I. Korec

48



 Š. Znám, On Mycielski's problem on system of arithmetic sequences, Colloquium Math. 15 (1966), pp. 201-204.

[4] — and I. Korec, On disjoint covering of groups by cosets by their subgroups (to appear).

Recu par la Rédaction le 6. 2. 1973

## A new definition of the circle by the use of bisectors

by

A. D. Berard, Jr. (Wilkes-Barre, Pa.) and W. Nitka (Oran)

Abstract. The subset  $B(x, y) = \{q \in X : \varrho(x, q) = \varrho(y, q)\}$  in a metric space  $(X, \varrho)$  is called the *bisector* of a pair x, y. It is known that any connected metric space in which each bisector is a unique point, is topologically an interval of the real line R.

If each bisector consists of exactly two points, then X has DBP property.

The question whether every connected metric space with DBP is homeomorphic to the one-sphere  $S^1$  is still open.

A metric space is segment-convex if for each pair p, r of its points it contains an arc joining p to r which is isometric to a line segment.

We show that any segment-convex metric space with DBP is isometric to a metric one-sphere with its natural geodesic metric.

1. Introduction. For any pair of distinct points x and y in a non-trivial metric space  $(X, \varrho)$  the subset  $B(x, y) = \{q \in X | \varrho(x, q) = \varrho(y, q)\}$  will be called the *bisector* ([3], see also [1] where it is called the midset). If each bisector is a unique point, then X has [1] the *unique bisector property* (UBP). If each bisector consists of exactly two points, then X has the double bisector property (DBP).

It is known [1] that any connected metric space with UBP is homeomorphic to a subset of the real line R, and is therefore an interval.

The question whether every connected metric space with DBP is homeomorphic to the one-sphere  $S^1$  is still open.

The aim of the present paper is the following result: If  $(X, \varrho)$  is a segment-convex metric space with DBP, then X is isometric to a metric one-sphere.

The proof will be based on the following three auxiliary propositions: Let  $a_1$  and  $a_2$  be two distinct points of X, and let  $B(a_1, a_2)$ =  $\{x_1, x_2\}$ , then

1°  $L_1 = \overline{x_1} \overline{a_1} \cup \overline{a_1} \overline{x_2}$  and  $L_2 = \overline{x_1} \overline{a_2} \cup \overline{a_2} \overline{x_2}$  are two simple arcs joining  $x_1$  to  $x_2$ , and  $L_1 \cap L_2 = B(a_1, a_2)$ .

2° More precisely,  $L_1$  and  $L_2$  are two metric segments joining  $x_1$  to  $x_2$ . 3°  $L_1 \cup L_2 = X$ .

<sup>&</sup>lt;sup>4</sup> - Fundamenta Mathematicae LXXXV

**2.** Definitions and notation. Let  $(X, \varrho)$  be a metric space and  $p, q, r \in X$ . A point q is between p and r (pqr) if  $\varrho(p,q) + \varrho(q,r) = \varrho(p,r)$ . A point m is a center of a pair x, y if  $\varrho(x, m) = \varrho(m, y) = \frac{1}{2}\varrho(x, y)$ . For any center of x, y we have xmy and  $m \in B(x, y)$ ; the converse is not necessarily true.

A space X is *convex* [5] provided it contains for each pair of its distinct points p and r at least one point q, such that  $p \neq q \neq r$  and pqr.

A metric segment between p and r in a metric space X is an arc T(p,r) joining p to r which is isometric to a line segment of length  $\varrho(p,r)$ ; if unique or fixed it will be denoted by  $\overline{pr}$ .

A metric space is segment-convex provided it contains for each pair of its points at least one metric segment between them.

The transitivity of the metric betweeness implies [3]

2.1. If pqr and  $p \neq r$  then for any  $\overline{pq}$  and for any  $\overline{qr}$  the union  $\overline{pq} \cup \overline{qr}$  is a metric segment joining p to r.

A metric space is without ramifications (WR-space) if pqr, pqs, and  $p \neq q$  imply prs or psr.

It is known ([3] see also [4]) that

2.2. In a metric WR-space if the intersection  $\overline{pr} \cap \overline{ps}$  possesses at least two points and if  $r \neq s$ , then either  $\overline{pr} \subset \overline{ps}$  or  $\overline{ps} \subset \overline{pr}$ .

By a metric n-sphere (with the ordinary metric d) we will mean the set  $S^n=\{p\,|\,p=(x_1,\,x_2,\,\ldots,\,x_{n+1}),\,x_i\in R,\,x_1^2+x_2^2+\ldots+x_{n+1}^2=r_1^2\}$ , where for any  $p=(x_1,\,x_2,\,\ldots,\,x_{n+1})$  and  $q=(y_1,\,y_2,\,\ldots,\,y_{n+1})$  we set  $d(p,\,q)=r\arccos(|x_1y_1+\ldots+x_{n+1}y_{n+1}|/r^2)$  and where the positive number r is the radius of the n-sphere. For n=1 the complex number notation will be used, i.e.  $S^1=\{z\,|\,z=re^{it},\,t\in R\}$ .

- 3. Preliminary lemmas. Let  $(X, \varrho)$  be a segment-convex metric space with DBP. Let  $a_1$  and  $a_2$  be two distinct points of X and let  $B = B(a_1, a_2) = \{x_1, x_2\}$ . Let  $A_1 = \{x | \varrho(x, a_1) < \varrho(x, a_2)\}, A_2 = \{x | \varrho(x, a_1) > \varrho(x, a_2)\}, B_1 = A_1 \cup B$ , and  $B_2 = A_2 \cup B$ . Then we have
  - 3.1. X-B is disconnected.

Indeed [1],  $X - B = A_1 \cup A_2$  and  $A_1$  and  $A_2$  are mutually separated.

3.2. If  $z \in A_i$ , i = 1, 2, and  $\overline{a_i z}$  is any metric segment from  $a_i$  to z, then  $\overline{a_i z} \subset A_i$ .

Proof. We may suppose that i=1; so let  $z\in A_1$  and let  $q\in \overline{a_1z}$ , then  $\varrho(z,q)+\varrho(q,a_1)=\varrho(z,a_1)<\varrho(z,a_2)$ . If  $q\notin A_1$ , then  $\varrho(q,a_1)\geqslant \varrho(q,a_2)$ . Combining these we get  $\varrho(z,a_2)\leqslant \varrho(z,q)+\varrho(q,a_2)\leqslant \varrho(z,g)+\varrho(q,a_1)=\varrho(z,a_1)$ , a contradiction since  $z\in A_1$ .

3.3. If  $z \in B_i$ , i = 1, 2 and  $\overline{a_i z}$  is any metric segment from  $a_i$  to z, then  $\overline{a_i z} \subset B_i$ .

From 3.2 and 3.3 we see



- 3.4. The sets  $A_1$ ,  $A_2$ ,  $B_1$ , and  $B_2$  are connected.
- 3.5. If  $p \in A_1$  and  $q \in A_2$  then for any fixed segment  $\overline{pq}$ ,  $\overline{pq} \cap B \neq \emptyset$ . More precisely
- 3.6. If  $p \in A_1$ ,  $m \in A_2$ ,  $\varrho(m, x_1) = \varrho(m, x_2)$  and if  $\varrho(p, x_1) < \varrho(p, x_2)$ , then for any segment  $\overline{pm}$ ,  $\overline{pm} \cap B = \{x_1\}$ .

The proof follows from 3.5 and from the inequality

$$\rho(p, m) \leq \rho(p, x_1) + \rho(x_1, m) < \rho(p, x_2) + \rho(x_1, m) = \rho(p, x_2) + \rho(x_2, m)$$
.

Similar results follow if  $\varrho(p, x_2) < \varrho(p, x_1)$  or if,  $p \in A_2$  and  $m \in A_1$ . The following lemma will be used several times.

. 3.7. A segment-convex metric space with DBP is a WR-space.

Proof. Suppose this were not the case. Then there exist p, q, r, and s so that pqr, pqs,  $p \neq q$ , and neither prs nor psr. Let  $\overline{pq}$ ,  $\overline{qr}$ , and  $\overline{qs}$  be three fixed segments. By 2.1  $\overline{pq} \cup \overline{qr}$  is a fixed segment joining p to r and  $\overline{pq} \cup \overline{qs}$  is a fixed segment joining p to s. We may suppose that  $\varrho(q, r) \geqslant \varrho(q, s) > 0$  and we can find on  $\overline{qr}$  a point  $s_1$  so that  $\varrho(q, s_1) = \varrho(q, s_1)$ . We have  $s \neq s_1$  otherwise qsr and pqr implies psr. Now for each  $x \in \overline{pq}$  we have  $\varrho(s, x) = \varrho(s_1, x)$ , contradicting DBP.

- **4.** Auxiliary propositions. Let  $(X, \varrho)$  be a segment-convex metric space with DBP. Let  $a_1$  and  $a_2$  be two distinct points of X, and let  $B(a_1, a_2) = \{x_1, x_2\} = B$ . According to the lemmas of the preceding paragraph we have:  $X B = A_1 \cup A_2$ ,  $A_1$  and  $A_2$  are mutually separated connected sets;  $X = B_1 \cup B_2$ ,  $A_1 \subset B_1$  and  $A_2 \subset B_2$ ,  $B_1$  and  $B_2$  are connected closed sets with  $B_1 \cap B_2 = B$ ; and,  $a_1 \in A_1$  and  $a_2 \in A_2$ . Under the above assumptions:
- 4.1. For any four fixed segments  $\overline{a_i w_j}$ , i, j = 1, 2,  $L_1 = \overline{a_1 w_1} \cup \overline{a_1 w_2}$  and  $L_2 = \overline{a_2 w_1} \cup \overline{a_2 w_2}$  are two simple arcs joining  $x_1$  to  $x_2$  and  $L_1 \cap L_2 = B$ .

Proof. We focus our attention on  $L_1$  and first show that  $\overline{a_1} \overline{x_1} \cap \overline{a_1} \overline{x_2} = \{a_1\}$ . If not then, by 3.7 and 2.2, either  $\overline{a_1} x_1 \subset \overline{a_1} \overline{x_2} \subset \overline{a_1} x_1$ . In the first case we would have  $x_2 x_1 a_1$ . Then, because  $B = \{x_1, x_2\}$ , we would get  $x_2 x_1 a_2$ . So by 3.7, either  $x_2 a_1 a_2$  or  $x_2 a_2 a_1$ , a contradiction, as  $a_1 \neq a_2$  and  $x_2 \in B$ . Assuming  $\overline{a_1} x_2 \subset \overline{a_1} x_1$  we get a similar contradiction. So  $L_1$  is a simple arc joining  $x_1$  to  $x_2$ . In the same way we can show that  $L_2$  is a simple arc joining  $x_1$  to  $x_2$ . Finally, by 3.3, we have  $L_1 \cap L_2 \subset B_1 \cap B_2 = B$ , hence  $L_1 \cap L_2 = B$ .

4.2. Both arcs  $L_1$  and  $L_2$  are metric segments.

Proof. Consider a continuous real valued function F defined in X by  $F(z) = \varrho(z, x_1) - \varrho(z, x_2)$ . Then  $F(x_1) < 0$  and  $F(x_2) > 0$ , so there exist two points  $m_1$  and  $m_2$  such that

(1) 
$$m_i \in L_i \text{ and } F(m_i) = 0, \quad i = 1, 2.$$

Evidently,  $m_1 \neq m_2$  and  $m_1$ ,  $m_2 \in B(x_1, x_2)$ . Therefore, by DBP, the points  $m_1$  and  $m_2$  are uniquely determined by (1). We know that  $L_1 = \overline{a_1x_1} \cup \overline{a_1x_2}$  is a simple arc,  $L_1 \subset B_1$ ,  $m_1 \in L_1$ , and  $\varrho(m_1, x_1) = \varrho(m_1, x_2)$ . Let  $p_1$  and  $p_2$  be two points such that  $p_1 \in \overline{a_1x_1}$ ,  $p_2 \in \overline{a_1x_2}$ ,  $F(p_1) < 0$ , and  $F(p_2) > 0$ . Let  $\overline{p_1p_2}$  be a fixed segment from  $p_1$  to  $p_2$  and let s be a point on  $\overline{p_1p_2}$  such that F(s) = 0. We shall show that  $s = m_1$ . Suppose not, that is, suppose  $s = m_2$ . Let  $\overline{p_1p_2} = \overline{p_1m_2} \cup \overline{m_2p_2}$ . Applying 3.6 to  $\overline{p_1m_2}$  and to  $\overline{p_2m_2}$ , we get  $x_1 \in \overline{p_1m_2}$  and  $x_2 \in \overline{p_2m_2}$ , therefore

 $\begin{array}{lll} \varrho(p_1,m_2) = \varrho(p_1,x_1) + \varrho(x_1,m_2) & \text{and} & \varrho(p_2,m_2) = \varrho(p_2,x_2) + \varrho(x_2,m_2). \\ \text{So there exist four segments such that } \overline{p_1m_2} = \overline{p_1x_1} \cup \overline{x_1m_2} & \text{and } \overline{p_2m_2} \\ = \overline{p_2x_2} \cup \overline{x_2m_2}. & \text{Since} \end{array}$ 

$$\begin{array}{l} \varrho(\,p_{1},\,x_{1}) + \varrho(\,x_{1},\,x_{2}) + \varrho(\,x_{2},\,p_{2}) \geqslant \varrho(\,p_{1},\,p_{2}) = \varrho(\,p_{1},\,m_{2}) + \varrho(\,m_{2},\,p_{2}) \\ = \varrho(\,p_{1},\,x_{1}) + \varrho(\,x_{1},\,m_{2}) + \varrho(\,m_{2},\,x_{2}) + \varrho(\,x_{2},\,p_{2}) \\ \geqslant \varrho(\,p_{1},\,x_{1}) + \varrho(\,x_{1},\,x_{2}) + \varrho(\,x_{2},\,p_{2}) \;, \end{array}$$

we have  $x_1m_2x_2$ . Thus, by 2.1, the union  $\overline{x_1m_2} \cup \overline{m_2x_2}$  is a segment from  $x_1$  to  $x_2$ .

We now claim that  $x_1 a_2 x_2$ . If  $a_2 = m_2$  we are done, as  $x_1 m_2 x_2$ . Therefor assume  $a_2 \neq m_2$ . We will show that  $a_2 \in \overline{x_1 m_2} \cup \overline{m_2 x_2}$ . Since  $a_2 \neq m_2$ either  $\varrho(a_2, x_2) > \varrho(a_2, x_1)$  or  $\varrho(a_2, x_2) < \varrho(a_2, x_2)$ . Assume the former. We claim that  $\varrho(a_2, x_2) < \varrho(x_1, x_2)$ , otherwise there exists a point  $x_1' \in \overline{a_2 x_2}$ such that  $\varrho(x_1, x_2) = \varrho(x_1', x_2)$ . But  $m_2 \in \overline{x_1 m_2} \cup \overline{m_2 x_2}$  and  $m_2 \in \overline{a_2 x_2}$  which implies  $x_2 m_2 x_1$ ,  $x_2 m_2 x_1'$ , and  $x_2 \neq m_2$ . Now since the space is WR we have  $x_2x_1x_1'$  or  $x_2x_1'x_1$  either of which implies that  $\varrho(x_1, x_1') = 0$  or  $x_1 = x_1'$ . Therefore  $a_2 \neq x_1'$ , otherwise  $x_1 = a_2$  contrary to assumption. Now  $x_1 \in \overline{a_2 x_2}$  implies  $x_2 x_1 a_2$  but  $\varrho(x_1, a_2) = \varrho(x_1, a_1)$  so  $x_2 x_1 a_1$  and  $x_2 \neq x_1$ . Now, since the space is WR, we get that  $x_2 a_1 a_2$  or  $x_2 a_2 a_1$  either of which implies that  $\varrho(a_2, a_1) = 0$  or  $a_1 = a_2$ , contrary to assumption. We have established that  $\rho(\alpha_2, x_2) < \rho(x_1, x_2)$  which gives us the existence of an  $a \in \overline{x_1 m_2} \cup \overline{m_2 x_2}$  such that  $\rho(a, x_2) = \rho(a_2, x_2)$ . Now  $x_2 m_2 a_2, x_2 m_2 a_3$ , and  $x_2 \neq m_2$  by the WR property implies that  $x_2 a a_2$  or  $x_2 a_2 a$  which implies that  $\rho(a_1, a_2) = 0$  or  $a = a_2$ . But now  $a_2 \in \overline{x_1 m_2} \cup \overline{m_2 x_2}$  which is a metric segment between  $x_1$  and  $x_2$ . Therefore  $x_1 a_2 x_2$ .

Thus, by 2.1,  $L_2$  is a segment between  $x_1$  and  $x_2$ . We have  $\varrho(x_1, x_2) = \varrho(x_1, a_2) + \varrho(a_2, x_2)$ . Now we get a contradiction.

$$\begin{array}{l} \varrho\left(\,p_{1},\,p_{2}\right) = \varrho\left(\,p_{1},\,m_{2}\right) + \varrho\left(\,m_{2},\,p_{2}\right) \\ = \varrho\left(\,p_{1},\,x_{1}\right) + \varrho\left(\,x_{1},\,m_{2}\right) + \varrho\left(\,m_{2},\,x_{2}\right) + \varrho\left(\,x_{2},\,p_{2}\right) \\ = \varrho\left(\,p_{1},\,x_{1}\right) + \varrho\left(\,x_{1},\,x_{2}\right) + \varrho\left(\,x_{2},\,p_{2}\right) \\ = \varrho\left(\,p_{1},\,x_{1}\right) + \varrho\left(\,x_{1},\,a_{2}\right) + \varrho\left(\,a_{2},\,x_{2}\right) + \varrho\left(\,x_{2},\,p_{2}\right) \\ = \varrho\left(\,p_{1},\,x_{1}\right) + \varrho\left(\,x_{1},\,a_{1}\right) + \varrho\left(\,a_{1},\,x_{2}\right) + \varrho\left(\,x_{2},\,p_{2}\right) \\ > \varrho\left(\,p_{1},\,a_{1}\right) + \varrho\left(\,a_{1},\,p_{2}\right) \geqslant \varrho\left(\,p_{1},\,p_{2}\right) \,. \end{array}$$



The strict inequality follows since  $\varrho(p_1, x_1) + \varrho(x_1, a_1) > \varrho(a_1, p_1)$ . If this were not the case then

$$\varrho(p_1, x_1) + \varrho(x_1; a_1) = \varrho(a_1, p_1)$$
 and  $\varrho(a_1, p_1) + \varrho(p_1, x_1) = \varrho(a_1, x_1)$ 

which implies  $\varrho(p_1, x_1) = 0$  contrary to assumption. We have proven that for any  $p_1$  and  $p_2$  on  $L_1$  sufficiently near respectively to  $x_1$  and to  $x_2$ , and for any fixed segment  $\overline{p_1p_2}$ ,  $m_1 \in \overline{p_1p_2}$ . Now, take  $p_1$  and  $p_2$  converging respectively to  $x_1$  and to  $x_2$ , we have

$$\begin{split} \varrho(x_1, x_2) &\leq \varrho(x_1, m_1) + \varrho(m_1, x_2) = 2\varrho(m_1, x_1) \\ &\leq \varrho(m_1, p_1) + \varrho(p_1, x_1) + \varrho(m_1, p_2) + \varrho(p_2, x_2) \\ &= \varrho(p_1, x_1) + \varrho(p_1, p_2) + \varrho(p_2, x_2) \\ &\leq \varrho(x_1, x_2) + 2\varrho(p_1, x_1) + \varrho(p_2, x_2) \end{split}.$$

Hence  $m_1$  is a center of the pair  $x_1$  and  $x_2$ . Now since  $x_1m_1x_2$  we have a situation symmetric with one which we met earlier in the proof. Using that technique it is easy to show that  $x_1a_1x_2$ . Then applying 2.1 we have that  $L_1$  is a segment joining  $x_1$  to  $x_2$ .

4.3. 
$$X = L_1 \cup L_2$$
.

Proof. Let x be an arbitrary point of X. If  $x=m_1$  or  $x=m_2$  then  $x \in L_1 \cup L_2$ . Thus assume without loss of generality that  $\varrho(x, x_1) < \varrho(x, x_2)$ . Now either  $\varrho(x, x_2) > \varrho(x_1, x_2)$  or  $\varrho(x, x_2) < \varrho(x_1, x_2)$ .

If  $\varrho(x,x_2)>\varrho(x_1,x_2)$ , choose  $\varepsilon>0$  so that  $\varrho(x,x_1)<\varepsilon<\varrho(x,x_2)$ . Then there exists  $p_1\in L_1$  and  $p_2\in L_2$  so that  $\varrho(x,p_1)=\varrho(x,p_2)$ . Now  $x_2p_1x_1$  and  $x_2p_2x_1$  and we may write  $L_1=\overline{x_2p_1}\cup\overline{p_1x_1}$  and  $L_2=\overline{x_2p_2}\cup\overline{p_2x_1}$ . Notice that the arcs  $\overline{x_2p_1}\cup\overline{x_2p_2}$  and  $\overline{p_1x_1}\cup\overline{p_2x_1}$  are disjoint except for  $p_1$  and  $p_2$  and therefore must contain distinct points from  $B(p_1,p_2)$ . Since by DBP, there exist exactly two such points, x is one of them and must, lie in either  $L_1$  or  $L_2$ .

Suppose  $\varrho(x,x_2)<\varrho(x_1,x_2)$ . Since  $\varrho(x,x_1)<\varrho(x,x_2)$  either  $m_2\in\overline{x_2x}$  or  $m_1\in\overline{x_2x}$ . Assume the former. Now there exists a point  $x'\in L_2$  so that  $\varrho(x,x_2)=\varrho(x',x_2)$ . But then  $x_2m_2x'$  and  $x_2m_2x$ . Now the WR property yields that  $x_2xx'$  or  $x_2x'x$ . Either case gives  $\varrho(x',x)=0$  or x=x'. That is, either case gives  $x\in L_2$ .

5. In a segment-convex metric space  $(X, \varrho)$  with DBP, if  $a_1$  and  $a_2$  are two distinct points,  $B(a_1, a_2) = \{x_1, x_2\}$  and if  $B(x_1, x_2) = \{m_1, m_2\}$ , then  $m_1$  and  $m_2$  are the centers of a pair  $x_1$  and  $x_2$ , and X is the union of two metric segments

$$L_1(x_1,\,x_2)=\overline{x_1m_1}\cup\overline{m_1x_2} \quad ext{ and } \quad L_2(x_1,\,x_2)=\overline{x_1m_2}\cup\overline{m_2x_2}$$

intersecting only at their end points.

THE MAIN THEOREM. If  $(X, \varrho)$  is a segment-convex metric space with DBP, then X is isometric to a metric one-sphere  $S^1$  with the ordinary geodesic metric.

**Proof.** Assume the notation of 5 and let C denote a circle with the radius  $r = \varrho(x_1, x_2)/\pi$ ;  $C = \{z | z = re^{it}, t \in R\}$ .

Put  $C(0,\pi)=\{z\in C\mid 0\leqslant t\leqslant\pi\}$  and  $C(\pi,2\pi)=\{z\in C\mid \pi\leqslant t\leqslant2\pi\}$ . Let  $a_1\colon C(0,\pi)\to X$  be the isometry sending respectively  $re^{i0},\ re^{(i\pi/2)}$ , and  $re^{i\pi}$  onto  $x_1,\ m_1$ , and  $x_2$ ; let  $a_2\colon C(\pi,2\pi)\to X$  be the isometry sending respectively  $re^{i\tau},\ re^{i(3\pi/2)},\$ and  $re^{i2\pi}$  onto  $x_2,\ m_2,\$ and  $x_1;$  let  $\alpha\colon C\to X$  be defined by

$$a(z) = egin{cases} a_1(z) & ext{if} & z \in C(0,\pi) \ a_2(z) & ext{if} & z \in C(\pi,2\pi) \ . \end{cases}$$

It is clear that a is a bijection and that the partial functions  $a/C(0, \pi) = a_1$  and  $a/C(\pi, 2\pi) = a_2$  are isometries.

Consider now the pair of distinct points  $x_1$  and  $x_2$ . We have  $B(x_1, x_2) = \{m_1, m_2\}$  and  $B(m_1, m_2) = \{x_1, x_2\}$ . Applying 5, we find that  $x_1$  and  $x_2$  are centers of the pair  $m_1$  and  $m_2$  and that  $L_1(m_1, m_2) = \overline{m_1 x_1} \cup \overline{x_1 m_2}$  and  $L_2(m_1, m_2) = \overline{m_1 x_2} \cup \overline{x_2 m_1}$  are two metric segments, hence  $\varrho(m_1, m_2) = \varrho(x_1, x_2) = \pi r$ .

Let

$$C(3\pi/2, \pi/2) = \{z \in C \mid 3\pi/2 \le t < 2\pi \text{ or } 0 \le t \le \pi/2\}$$

and

$$C(\pi/2, 3\pi/2) = \{ z \in C \mid \pi/2 \le t \le 3\pi/2 \},$$

and let  $\beta_1$ :  $C(3\pi/2, \pi/2) \rightarrow X$  be the isometry sending respectively  $re^{i(3\pi/2)}$ ,  $re^{i0}$ , and  $re^{i\pi/2}$  onto  $m_2$ ,  $x_1$ , and  $m_1$ , let  $\beta_2$ :  $C(\pi/2, 3\pi/2) \rightarrow X$  be the isometry sending respectively  $re^{i\pi/2}$ ,  $re^{i\pi}$ , and  $re^{i(3\pi/2)}$  onto  $m_1, x_2$ , and  $m_2$ , and let  $\beta$ :  $C \rightarrow X$  be defined by

$$\beta(z) = \begin{cases} \beta_1(z) & \text{if} \quad z \in C(3\pi/2, \pi/2), \\ \beta_2(z) & \text{if} \quad z \in C(\pi/2, 3\pi/2). \end{cases}$$

By an argument analogous to that for  $\alpha$ , we can show that  $\beta$  is a bijection and that  $\beta/C(3\pi/2,\pi/2)=\beta_1$  and  $\beta/C(\pi/2,3\pi/2)=\beta_2$  are isometries. Moreover,  $\alpha=\beta$ , and thus  $\Gamma=\alpha=\beta$  is a bijection of C onto X whose four partial functions  $\Gamma/C(0,\pi)$ ,  $\Gamma/C(\pi,2\pi)$ ,  $\Gamma/C(\pi/2,3\pi/2)$ , and  $\Gamma/C(3\pi/2,\pi/2)$  are isometries.

Now let  $z=re^{it}$  be an arbitrary point of C, let  $\mu=re^{i(t+\pi/2)}$ , and let  $z=\Gamma(z)$  and  $n=\Gamma(\mu)$ . Since  $\Gamma$  is an isometry on any of the four half circles and since z and  $\mu$  are included in at least one of them, we have  $\varrho(z,n)=(\pi/2)r$ . So, if  $z_1=re^{it}$ ,  $\mu_1=re^{i(t+\pi/2)}$ ,  $z_2=re^{i(t+\pi)}$ , and  $\mu_2=re^{i(t+\pi/2)}$ , and if  $z_1$ ,  $n_1$ ,  $z_2$ , and  $n_2$  are their corresponding images,  $\varrho(z_1,n_1)=\varrho(n_1,z_2)=\varrho(z_2,n_2)=\varrho(n_2,z_1)=(\pi/2)r$ . Consequently, we have



 $B\left(n_1,\,n_2
ight)=\{z_1,\,z_2\}$  and  $B\left(z_1,\,z_2
ight)=\{n_1,\,n_2\}$ . Applying 5, we get  $L_1(z_1,\,z_2)=z_1n_1\cup\overline{n_1z_2}$  and  $L_2(z_1,\,z_2)=\overline{z_1n_2}\cup\overline{n_2z_2}$  are two metric segments of length  $\pi r$  intersecting only at their endpoints and whose union is X. Let

$$C(t, t+\pi) = \{z \in C | z = re^{i\tau}, t \leqslant \tau \leqslant t+\pi\}$$

and

$$C(t+\pi\,,\,t+2\pi)=\{z\;\epsilon\;C|\;\;z=re^{i\tau},\;t+\pi\leqslant\tau\leqslant t+2\pi\}\;.$$

Let  $\gamma_1$ :  $C(t, t+\pi) \to X$  be the isometry sending respectively  $z_1$ ,  $\mu_1$ , and  $z_2$  onto  $z_1$ ,  $n_1$ , and  $z_2$ , and let  $\gamma_2$ :  $C(t+\pi, t+2\pi) \to X$  be the isometry sending respectively  $z_2$ ,  $\mu_2$ , and  $z_1$  onto  $z_2$ ,  $n_2$ ,  $z_1$ , and let  $\gamma$ :  $C \to X$  be defined by

$$\gamma(z) = egin{cases} \gamma_1(z) & ext{if} & z \in C(t, t+\pi) \;, \ \gamma_2(z) & ext{if} & z \in C(t+\pi, t+2\pi) \;. \end{cases}$$

It is clear that  $\gamma = \Gamma$ , so  $\Gamma/C(t, t+\pi)$  and  $\Gamma/C(t+\pi, t+2\pi)$  are two isometries. This completes the proof, since for any pair of points  $z, z' \in C$ ,  $z = re^{it}$ , both points z and z' belong to one of the two half-circles  $C(t, t+\pi)$ ,  $C(t+\pi, t+2\pi)$ , where  $\Gamma$  is an isometry.

## References

 A. D. Berard, Jr., Characterizations of metric spaces by the use of their midsets: intervals, Fund. Math. 73 (1971), pp. 1-7.

[2] L. M. Blumenthal, Theory and Applications of Distance Geometry, Oxford 1953.

[3] H. Buseman, The Geometry of Geodesics, New York 1959.

[4] A. Lelek and W. Nitka, On convex metric spaces I, Fund. Math. 49 (1961), pp. 168-204.

[5] K. Menger, Untersuchungen über allegemeine metrik, Math. Ann. 100 (1928), pp. 75-163.

KING'S COLLEGE Wilkes-Barre, Pennsylvania INSTITUTE OF MATHEMATICS, WROCŁAW UNIVERSITY DEPARTMENT OF MATHEMATICS, ORAN UNIVERSITY

Recu par la Rédaction le 17. 2. 1973