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The undecidability of the existence of a non-separable
normal Moore space satisfying the countable
- chain condition

by
T. Przymusinski (Warszawa) and F. D. Tall (Toronto)

Abstract. It is shown that Martin’s Axiom plus the negation of the continuum
hypothesis implies the existence of a non-separable normal Moore space satisfying the
countable chain condition. The consistency and independence of the existence of such
gpaces follows.

In [22], M. E. Rudin constructed a non-separable Moore space (*)
satisfying the contable chain eondition (2). The importance of her example
lay in showing how far removed Moore spaces can be from metrizable
gpaces. Any such example cannot be locally metrizable, cannot have
a dense metrizable subspace, and cannot be completed (3), indeed cannot
be densely embedded in a Moore space satisfying the Baire category theorem
[1, Theorem 3.31). In [17], Pixley and Roy constructed a much simpler
example, which in addition is metacompact(*). In this note we construct
a subspace of their space with the same properties, which, moreover, is
normal, if Martin’s Axiom [16], [31] plus the negation of the continuum
hypothesis is assumed. These assumptions are consistent with the usual
axioms of set theory, e.g. Zermelo-Fraenkel, including the Axiom of
Choice [25]. Some swch assumption is necessary, since in [26], the second
author established the consistency of the assumption that every countable
chain condition normal Moore space is metrizable, and hence separable.

(*) A Moore space is a regular Hausdorff space X having a sequence of open
©oveLs {fn}n<, such that for each » ¢ X and U open containing z, there is an n such that
J{gelu: mzeg}CT.

(®) Le. every collection of disjoint open sets is countable.

(*) There are several different notions of completeness and completability for
Moore spaces. The reader is referred to [1] for details.

() The Proceedings of the 1971 Prague Topological Symposium have just reached
the second author, who is probably responsible for A. V. Arhangel’skil’s incorrect dis-
cussion [5] of the Pixley—~Roy example. No special set-theoretic assumptions are needed
to construct their (completely regular) space.
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We obtain the following results:

TarorEM. Martin's Axiom plus oo > & imply the cxistence of a non-
separable metacompact normal Moore space satisfying the countable chain
condition.

CoROLLARY. Hach of the following propositions is independent of the
axioms of set theory:

(i) There is & normal, countable chain condition, non-metrizable meto-
compact Moore space.

(ii) There is a normal countable chain condition non-separable Moore
space.

(iii) There is @ normal, countable chain condition Moore space with

no dense metrizable subspace.

(iv) There is a normal, countable chain condition p-space (in the sense
of [4]) with & point-countable base which is not metrizable.

(v) There is a normal, countable chain condition, non-Lindelif space
with a point-countable base.

One of the more important consequences of Martin’s Axiom plus
2% > & is that every set S of reals of power % is a Q-set [21], .e., in the
subspace topology on 8, every subset of 8 is an F,. This follows immediately
from results of Rothberger [21] (the non-existence of Mausdorff’s Q -limits
[11]implies every set of reals of power &; is a @ - set) and Booth [7] (Martin’s
Axiom plus 2% >y, implies there are no Q-limits). The hypothesis of
the existence of an uncountable ¢ -set was used by Bing [6] to construct
a separable normal non-metrizable Moore space, and by the first author
to construct a Lindeléf space X such that X2 is normal but not
paracompact [19]. The points of the Pixley-Roy space are all finite
sets of reals; we shall use finite subsets of an uncountable @-sef.
The proof that our space is a countable chain condition, non-separable
metacompact Moore space differs inessentially from Pixley—-Roy, but
since their paper is not universally available, we sketch the details. The
proof that our space is normal iy somewhat similar to the proof that the
space of [19] is mormal.

Now to construet the space. Let 8 be any subset of the reals of power
§ with the subspace topology. We may assume that every non-empty
open subset of § is uncountable. Let X be the set of all finite subsets
of § having at least two members (the latter restriction is for technical
convenience). We talke as a basis for a topology on X all gets of the form

U@, V)={yeX: aCyCV}, weX,

where V7 is open in 8. The topology is well-defined since if 2 e Ulw,, Vi) 0
U@y V), 2e Uz, VinV,)C U@, Vi) " Uy, V,). For £>0 and
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zeX,let B(z,¢) be the union of open segments in § of radius &, centered
at the members of 2. Let U(z,e) abbreviate U(w, B(x, ). Let Ay,
= {U(w, 1/n): e X}. Then | J U, is a basis for X. Moreover, each Us, is

n<w :
point-finite, since y ¢ U (x, 1/n) implies # C y, and y has only finitely many
subsets. Thus X has a o-point-finite base. .

X is Hausdorff, for given @ +# y ¢ X, say e.g. t e w—y, take ¥ open
in 8, yCV,t¢V. Then Uy, V) Uz, 8) = 0.

Each basic open seb is closed, but we won’t use this fact, proved
by Pixley-Roy. X is a Moore space, but rather than verifying this directly
as in Pixley-Roy, we shall show, assuming Martin’s Axiom plus 2% >, ,
that X is perfectly normal. By [8], perfectly normal spaces with o-point-
finite bases are normal metacompact Moore spaces (and conversely).

No non-empty open subset of X is separable, for if not, some U(p, V)
would be separable, say D countable dense in U(p, V). There isan ¢V
which is in no member of D since V' is uncountable. Then U(p u {}, V)
CU((p,V), but DA U(p v {a},V)=0.

We next verify as in Pixley—-Roy that X satisfies the countable
chain condition. Suppose not. Without loss of generality, assume there
is an uncountable collection of mutually disjoint members of {J Usy,.

n<o
By two applications of the pigeonhole principle, it follows that there are
positive integers m,n and an uncountable subset ¥ of X, with ¥ (the
cardinality of y) = m, for y e ¥, such that the U(y, 1jn) are mutually
disjoint. Given any point @ e X, say &= {my, ..., #x}, k> 2, z:¢ 8, we
may assume that @, <...<< o;. Thus « corresponds to a unique point-
(B ooy o) € 8%, and X can be considered as a subset (not subspace) of

G S%. In 8™ then, some y e ¥ is a limit point of ¥. We can therefore

k=2
find a ze Y such that for each 4, 1 <<i<m, [yi—a|<1/n Then youz

e Uy, 1/n) ~ U(z,1/n), contradiction.
It remains to show X is perfectly normal. We need two lemmas,
IemmA L. A T, space X is perfectly normal if and only if for every
open subset U of X, there emist open sets Vu, n < @, such that U= 1{]J Va,

no
and V,C U.

Proof. Clear.

LM 2. If every set of reals of power & 48 @ @-set, then every subset
of every separable metric space of power % is an F,.

Proof. The hypothesis elearly implies 9% > & . Any separable metric
space § of power < 2% is 0-dimensional [15, p. 286] and hence is homeo-
morphic to a subset of the Cantor set [15, p. 283]. A fortiori, § is homeo-
morphic to a subset 8 of the reals. S’ is a @-setf, so every subset of §
is an F,.
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Let U be an open subset of X. For every @ « U, there exists a w(z)
such that Ulw, Lju(#)}C U. Define g(x) = min|e;— ;). Lot

if

Ay ={rel: B= 0, p{a) < m, o(®) = 1jm)

oo o0
Then U= | 4, We shall consider 4, ,, as a subset of 8", via the
Ton=2m=1
correspondence indicated above. Since S" is a soparable metric space

of cardinality sy, by Lemma 2, assuming Marbin’s Axiom plus 2% >y

o3
there exist closed subsets F, , . of 8" such that A, :::IU F - Lach
g1,

o0 o0 o0
Vo = {U(x, 12m): @wel,, .} Clearly U = ’Ul (U Vo By
fo==1 Ry o= ]
Lemma 1, it suffices to show that ¥, ,,, C U. Let z = {z, : o} € Ve
Then for every positive integer p, there is a 1 ¢ X and an 2™ ¢ F, m’k,
such thet 1P e Uz, 1/p) ~ U (@, 1/2m). Thevefore ' C B(z, 1/p) A B(’m&”,
1/2m) and 1P D 2w 2P, 50
(1) 2w 8@ C B(z,1/p) ~ B(a®, 1/2m).
For every p there is an 4,(p) such that | —s, .| < 1/p. Since z is
a finite set, there is an 4, and an infinite set P; of positive integers, such
that for each p e Py, [#P—2,; | < 1/p. For every p ¢ Py, there is an 2o( D)
such that | —z,,,| < 1/p. As before, there is an infinite P,C Py and
an 4,, such that for each p ¢ P,, ]Jfgm—sz < 1/p. Continuing this process,
we find an infinite set P, of positive integers, and positive integers
G35 wery iy SUCH that for each p e P, and for every j, 1 < < n,
(i) ]x?’)—zﬁl <1/p.
Since o(a®™) > 1/m, from (ii) and the triangle inequality we get
minjz; —2;,| = 1/m and then 2, < ..< 2. Let = {z,..,2,}1Ce

4, i
j#it 2

Then 2" eF,,, . For if not, there would exist an >0 such that
n
_HlB({zfj},s)nF”,m,kz 0. Take pe P, such that 1/p< e By (ii), for
j=

each j we have mg?”) sB({zf,}, e), which. is impossible.

Since 2’ €F, sy U2, 1/m)CU. Take any yes and pel, such
that 1/p < 1/2m. By (1), ¥ « B (2™, 1/2m), so there is a J sueh that |y— 2|
<1f2m. By (i), [«{— 2l <12m, s0 |y— 2yl < 1fm. Bince y was an
arbitrary member of z, it follows that 2 C B (=, 1/m) and hencez ¢ U(e', 1/m)
C U, completing the proot.

‘We now move onto the corollary. Conditions (i) and (iii) ave clearly
equivalent. We do not know of any other equivalences.

(i) implies (iv) since completely regular Moore spaces are p -spaces [3]
a?ld metacompact Moore spaces have point-countable bases. (iv) implies (v)
since Lindel6éf p-spaces with point-countable bases are metrizable [18].
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The example we constructed earlier proves half of the corollary.
The other half follows from the results of [26]. There the second author
proves the consistency of the assumption that every normal first count-

. able space is collectionwise normal with respect to discrete collections

of 8, points. A sketch. of the proof appears in [27]. It follows that a count-
able chain condifion first countable normal space has no uncountable
closed discrete subspace. By Jones [14], Moore spaces with the latter
property are metrizable. Aquaro [2] showed that a space with no
uncountable closed discrete subspace, in which every open cover has
2, point-countable open refinement, is Lindelsf, which takes care of the
final two clauses in the corollary.

Since no open set of our example is separable, it follows, as noted
by Pixley and Roy, that any metrizable subspace is nowhere dense,
and thus X is not locally metrizable. It also follows that X cannot be
completed and indeed, as.mentioned earlier is- “unbairable”. See [1].
Lutzer bears full responsibility for this term. Lest one be tempted to
think that if there is a (metacompact) normal non-metrizable Moore
space, it must be “bad”, we recall that in [28] or [29], the second author
constructs, assuming Martin’s Axiom plus 2% >N, a metacompact,
complete, locally metrizable, normal non-metrizable Moore space with
a dense metrizable subspace. It is still open whether it is consistent that
(metacompact) normal Moore spaces have any “nice” properties. If it
could be shown consistent that normal Moore spaces are collectionwise
normal with respect to discrete collections of points, the consistency of
their having dense metrizable subspaces would follow from [9]. Some
progress toward this goal is accomplished in [26], but singular cardinals
present as yet unresolved obstacles.

X is a normal Moore space which is metacompact and not screen-
able [6], and hence is not “strongly star-screenable” [20], answering (ab
least as a consistency result) a question of Reed [20].

It is ironic that Martin’s Axiom plus 2% >, implies the existence
of a countable chain condition non-separable Moore space, since these
hypotheses also imply Souslin’s Conjecture [23] and indeed the separability
of a wide variety of countable chain condition spaces [30]. In the same
vein, we note that Souslin’s Conjecture fails in the model of [26] (x, sub-
sets of &, adjoined to L by countable Cohen conditions) in which every
countable chain condition normal Moore space is metrizable and hence
separable (since Souslin trees exist in L [13] and are not destroyed by
countably closed extensions). )

It is also surprising that Martin’s Axiom plus 2% > x; implies any
Hausdortt compactification ¢X of our space X is separable. This follows
from [10], since ¢X satisfies the countable chain condition and has a dense
first countable subspace of power less than continuum, namely X.
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Observe that for our construction it would suffice to have one un-
countable Q-set if the property of having all subsets T, were preserved
by finite products. We do not know if it is. If so, we are led to conjecture
that the existence of a separable normal non-metrizable Moore space is
equivalent to the existence of a non-separable normal Moore space satis-
fying the countable chain condition, in view of the equivalence of the
former hypothesis with the existence of an uncountable @-set [6], [12].
B. Sapirovskii announced in [24]:

TrrorEM. 2% < 9% implies every first countable normal countable
chain condition space is collectionwise normal.

Thus 2% < 2% decides negatively the propositions in the corollary.

Added in proof. Recently W. W. Fleissner proved the consistency of the assumption
that every normal first countable space is collectionwise normal with respeet to diserete
collections of points. It follows from (ii) of our corollary and from [9], that the existence
of dense metrizable subsets in normal Moore spaces is independent of the axioms of
set theory.
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