class & the small inductive dimension ind satisfies the finite
(o-locally finite) sum theorem for n=0. m

Remark 3. Theorems 1 and 3 can be regarded as two arguments
more pointing, that the small inductive dimension ind is not a “nice”
dimension function. Indeed, it in a “good” class of spaces ind behaves
“properly”, then it coincides with the large inductive dimension Ind.
Observe that Theorem 2 can be somewhat strengthened: there exists
a non-totally disconneeted (*) complete metric space, which is the union
of two closed subsets zerodimensional in the sense of ind. Obviously,
sueh a space has to be hereditarily disconnected (*). m

To finish this section we shall give tiwo examples in which the A -oper-
ation is used in an implicit way (cf. Remark 1). The existence of Spaces
with properties described in these examples is well known, but our con-
struction is very simple.

Ty A space X is totally disconnected if for any two distinet points xy, %y € X there
exists an open and closed set U C X such that z,¢ U and 2,4 U.
(*) A space X is hereditarily disconnected if every subspace of X containing more
than one point is disconnected. Every T, space zero-dimensional in the sense of ind is
totally disconnected and every totally disconnected space is hereditarily disconnected.

@
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Ex4MPLE 1. A connected separable metric space Z which is the union
of two closed totally disconnected subsets and becomes totally discon-
nected after removing of a point ¢e Z.

Let X De the subset of the Hilbert space consisting of all points
with rational coordinates. It is known ([4]; see also [2], Example 6.2.2)
that no open and closed non-empty subset of X ig contained in K
={o={m} e X: } 2} <1}. Assume that X is embedded into the Hilbert

=1
cube I¥ and consider the subspace ¥ = XU INE of I%, Let 7 be the
space obtained from Y by identification of I\X to a poin, f: Y>T/I\K
= Z be the quotient mapping and ¢= f(XZNEK). One can easily check
that Z has the desired properties (cf. Remark 1 and the proof of Theorem 1).

BxAMPLE 2. A normal space X, such that ind X = Ind X — dim X
=1, which is the union of two closed subspaces, zerodimensional in the
sensge of ind.

Let us congider the Dowker example of & normal space Y such that
ndY=0<IndY=dimY =1 ([1]; we use the notation from [21,
Example 6.2.3). Take the subspace Z = YU (X*x{0,1}) of ¥* and
identity subsets X*x {0} and X*x {1} of Z to points. The obtained
quotient space has the desired properties,

§ 3. A new proof of the Katétov—Morita theorem. In this section we
present a relatively simple proof of the famous theorem, due to Katé-
tov [5] and Morita [8], stating that in the class of metrizable spaces di-
mensiong dim and Ind coincide. On the way, we obtain the o-locally
finite sum theorem and a few well-known characterizations of these
dimensions; all arguments used below are slight modifications of classical
proofs. The final form of this section arosed from discussions with Pro-
fessor R. Engelking. The proof of the implication (i) = (iii) in Theorem A
is taken from his paper [3].

In the proof of Theorems A and B below, besides of elementary
properties of dimensions dim and Ind in the class of metricable spaces,
we use only tree following facts:

(1) dim X = 0 if and only if Ind X < 0 if and only if X admits a o-dis-

orete base consisting of open and closed sets.

(2) If § is a countable closed covering of X such that dimF < 0 for

every I ey then dimX < 0.
(3) dim X << n if and only if any open covering of X admits a locally
finite open refinement of order mot greater tham n.

TurorEM A. For a metric space (XX, o) and an integer n = 0 the following

conditions are equivalent:
(i) dimX < n.
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(ii) There emists a sequence {3, of locally finite open coverings of X
such that for every i =1, 2, ... diameters of elements of W, are less than 1fi,
ordl; < n and closures of elemems of W,y refine Us.

(iii) For any two closed subsets A, B of X with positive distance, there
exists an open set K such that AC K C X\B and dmFrK < n—L

(iv) X admits a o-discrete base B such that dimFrB < n—1 for
every BeB.

(v) X = Lj Y, where dimY,; <

i=0

(vi) Ind X < n.

THEOREM B. If § is a countable closed covering of a metric space such
that AimF < n for every F e, then dim X < n.

Proof of Theorems A and B. Assume that n =10 or » >0 and
both Theorems A and B are proved for k< n.

Ad Theorem A: (i)= (ii). We omit the proof of this implication
which is an easy consequence of (3) (cf. [2], Lemma 7.3.1).

(ii) = (iii). Assume that the distance of A and B is greater than 1/N
for an integer NV and that {U;}52, satisfies (ii).

Put Ky= 4, M,= B and K;= X\H;, M;= X\Gi, where

=1 {UEHN-'.-«:: UM, =0} H={J{Uely,;: Un M,_;#0},
for ¢ > 1. Notice that for ¢ > 1.

(4) If Ue Uy,;and UM, #0, then UK, =@.

The validity of (4) for ¢=1 follows from the definition of N. If
i>1, Uelly,,; and U ~ M, , # @, then for Ve Uy, , that containg T
we have V.~ M,_, #@, so V is not contained in &, _,. Hence VC H,_,
and UnE; = @

From local finitness of 1;, definitions of G; and H;, and (4) we infer
that GA M, ,=@=H~EK; ,, for i=1,2,..
K, ,C X \H;=IntK; and M, ,C X\G;=Int M;. We have also K;n

0 for 1=0,1,..,n

-] o .
AM;=0, as G;o Hi=2X. The sets K=|J K, and M=\|J M, are
i=0 i=0
open and disjoint, A C K and BC M.
Let L= X\(K w M) = ﬂ (Gy ~ Hy)., For i=1,2, the family

Wi ={UL: Uely,, ancl U ~AM, ,#@}is an open covering of L
and ordd; < m—1, because every zeL C Gy~ H; is”contained also in
a Uelly,; such, that T~ M, =0. I Uelly,,y, and U~ M #0,
then for Velly,; such that UCV we have V ~ M; @, so V is nob
contained in Gy. It follows that V.~ M, , s @, ie. that VAL e W; and
consequently closures of elements of 2, , refine ;. Obviously, diameters
of elements of W; are less than 1/N i< 1/i.

This implies that -«

icm
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If n=20, then FTECZ=0 and if » >0, then the inductive as-
sumption mmphe\ that dimFrK < n—1.

(iif) = (iv). Let ¥ be a ¢-discrete base in X. For every Ve B define
AT, i) ={weT: d(x, XI\V) > 1/i} and take an open set EK(V,i) such
tha.t A(T’ z)CK V,iC¥ and’ dJmFr.h(T', ) <<n—1. It is easy to
verify that 8 = {E(V,): Ve®B, i=1,2, ..} satisfies condition (iv).

(iv) = (v). Assnme (iv) and put Z = {_{FrB: Be B} and ¥, = I\Z.
As Y, admits a o-discrete base consisting of open and closed sets, we
infer from (1) that dim ¥, < 0. If #n = 0, then Z = O and if » > 0, then
Z is the union of a countable family ¥ of closed sets such that dim#
< n—1 for every F ¢§F. The inductive assumption gives dimZ < n—1

n— 1
and consequently Z =|_ ¥;, where dim¥; <0 for i=0,1
=0

This can be proved by a standard argument (cf. [2],

y ey B—1L

(v) = (vi).
Lemma 7.3.2).
=

(vi) = (i). As (vi) and the inductive assumption obviously imply (iii),
it suffices to prove that (v)=-(i).

n
Let W Dbe a finite open covering of X = ¥y, where dimY¥Y;< 0

i=0
for i=0,1,..,n For every i we can find a finite open covering B;
= {Viy™_ of ¥; consisting of disjoint sets and refining . As X is heredi-
tarily normal, for every ¢ = 0,1, ..., n, there exists a family &; = {6117,
of disjoint open subsets of X refining U and such that V.C G for

kg
k=1,2,..,m. It is clear that the finite open covering & = {_J ®; of X

=0
refines U and that ord® < n.
Ad Theorem B: Let F= {F,}n_; and put X, = F,\_ F;. By

j<m
(iv) we have dimX,, < # and every X, is an F,-set in X. From (v) it

k3
follows that Xn, = Y?, where dim Y} < 0. For every ¢=0,1,...,n

i=0

the intersection ¥; ~ Xp = TT is an F -setin ¥ ={_ Ii f soﬂby( y—
1

‘ﬂl
dim ¥; < 0. We infer from (v) that dimXY < n. @
Let us notice that from Theorem B we can easily derive.
TueoREM C. The dimension dim satisfies the o-locally finite sum
theorem i the class of metric spaces.
Proof. By Theorem B it suffices to prove that if § is a locally finite
closed covering of a metric space X such that dimF < n for every F e,

o0

then X ={ | Op, where Op are closed and dim Op < n.
m=1

6 — Fundamenta Mathematicae LXXXV
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Take an open covering U of X, whose elements meet only finite
o0
number of members of § and a o-discrete closed refinement G = J G,

m=1
of I, where Gn, are discrete for m =1, 2, ... The sets On = G satisty

our assumptions.

Added in proof. Eric van Douwen has independently obtained our Theorem 2.
His paper will appear in Indagations Mathematicae.
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Further results on the achromatic number
by
Demnis Geller and Hudson Kronk (Binghamton, N. Y.)

Abstract. We investigate: (1) the effect on the achromatic number of removing
points or lines, (2) exact values for the achromatic numbers of paths and cyeles, and (3)
general bounds for the achromatic number and similar but tighter bounds for the
achromatic numbers of bipartite graphs.

A coloring of a graph (1) G is complete if for every two colors ¢ and j
there are adjacent points » and o, colored i and j respectively. The
achromatic number y = (&) is. the largest number n such that G has
a complete coloring with » colors. The achromatic number was
introduced in [4] as the largest order of the complete homomorphisms
of @. Later results appeared in [1] and [3]. In this paper we investigate
the effect on the achromatie number of removing points and lines from @,
find the values w(C») and u(Py), and develop bounds for the achromatic
number of any graph and for the achromatic number of any bigraph.

TarOREM 1. For any graph G and point e G,

(@) = p(GF—u) = p(¢)—

Proof. If p(G—u)=n, then G has a complete n-coloring unless
each of the n colors is assigned to some point adjacent to », in which case
@ has a complete (n--1)-coloring. Thus p(6) = »(G—u).

On the other hand, if (@) = #», consider the coloring of G— u induced
by a complete n-coloring of @, in which u is assigned color 4. If this-
coloring is not complete, there is some color j not adjacent to any point
colored 4. If all points of G—u which are colored ¢ are recolored j the
result is a complete (n—1)-coloring, so that y(G—u) = p(&)—1.

COROLLARY. If p(G—u) = w(@) there is a complete p(&)-coloring of G
which induces a complete y(G)-coloring of G—u

Proof. Suppose that y(G—u)= 9 (G) = n. If no complete x-color-
ing of @ induces a complete n-coloring of ¢—u, then in every complete
n-coloring of G—u every color appears on some point adjacent to w,
in which case (@) = 1+y(G—u) as shown above.

(1) Definitions and notations are those of [2].
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