48 I. Korec

3] 8. Znim, On Mycielski’s problem on system of arithmetic sequences, Colloquium
Math. 15 (1966), pp. 201-204. ‘
{4] — and I. Korec, On disjoint covering of groups by cosels by their subgroups (to

appear).

Regu par lo Rédaction le 6. 2. 1973

icm®

A new definition of the circle by the
use of bisectors

by
A. D. Berard, Jr. (Wilkes-Barre, Pa.) and W. Nitka (Oran)

Abstract. The subset B(z,y) = {g «X: o(z, ) = o(y, q)} in a metric space (X, o}
is called the bisector of a pair x, y. It is known that any connected metric space in which
each bisector is a unique point, is topologically an interval of the real line R.

If each bisector consists of exactly two points, then X has DBP property.

The question whether every connected metric space with DBP is homeomorphic
to the one-sphere S* is still open.

A metric space is segment-convex if for each pair p,  of its points it contains an
are joining p to r which is isometric to a line segment.

‘We show that any segment-convex metric space with DBP is isometric to a metrie
one-sphere with its natural geodesic metric.

1. Introduction. For any pair of distinet points # and y in a non-
trivial metric space (X, g) the subset B(z,y) = {g ¢ X| o(®, ¢) = o(y, ¢)}
will be called the bisector ([3], see also [1] where it is called the midset).
If each bisector is & unique point, then X has [1] the unique bisector pro-
perty (UBP). If each bisector consists of exactly two points, then X has
the double bisector property (DBP).

It is known {1] that any connected metric space with UBP is homeo-
morphic to a subset of the real line R, and is tnerefore an interval.

The question whether every connected metric space with DBP is
homeomorphic to the one-sphere S is still open.

The aim of the present paper is the following result: If (X, p) is
a segment-convex metric space with DBP; then X is isometric to a metrie
one-sphere.

The proof will be based on the following three auxiliary propositions:

Let a; and a, be two distinet points of X, and let B(ay, a)
= {%, %}, then

1° I, = & a, w a3, and L, = &, a, v 4,3, are two simple arcs joining
@y, 10 @y, and L, n L, = B(ay, ay).

2° More precisely, I, and L, ave two metric segments joining @, to z,.

3° Liul,=2X.
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2. Definitions and notation. Let (X, ¢) be a metric space and p, ¢, r ¢ X.
A point ¢ is between p and 7 (per) it o(p, q)—l—g(q, r)=g(p, 7). A point
m is a center of a pair , y if o(z, m) = o(m, y) = $o(®, y). For any center
of z, v we have amy and m e B(x, y); the conver se is not necessarily true.

A space X is convex [5] plowded it contains for each pair of its distinct
points p and r at least one point ¢, such that p # ¢ # r and pgr.

A metric segment between p and » in a metric space X is an are T'(p, )
joining p to r which is isometric to a line segment of length o(p,r); if
unique or fixed it will be denoted by pr.

A metric space is segment-conver provided it containg for each pair
of its points at least one metric segment between them,

The transitivity of the metric betweeness implies [3]

2.1. If pgr and p # r then for any pg and for any qr the union pq o gr
is a metric segment joining p to 7.

A metric space is without ramifications (WR-space) if pgr, pgs, and
P # q imply prs or psr.

Tt is known ([3] see also [4]) that

2.2. In a metric WR-space if the intersection pr ~ ps possesses at
least two points and if r % s, then either pr C ps or ps C pr.

By a metric n-sphere (with the ordinary metric d) we will mean
the seb 8% = {p|p= (@, Ta, «e) Bpy) s Ti € B, 85+ 05+... 42}y = 77}, where
for any p = (@, &y, oy Zuyy) AOA §= (Y1, Yoy s Yuya) WO seb d(p, )
= rarceos(|@ ¥+ .. 4 Bpy1Ynaq/r?) and where the positive number r is
the radius of the n-sphere. For n = 1 the complex number notation will
be used, i.e. §' = {z|z= re%, t¢ R}

‘ 3. Preliminary lemmas. Let (X, o) be a segment-convex metric space
with DBP. Let a, and a, be two distinet points of X and let B = B(a,, a)

= {&y, 2}, Let 4;= {&|o(w, m) < 0(®, )}, Ay= {w|o(®w, a) > o(®, @)},
By=A,u B, and B,= A2 w B. Then we hwe

3.1. X—B s disconnected.

Indeed [1], X —B=A4; v 4, and 4, and 4, are mutually separated.

3.2. If eedy, i=1,2, and ag is any melric segment from a; to 2,
then az C A;.

Proof. We may suppose that 4= 1; so let z¢ 4, and let Qea:?l'é,
then ¢(2, 9)+ (g, &) = o2, @) < o(2, ay). IfqﬁAutheu e(q, a1) = o(q, @)
Combining these we get ofz, “2)<Q( y O+ elg, a) < ez, 9)+ (g, @)
= o(2, 4;), a contradiction since ze¢ A,.

3&. If 2¢Bq, i=1,2 and a;z is any melric segment from as to 2,
then a,zC By. .

From 3.2 and 3.3 we see
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3.4. The sefs A,, 4,, B,, and B, are connected.

3.5. If pe A, and g ¢ A, then for any fized segment pg, pq~ B # @.

More precisely

3.6. If p e Ay, meA,, g(m o) = g(m, @) and if o(p,n) < o(Pp, %),
then for any segment pm, pm ~ B= {m}.

The proof follows from 3.5 and from the inequality

o(p, m) < o(p, z)+ o2, m)< o(p, )+ o2y, m) = 0(P, 2, )-+ e (@, m) .

Similar results follow if o(p,2,) < o(p, o) or if, pe 4, and me 4;.
The following lemma will be used several times.
3.7. A segment-convex meiric space with DBP is a WR-space.

Proof. Suppose this were not the case. Then there exist D, 45 75 and §
so that pgr, pgs, p # g, and neither prs nor psr. Let pg, gr, and gs be
three fixed segments, By 2.1 pgv ¢ is a fixed segment joining p to »
and pg v gs is a fixed segment joining p to s. We may suppose that e(g, r)
> o(g, 8) > 0 and we cauv find on gr a point s, so that g{g, &)= o(g, s).
We have s 5= s, otherwise gsr and pgr implies psr. Now for each z epg
we have g(s,x) = p(s;, ), contradicting DBP.

4. Auxiliary propositions. Let (X, ¢) be a segment-convex metric
space with DBP. Let @, and a, be two distinet points of X, and let:
B(ay, @) = {&,, %} = B. According to the lemmas of the preceding
paragraph we have: X—B = 4, v 4,, 4, and 4, are mutaally separated
connected sets; X = B, v By, 4,CB, and 4,C B,, B; and B, are con-
nected closed sets with B; » B,= B; and, @ € 4; and a,eA,. Under
the above assumptions:

4.1, For any four fiwed segments @y, 4,§ =1,2, Iy= 0,8, v a7,
and Ly = a,%, v 6,a, are two simple arcs joining @y to @, and L ~ L, = B.

Proof. We focus our attention on L, and first show that a o, ~
~ a0, = {a;}. I not then, by 3.7 and 2.2, either @@, C 4y, o 0,2, C a,%, .
In the first case we would have 2,2, 0;. Then, becsmse B {1, s}, We
would get @@ a,. S0 by 3.7, either Tyl ly OT Lplylly; & contradietion, as
a, # ay and 7, € B. Agsuming @ a3, C alacl we get a similar contradiction.
So I, is a simple arc joining 2, to @,. In the same way we can show that
L, is a simple are joining @, to @,. Finally, by 3.3, we have Iy n Ly, C B; n
~ B, = B, hence L, ~n L, = B.

4.2. Both arcs L, and L, are metric segments.

Proof. Consider a continuous real valued function F defined in X
by F(2)= o(%, ®)—o(=, #,). Then F(z;)<0 and F(w,) >0, so there
exist two points m, and m, such that

(1) mpel; and F(m)=0, i=1,2.

4%
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Bvidently, m, # m, and m,, M, € B(@y, ). Therefore, by DBP, the points
7y Ay and m, are uniquely determined by (1). We know that I, = az, u
U 4,7, is a simple are, L,CB;, myel;, and g(my, @) = g(m,, ). Let A
and p, be two pomts such that P, ea,®;, P,ea,®, F(p)<<0, and
F(p,) > 0. Let p,p, be a fixed segment from p, to p, and let s be a point
on 1—91_13; such that F(s) = 0. We shall show that s=m,. Suppose not,
that is, _Suppose § = M. Let PP, = DMy m,p,. Applying 3.6 to P,
and to p,m, we get @, € p;m, and @, € p,m,, therefore

o(Pry Ma) = 0(Pas @)+ 0(@; my)  and  0(DPay Ma) = 0(Day Tg)+ 0 (Fp,y My).
So there exist four segments such that p m,=
= P&, U T,m,. Since

o(P1 )+ a(@y, 2.)+ 0(@2; Pa) = 0(D1, Do) = 0(Py, M)+ 0 (M, Po)

0(P1s @) + 0 (Bry M) + 0 (M, B3)+ 0 (22, D)
= 0(P1y %)+ 0(@y, %)+ 0 (%) Do) 5

we have @ m,5,. Thus, by 2.1, the union z m, L ey My, i a segmeént from
»; t0 25,

We now claim that @ a,2,. If a, = m, we are done, as ®,my2,. There-
fore assume a, 7= m,. We will show that a, € T,m, v m,z,. Since a, 5= m,
either o(ay, @) > 0(as, %) OF o(dy, %) < @(@, o). Assume the former,
We claim that ¢ (a,, 4,) << (%, %), otherwise there exists a point @, ¢ a,,
" such that o(wy, @) = (@, @:). Bub m, € &,m, v m,z, and m, € a,®, which
implies @My, BM,»’, and @, % m,. Now since the space is WR we
have z,m, 0] Or ,a; 4, either of which implies that o(ay, ;) = 0 or @, = ;.
Therefore a, # #;, otherwise @, = a, contrary to assumption. Now
@ € a,%, implies @,y a, Ut 0wy, ) = o(®y, ay) 50 Mywyay and @, % @y,
Now, since the space is WR, we get that 2,a,a, or 2,0,a, either of which
implies that o(a,, a,) =0 or a; = a,, contrary to assumption. We have
established that g(a, 4) < o(®y, 4,) which gives us the existence of an
a & Bm, v mm, such that o(a, @) = o(d, B,). NOW Z,my05, @ymaa, and
@y #m, by the WR property implies that x,aa, or z,a,¢ which implies
that p(a, a,) = 0 or a= a,. But now a, ¢ @, m, v m,», which is a metric
segment between x; and z,. Therefore x,a,,. ‘

Thus, by 2.1, L, is a segment between @, and x,. We have ¢(a,, @)
= 0(®, Gg)+ 0(a, ). Now we get a contradiction.

0( D1, Do) = 0(P1, My) + @ (M, Ds)
= 0(P1, B1) +0(;, M) -+ 0 (M, Bp) + 0 (@3, fpg)
0( D1y @)+ olmy, 25) + 0@y, D)
= 0( Py, @)+ 0(@1; @)+ 0(@sy @)+ 0(@y, Ps)
ef
ef

D% v my and pym,

I

D1y Z1) 4+ 0(@yy @)+ 0 (@, @)+ 0 (2, D)
Py &)+ o(ay, Po) = 0 (1, Da) -
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The striet inequaality follows since o(py, %)+ o(®y, a;) > o(ay, p,)- If this
‘were not the case then )

e(p; @)+ o(@i )= o(a, ) and play, pi)+o(P:, %) = o, 2)

which implies o(p;, ;)= 0 contrary to assumption. We have proven
that for any p, and p, oun L, sufficiently near respectively to 2, and to ,,
and for any fixed segment p,p,, my € p,p,. Now, iake p, and p, converging
respectively to #, and to x,, we have

e(@, my)+ o (my, @) = 2p(my, m)

o(my; P1)+ (D1, T+ 0 (M, Do)+ (D4, )
0(P1; #1)+ (D1, Po)+ 0{D2;5 )

o2y, w2)+2(Q(P1: @)+ o(De; 'Te)) .

oy, @) <

A

N

Hence m,; is a center of the pair 2, and z,. Now since #;m,z, we have
a situation symmetric with one which we met earlier in the proof. Using
that technique it is easy to show that a, B3, Then applying 2.1 we have
that L, is a segment joining zy to x,.

43. X =1L, v L,.

Proof. Let # be an arbitrary point of X. If # = m,; or # = m, then
€ I v L,. Thus assume without loss of generality that o (2, 1) < o(2, m,).
Now either o(@, 2,) > 0(21, ) 0T p(®, 3) < g{my, 25).

I o(w, ®) > o(w, 2,), choose ¢ >0 so that p(z, )< e< pl, ,).
Then there exists p, eL; and p,eL, so that o(z, p,) = o(z, p,). Now
Py, and @,pow; and we may write Ty = z,p, v p,#, and L= &,p, v
v p,%,. Notice that the ares #,p; v z,p, and p,, v p,, are disjoint except
for p, and p, and therefore must contain distinet points from B(p,, p,).
Since by DBP, there exist exactly two sach points, x is one of them and
must, lie in either I, or L,.

Suppose ¢(®, @) < o(@y, %), Sinee o(w, 2;) < o(x, »,) either m, ¢ T,
or my e 7,2, Assume the former. Now there exists a point " e L, so that
o(®, @) = o(2', #,). But then zym,2’ and z,m,2z. Now the WR property
yields that @,za’ or m,a's. Bither case gives g(2', #) = 0 or # = '. That
is, either case gives » eL.

5. In a segment-convex metric space (X, ¢) with DBP, if a, and a,
are two distinet points, B(a,, a,) = {y, %5} and if B(wy, ;) = {my, my},
then m, and m, arve the centers of a pair # and ,, and X is the union of
two metric segments

Ly(@, @) = @,my w m@, and  Ly(®, @) = 5,myw My,

intersecting only at their end points.
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Taw MAIN THEOREM. If (X, ) is a segment-conves metric space
with DBP, then X is isometric to & metric one-sphere S* with the ordinary
geodesic metric. .

Proof. Assume the notation of 5 and let ¢ denote a circle with the
radius 7= o(y, #y)/m; O = {zlz=re*, te R}

Put 0(0,n) = {#geC] 0 <t<n} and O(x,2m) = {ze 0| n§t<2_7c}.
Tet ¢: C(0,n)—+X Dbe the isometry sending respectively re™®, refi®,
and re™ onto @, m,, and @; let oy O(m, 2n)—X be the isometry sending
respectively re'™, re’D, and re™" onto @y, m,, and @y let a: O—+X De
defined by

a(s) if

a(z) =

ofe) if

z2eC(0,m),
2z e (O(m,2m).

1t is clear that « is a bijection and that the partial functions a[C(0, =)
= ¢, and a/0(rx, 2m) = o, are isometries. ‘

Consider now the pair of distinet points x; and @,. We have B(zy, %)
= {m,, my} and B(m;, my) = {@:, #,}. Applying 5, we find thaﬂ Z\;D.ME
are centers of the pair m; and m, and that Ly(m;, M) = M, By &My
and Ly(m,, my) = .8, v B,m, are two metric segments, hence o (my, my)
= (%, By) = T

Let

0(3rf2, w/2) = {re O] 3n[2 <1< 2n or 0 <t < 2}
and
O(x[2,3n)2) = {g e 0| =2 <¥<3nf2},

’i(SnIZ)’

and let §;: 0(3xn/2, n/2)—>X be the isometry sending respectively re
re®®, and re™? onto my, @;, and m,, let fy: C(x/2, 37/2)—X be the isometry
sending respectively re™?, re™, and re®™® onto my, @, and m,; and
let f: 0—~X be defined by

[ it
BRCE::

By an argrument analogons to that for a, we can show tihat B is a bijection
and that p/C(3n/2,n/2) =, and p/O(n/2,3w[2) =, are isometries.
Moreover, a = f, and thus I'= a = g is a Dbijection of ¢ onto X whose
four partial functions I70(0,n), IV0(m,2n), IJ0(w/2,3n[2), wud
I'|0(3r/2, =/2) are isometries.

Now let 2= re® be an arbitrary point of €, let p= re®+ ™, and
let 2= I'(2) and n = I'(x). Since I is an isometry on any of the four half
circles and since z and g are included in at least one of them, we have
o(e,m) = (wf2)r. So, it 2z =re¥ p=re™  g=rettm and
= 7e™F3D and if 2, my, %, and m, are their corresponding images,
0(21, 1)) = (g, %) = 0 (2, M) = 0(Ma, %) = (x[2)r. Consequently, we have

2 0(3n2, m2),

A % e O(xn[2, 3n[2) .
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B(m, na) = (&, 22} and B(ay, 2) = {m, ns). Applying 5, we get Lz, )

=2, v Mz, and (e, 2) = &0, 0,2, are two metric segmenis of

length =r intersecting only at their endpoints and whose union is X.
Let

Ct,t+m)={gel] z=r1e", t<T <47}

and

O(i4x, t+2n) = {z e 0] 2=re", i+ <7< 1427},
Let y: C(t, t+=)—X be the isometry sending respectively 2, u, and 2,
onto z, #;, and 2, and let p,: (¢, I+2n)—>X be the isometry sending
respectively 2., i, aud 2, onto 2, %y, 2, aund let y: 0—X be defined by
zeC(t, 1+ =),
zeC(t+m,t+2x) .

. piey i

yae) i
Tt is clear that y =TI, so IC(t,t+=) and IJO(i+x,1+2w) are two
isometries. This completes the proof, since for any pair of points z, 2" ¢ C,

z=re®, both points z and 2 belong to one of the two half-circles
Q(t, t+=), O(t+m,i+2x), where I" is an isometry.

¥(2)
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