I. Korec 48 Š. Znám, On Mycielski's problem on system of arithmetic sequences, Colloquium Math. 15 (1966), pp. 201-204. [4] — and I. Korec, On disjoint covering of groups by cosets by their subgroups (to appear). Recu par la Rédaction le 6. 2. 1973 ## A new definition of the circle by the use of bisectors by A. D. Berard, Jr. (Wilkes-Barre, Pa.) and W. Nitka (Oran) Abstract. The subset $B(x, y) = \{q \in X : \varrho(x, q) = \varrho(y, q)\}$ in a metric space (X, ϱ) is called the *bisector* of a pair x, y. It is known that any connected metric space in which each bisector is a unique point, is topologically an interval of the real line R. If each bisector consists of exactly two points, then X has DBP property. The question whether every connected metric space with DBP is homeomorphic to the one-sphere S^1 is still open. A metric space is segment-convex if for each pair p, r of its points it contains an arc joining p to r which is isometric to a line segment. We show that any segment-convex metric space with DBP is isometric to a metric one-sphere with its natural geodesic metric. 1. Introduction. For any pair of distinct points x and y in a non-trivial metric space (X, ϱ) the subset $B(x, y) = \{q \in X | \varrho(x, q) = \varrho(y, q)\}$ will be called the *bisector* ([3], see also [1] where it is called the midset). If each bisector is a unique point, then X has [1] the *unique bisector property* (UBP). If each bisector consists of exactly two points, then X has the double bisector property (DBP). It is known [1] that any connected metric space with UBP is homeomorphic to a subset of the real line R, and is therefore an interval. The question whether every connected metric space with DBP is homeomorphic to the one-sphere S^1 is still open. The aim of the present paper is the following result: If (X, ϱ) is a segment-convex metric space with DBP, then X is isometric to a metric one-sphere. The proof will be based on the following three auxiliary propositions: Let a_1 and a_2 be two distinct points of X, and let $B(a_1, a_2)$ = $\{x_1, x_2\}$, then 1° $L_1 = \overline{x_1} \overline{a_1} \cup \overline{a_1} \overline{x_2}$ and $L_2 = \overline{x_1} \overline{a_2} \cup \overline{a_2} \overline{x_2}$ are two simple arcs joining x_1 to x_2 , and $L_1 \cap L_2 = B(a_1, a_2)$. 2° More precisely, L_1 and L_2 are two metric segments joining x_1 to x_2 . 3° $L_1 \cup L_2 = X$. ⁴ - Fundamenta Mathematicae LXXXV **2.** Definitions and notation. Let (X, ϱ) be a metric space and $p, q, r \in X$. A point q is between p and r (pqr) if $\varrho(p,q) + \varrho(q,r) = \varrho(p,r)$. A point m is a center of a pair x, y if $\varrho(x, m) = \varrho(m, y) = \frac{1}{2}\varrho(x, y)$. For any center of x, y we have xmy and $m \in B(x, y)$; the converse is not necessarily true. A space X is *convex* [5] provided it contains for each pair of its distinct points p and r at least one point q, such that $p \neq q \neq r$ and pqr. A metric segment between p and r in a metric space X is an arc T(p,r) joining p to r which is isometric to a line segment of length $\varrho(p,r)$; if unique or fixed it will be denoted by \overline{pr} . A metric space is segment-convex provided it contains for each pair of its points at least one metric segment between them. The transitivity of the metric betweeness implies [3] 2.1. If pqr and $p \neq r$ then for any \overline{pq} and for any \overline{qr} the union $\overline{pq} \cup \overline{qr}$ is a metric segment joining p to r. A metric space is without ramifications (WR-space) if pqr, pqs, and $p \neq q$ imply prs or psr. It is known ([3] see also [4]) that 2.2. In a metric WR-space if the intersection $\overline{pr} \cap \overline{ps}$ possesses at least two points and if $r \neq s$, then either $\overline{pr} \subset \overline{ps}$ or $\overline{ps} \subset \overline{pr}$. By a metric n-sphere (with the ordinary metric d) we will mean the set $S^n=\{p\,|\,p=(x_1,\,x_2,\,\ldots,\,x_{n+1}),\,x_i\in R,\,x_1^2+x_2^2+\ldots+x_{n+1}^2=r_1^2\}$, where for any $p=(x_1,\,x_2,\,\ldots,\,x_{n+1})$ and $q=(y_1,\,y_2,\,\ldots,\,y_{n+1})$ we set $d(p,\,q)=r\arccos(|x_1y_1+\ldots+x_{n+1}y_{n+1}|/r^2)$ and where the positive number r is the radius of the n-sphere. For n=1 the complex number notation will be used, i.e. $S^1=\{z\,|\,z=re^{it},\,t\in R\}$. - 3. Preliminary lemmas. Let (X, ϱ) be a segment-convex metric space with DBP. Let a_1 and a_2 be two distinct points of X and let $B = B(a_1, a_2) = \{x_1, x_2\}$. Let $A_1 = \{x | \varrho(x, a_1) < \varrho(x, a_2)\}, A_2 = \{x | \varrho(x, a_1) > \varrho(x, a_2)\}, B_1 = A_1 \cup B$, and $B_2 = A_2 \cup B$. Then we have - 3.1. X-B is disconnected. Indeed [1], $X - B = A_1 \cup A_2$ and A_1 and A_2 are mutually separated. 3.2. If $z \in A_i$, i = 1, 2, and $\overline{a_i z}$ is any metric segment from a_i to z, then $\overline{a_i z} \subset A_i$. Proof. We may suppose that i=1; so let $z\in A_1$ and let $q\in \overline{a_1z}$, then $\varrho(z,q)+\varrho(q,a_1)=\varrho(z,a_1)<\varrho(z,a_2)$. If $q\notin A_1$, then $\varrho(q,a_1)\geqslant \varrho(q,a_2)$. Combining these we get $\varrho(z,a_2)\leqslant \varrho(z,q)+\varrho(q,a_2)\leqslant \varrho(z,g)+\varrho(q,a_1)=\varrho(z,a_1)$, a contradiction since $z\in A_1$. 3.3. If $z \in B_i$, i = 1, 2 and $\overline{a_i z}$ is any metric segment from a_i to z, then $\overline{a_i z} \subset B_i$. From 3.2 and 3.3 we see - 3.4. The sets A_1 , A_2 , B_1 , and B_2 are connected. - 3.5. If $p \in A_1$ and $q \in A_2$ then for any fixed segment \overline{pq} , $\overline{pq} \cap B \neq \emptyset$. More precisely - 3.6. If $p \in A_1$, $m \in A_2$, $\varrho(m, x_1) = \varrho(m, x_2)$ and if $\varrho(p, x_1) < \varrho(p, x_2)$, then for any segment \overline{pm} , $\overline{pm} \cap B = \{x_1\}$. The proof follows from 3.5 and from the inequality $$\rho(p, m) \leq \rho(p, x_1) + \rho(x_1, m) < \rho(p, x_2) + \rho(x_1, m) = \rho(p, x_2) + \rho(x_2, m)$$. Similar results follow if $\varrho(p, x_2) < \varrho(p, x_1)$ or if, $p \in A_2$ and $m \in A_1$. The following lemma will be used several times. . 3.7. A segment-convex metric space with DBP is a WR-space. Proof. Suppose this were not the case. Then there exist p, q, r, and s so that pqr, pqs, $p \neq q$, and neither prs nor psr. Let \overline{pq} , \overline{qr} , and \overline{qs} be three fixed segments. By 2.1 $\overline{pq} \cup \overline{qr}$ is a fixed segment joining p to r and $\overline{pq} \cup \overline{qs}$ is a fixed segment joining p to s. We may suppose that $\varrho(q, r) \geqslant \varrho(q, s) > 0$ and we can find on \overline{qr} a point s_1 so that $\varrho(q, s_1) = \varrho(q, s_1)$. We have $s \neq s_1$ otherwise qsr and pqr implies psr. Now for each $x \in \overline{pq}$ we have $\varrho(s, x) = \varrho(s_1, x)$, contradicting DBP. - **4.** Auxiliary propositions. Let (X, ϱ) be a segment-convex metric space with DBP. Let a_1 and a_2 be two distinct points of X, and let $B(a_1, a_2) = \{x_1, x_2\} = B$. According to the lemmas of the preceding paragraph we have: $X B = A_1 \cup A_2$, A_1 and A_2 are mutually separated connected sets; $X = B_1 \cup B_2$, $A_1 \subset B_1$ and $A_2 \subset B_2$, B_1 and B_2 are connected closed sets with $B_1 \cap B_2 = B$; and, $a_1 \in A_1$ and $a_2 \in A_2$. Under the above assumptions: - 4.1. For any four fixed segments $\overline{a_i w_j}$, i, j = 1, 2, $L_1 = \overline{a_1 w_1} \cup \overline{a_1 w_2}$ and $L_2 = \overline{a_2 w_1} \cup \overline{a_2 w_2}$ are two simple arcs joining x_1 to x_2 and $L_1 \cap L_2 = B$. Proof. We focus our attention on L_1 and first show that $\overline{a_1} \overline{x_1} \cap \overline{a_1} \overline{x_2} = \{a_1\}$. If not then, by 3.7 and 2.2, either $\overline{a_1} x_1 \subset \overline{a_1} \overline{x_2} \subset \overline{a_1} x_1$. In the first case we would have $x_2 x_1 a_1$. Then, because $B = \{x_1, x_2\}$, we would get $x_2 x_1 a_2$. So by 3.7, either $x_2 a_1 a_2$ or $x_2 a_2 a_1$, a contradiction, as $a_1 \neq a_2$ and $x_2 \in B$. Assuming $\overline{a_1} x_2 \subset \overline{a_1} x_1$ we get a similar contradiction. So L_1 is a simple arc joining x_1 to x_2 . In the same way we can show that L_2 is a simple arc joining x_1 to x_2 . Finally, by 3.3, we have $L_1 \cap L_2 \subset B_1 \cap B_2 = B$, hence $L_1 \cap L_2 = B$. 4.2. Both arcs L_1 and L_2 are metric segments. Proof. Consider a continuous real valued function F defined in X by $F(z) = \varrho(z, x_1) - \varrho(z, x_2)$. Then $F(x_1) < 0$ and $F(x_2) > 0$, so there exist two points m_1 and m_2 such that (1) $$m_i \in L_i \text{ and } F(m_i) = 0, \quad i = 1, 2.$$ Evidently, $m_1 \neq m_2$ and m_1 , $m_2 \in B(x_1, x_2)$. Therefore, by DBP, the points m_1 and m_2 are uniquely determined by (1). We know that $L_1 = \overline{a_1x_1} \cup \overline{a_1x_2}$ is a simple arc, $L_1 \subset B_1$, $m_1 \in L_1$, and $\varrho(m_1, x_1) = \varrho(m_1, x_2)$. Let p_1 and p_2 be two points such that $p_1 \in \overline{a_1x_1}$, $p_2 \in \overline{a_1x_2}$, $F(p_1) < 0$, and $F(p_2) > 0$. Let $\overline{p_1p_2}$ be a fixed segment from p_1 to p_2 and let s be a point on $\overline{p_1p_2}$ such that F(s) = 0. We shall show that $s = m_1$. Suppose not, that is, suppose $s = m_2$. Let $\overline{p_1p_2} = \overline{p_1m_2} \cup \overline{m_2p_2}$. Applying 3.6 to $\overline{p_1m_2}$ and to $\overline{p_2m_2}$, we get $x_1 \in \overline{p_1m_2}$ and $x_2 \in \overline{p_2m_2}$, therefore $\begin{array}{lll} \varrho(p_1,m_2) = \varrho(p_1,x_1) + \varrho(x_1,m_2) & \text{and} & \varrho(p_2,m_2) = \varrho(p_2,x_2) + \varrho(x_2,m_2). \\ \text{So there exist four segments such that } \overline{p_1m_2} = \overline{p_1x_1} \cup \overline{x_1m_2} & \text{and } \overline{p_2m_2} \\ = \overline{p_2x_2} \cup \overline{x_2m_2}. & \text{Since} \end{array}$ $$\begin{array}{l} \varrho(\,p_{1},\,x_{1}) + \varrho(\,x_{1},\,x_{2}) + \varrho(\,x_{2},\,p_{2}) \geqslant \varrho(\,p_{1},\,p_{2}) = \varrho(\,p_{1},\,m_{2}) + \varrho(\,m_{2},\,p_{2}) \\ = \varrho(\,p_{1},\,x_{1}) + \varrho(\,x_{1},\,m_{2}) + \varrho(\,m_{2},\,x_{2}) + \varrho(\,x_{2},\,p_{2}) \\ \geqslant \varrho(\,p_{1},\,x_{1}) + \varrho(\,x_{1},\,x_{2}) + \varrho(\,x_{2},\,p_{2}) \;, \end{array}$$ we have $x_1m_2x_2$. Thus, by 2.1, the union $\overline{x_1m_2} \cup \overline{m_2x_2}$ is a segment from x_1 to x_2 . We now claim that $x_1 a_2 x_2$. If $a_2 = m_2$ we are done, as $x_1 m_2 x_2$. Therefor assume $a_2 \neq m_2$. We will show that $a_2 \in \overline{x_1 m_2} \cup \overline{m_2 x_2}$. Since $a_2 \neq m_2$ either $\varrho(a_2, x_2) > \varrho(a_2, x_1)$ or $\varrho(a_2, x_2) < \varrho(a_2, x_2)$. Assume the former. We claim that $\varrho(a_2, x_2) < \varrho(x_1, x_2)$, otherwise there exists a point $x_1' \in \overline{a_2 x_2}$ such that $\varrho(x_1, x_2) = \varrho(x_1', x_2)$. But $m_2 \in \overline{x_1 m_2} \cup \overline{m_2 x_2}$ and $m_2 \in \overline{a_2 x_2}$ which implies $x_2 m_2 x_1$, $x_2 m_2 x_1'$, and $x_2 \neq m_2$. Now since the space is WR we have $x_2x_1x_1'$ or $x_2x_1'x_1$ either of which implies that $\varrho(x_1, x_1') = 0$ or $x_1 = x_1'$. Therefore $a_2 \neq x_1'$, otherwise $x_1 = a_2$ contrary to assumption. Now $x_1 \in \overline{a_2 x_2}$ implies $x_2 x_1 a_2$ but $\varrho(x_1, a_2) = \varrho(x_1, a_1)$ so $x_2 x_1 a_1$ and $x_2 \neq x_1$. Now, since the space is WR, we get that $x_2 a_1 a_2$ or $x_2 a_2 a_1$ either of which implies that $\varrho(a_2, a_1) = 0$ or $a_1 = a_2$, contrary to assumption. We have established that $\rho(\alpha_2, x_2) < \rho(x_1, x_2)$ which gives us the existence of an $a \in \overline{x_1 m_2} \cup \overline{m_2 x_2}$ such that $\rho(a, x_2) = \rho(a_2, x_2)$. Now $x_2 m_2 a_2, x_2 m_2 a_3$, and $x_2 \neq m_2$ by the WR property implies that $x_2 a a_2$ or $x_2 a_2 a$ which implies that $\rho(a_1, a_2) = 0$ or $a = a_2$. But now $a_2 \in \overline{x_1 m_2} \cup \overline{m_2 x_2}$ which is a metric segment between x_1 and x_2 . Therefore $x_1 a_2 x_2$. Thus, by 2.1, L_2 is a segment between x_1 and x_2 . We have $\varrho(x_1, x_2) = \varrho(x_1, a_2) + \varrho(a_2, x_2)$. Now we get a contradiction. $$\begin{array}{l} \varrho\left(\,p_{1},\,p_{2}\right) = \varrho\left(\,p_{1},\,m_{2}\right) + \varrho\left(\,m_{2},\,p_{2}\right) \\ = \varrho\left(\,p_{1},\,x_{1}\right) + \varrho\left(\,x_{1},\,m_{2}\right) + \varrho\left(\,m_{2},\,x_{2}\right) + \varrho\left(\,x_{2},\,p_{2}\right) \\ = \varrho\left(\,p_{1},\,x_{1}\right) + \varrho\left(\,x_{1},\,x_{2}\right) + \varrho\left(\,x_{2},\,p_{2}\right) \\ = \varrho\left(\,p_{1},\,x_{1}\right) + \varrho\left(\,x_{1},\,a_{2}\right) + \varrho\left(\,a_{2},\,x_{2}\right) + \varrho\left(\,x_{2},\,p_{2}\right) \\ = \varrho\left(\,p_{1},\,x_{1}\right) + \varrho\left(\,x_{1},\,a_{1}\right) + \varrho\left(\,a_{1},\,x_{2}\right) + \varrho\left(\,x_{2},\,p_{2}\right) \\ > \varrho\left(\,p_{1},\,a_{1}\right) + \varrho\left(\,a_{1},\,p_{2}\right) \geqslant \varrho\left(\,p_{1},\,p_{2}\right) \,. \end{array}$$ The strict inequality follows since $\varrho(p_1, x_1) + \varrho(x_1, a_1) > \varrho(a_1, p_1)$. If this were not the case then $$\varrho(p_1, x_1) + \varrho(x_1; a_1) = \varrho(a_1, p_1)$$ and $\varrho(a_1, p_1) + \varrho(p_1, x_1) = \varrho(a_1, x_1)$ which implies $\varrho(p_1, x_1) = 0$ contrary to assumption. We have proven that for any p_1 and p_2 on L_1 sufficiently near respectively to x_1 and to x_2 , and for any fixed segment $\overline{p_1p_2}$, $m_1 \in \overline{p_1p_2}$. Now, take p_1 and p_2 converging respectively to x_1 and to x_2 , we have $$\begin{split} \varrho(x_1, x_2) &\leq \varrho(x_1, m_1) + \varrho(m_1, x_2) = 2\varrho(m_1, x_1) \\ &\leq \varrho(m_1, p_1) + \varrho(p_1, x_1) + \varrho(m_1, p_2) + \varrho(p_2, x_2) \\ &= \varrho(p_1, x_1) + \varrho(p_1, p_2) + \varrho(p_2, x_2) \\ &\leq \varrho(x_1, x_2) + 2\varrho(p_1, x_1) + \varrho(p_2, x_2) \end{split}.$$ Hence m_1 is a center of the pair x_1 and x_2 . Now since $x_1m_1x_2$ we have a situation symmetric with one which we met earlier in the proof. Using that technique it is easy to show that $x_1a_1x_2$. Then applying 2.1 we have that L_1 is a segment joining x_1 to x_2 . 4.3. $$X = L_1 \cup L_2$$. Proof. Let x be an arbitrary point of X. If $x=m_1$ or $x=m_2$ then $x \in L_1 \cup L_2$. Thus assume without loss of generality that $\varrho(x, x_1) < \varrho(x, x_2)$. Now either $\varrho(x, x_2) > \varrho(x_1, x_2)$ or $\varrho(x, x_2) < \varrho(x_1, x_2)$. If $\varrho(x,x_2)>\varrho(x_1,x_2)$, choose $\varepsilon>0$ so that $\varrho(x,x_1)<\varepsilon<\varrho(x,x_2)$. Then there exists $p_1\in L_1$ and $p_2\in L_2$ so that $\varrho(x,p_1)=\varrho(x,p_2)$. Now $x_2p_1x_1$ and $x_2p_2x_1$ and we may write $L_1=\overline{x_2p_1}\cup\overline{p_1x_1}$ and $L_2=\overline{x_2p_2}\cup\overline{p_2x_1}$. Notice that the arcs $\overline{x_2p_1}\cup\overline{x_2p_2}$ and $\overline{p_1x_1}\cup\overline{p_2x_1}$ are disjoint except for p_1 and p_2 and therefore must contain distinct points from $B(p_1,p_2)$. Since by DBP, there exist exactly two such points, x is one of them and must, lie in either L_1 or L_2 . Suppose $\varrho(x,x_2)<\varrho(x_1,x_2)$. Since $\varrho(x,x_1)<\varrho(x,x_2)$ either $m_2\in\overline{x_2x}$ or $m_1\in\overline{x_2x}$. Assume the former. Now there exists a point $x'\in L_2$ so that $\varrho(x,x_2)=\varrho(x',x_2)$. But then x_2m_2x' and x_2m_2x . Now the WR property yields that x_2xx' or $x_2x'x$. Either case gives $\varrho(x',x)=0$ or x=x'. That is, either case gives $x\in L_2$. 5. In a segment-convex metric space (X, ϱ) with DBP, if a_1 and a_2 are two distinct points, $B(a_1, a_2) = \{x_1, x_2\}$ and if $B(x_1, x_2) = \{m_1, m_2\}$, then m_1 and m_2 are the centers of a pair x_1 and x_2 , and X is the union of two metric segments $$L_1(x_1,\,x_2)=\overline{x_1m_1}\cup\overline{m_1x_2} \quad ext{ and } \quad L_2(x_1,\,x_2)=\overline{x_1m_2}\cup\overline{m_2x_2}$$ intersecting only at their end points. THE MAIN THEOREM. If (X, ϱ) is a segment-convex metric space with DBP, then X is isometric to a metric one-sphere S^1 with the ordinary geodesic metric. **Proof.** Assume the notation of 5 and let C denote a circle with the radius $r = \varrho(x_1, x_2)/\pi$; $C = \{z | z = re^{it}, t \in R\}$. Put $C(0,\pi)=\{z\in C\mid 0\leqslant t\leqslant\pi\}$ and $C(\pi,2\pi)=\{z\in C\mid \pi\leqslant t\leqslant2\pi\}$. Let $a_1\colon C(0,\pi)\to X$ be the isometry sending respectively $re^{i0},\ re^{(i\pi/2)}$, and $re^{i\pi}$ onto $x_1,\ m_1$, and x_2 ; let $a_2\colon C(\pi,2\pi)\to X$ be the isometry sending respectively $re^{i\tau},\ re^{i(3\pi/2)},\$ and $re^{i2\pi}$ onto $x_2,\ m_2,\$ and $x_1;$ let $\alpha\colon C\to X$ be defined by $$a(z) = egin{cases} a_1(z) & ext{if} & z \in C(0,\pi) \ a_2(z) & ext{if} & z \in C(\pi,2\pi) \ . \end{cases}$$ It is clear that a is a bijection and that the partial functions $a/C(0, \pi) = a_1$ and $a/C(\pi, 2\pi) = a_2$ are isometries. Consider now the pair of distinct points x_1 and x_2 . We have $B(x_1, x_2) = \{m_1, m_2\}$ and $B(m_1, m_2) = \{x_1, x_2\}$. Applying 5, we find that x_1 and x_2 are centers of the pair m_1 and m_2 and that $L_1(m_1, m_2) = \overline{m_1 x_1} \cup \overline{x_1 m_2}$ and $L_2(m_1, m_2) = \overline{m_1 x_2} \cup \overline{x_2 m_1}$ are two metric segments, hence $\varrho(m_1, m_2) = \varrho(x_1, x_2) = \pi r$. Let $$C(3\pi/2, \pi/2) = \{z \in C \mid 3\pi/2 \le t < 2\pi \text{ or } 0 \le t \le \pi/2\}$$ and $$C(\pi/2, 3\pi/2) = \{ z \in C \mid \pi/2 \le t \le 3\pi/2 \},$$ and let β_1 : $C(3\pi/2, \pi/2) \rightarrow X$ be the isometry sending respectively $re^{i(3\pi/2)}$, re^{i0} , and $re^{i\pi/2}$ onto m_2 , x_1 , and m_1 , let β_2 : $C(\pi/2, 3\pi/2) \rightarrow X$ be the isometry sending respectively $re^{i\pi/2}$, $re^{i\pi}$, and $re^{i(3\pi/2)}$ onto m_1, x_2 , and m_2 , and let β : $C \rightarrow X$ be defined by $$\beta(z) = \begin{cases} \beta_1(z) & \text{if} \quad z \in C(3\pi/2, \pi/2), \\ \beta_2(z) & \text{if} \quad z \in C(\pi/2, 3\pi/2). \end{cases}$$ By an argument analogous to that for α , we can show that β is a bijection and that $\beta/C(3\pi/2,\pi/2)=\beta_1$ and $\beta/C(\pi/2,3\pi/2)=\beta_2$ are isometries. Moreover, $\alpha=\beta$, and thus $\Gamma=\alpha=\beta$ is a bijection of C onto X whose four partial functions $\Gamma/C(0,\pi)$, $\Gamma/C(\pi,2\pi)$, $\Gamma/C(\pi/2,3\pi/2)$, and $\Gamma/C(3\pi/2,\pi/2)$ are isometries. Now let $z=re^{it}$ be an arbitrary point of C, let $\mu=re^{i(t+\pi/2)}$, and let $z=\Gamma(z)$ and $n=\Gamma(\mu)$. Since Γ is an isometry on any of the four half circles and since z and μ are included in at least one of them, we have $\varrho(z,n)=(\pi/2)r$. So, if $z_1=re^{it}$, $\mu_1=re^{i(t+\pi/2)}$, $z_2=re^{i(t+\pi)}$, and $\mu_2=re^{i(t+\pi/2)}$, and if z_1 , n_1 , z_2 , and n_2 are their corresponding images, $\varrho(z_1,n_1)=\varrho(n_1,z_2)=\varrho(z_2,n_2)=\varrho(n_2,z_1)=(\pi/2)r$. Consequently, we have $B\left(n_1,\,n_2 ight)=\{z_1,\,z_2\}$ and $B\left(z_1,\,z_2 ight)=\{n_1,\,n_2\}$. Applying 5, we get $L_1(z_1,\,z_2)=z_1n_1\cup\overline{n_1z_2}$ and $L_2(z_1,\,z_2)=\overline{z_1n_2}\cup\overline{n_2z_2}$ are two metric segments of length πr intersecting only at their endpoints and whose union is X. Let $$C(t, t+\pi) = \{z \in C | z = re^{i\tau}, t \leqslant \tau \leqslant t+\pi\}$$ and $$C(t+\pi\,,\,t+2\pi)=\{z\;\epsilon\;C|\;\;z=re^{i\tau},\;t+\pi\leqslant\tau\leqslant t+2\pi\}\;.$$ Let γ_1 : $C(t, t+\pi) \to X$ be the isometry sending respectively z_1 , μ_1 , and z_2 onto z_1 , n_1 , and z_2 , and let γ_2 : $C(t+\pi, t+2\pi) \to X$ be the isometry sending respectively z_2 , μ_2 , and z_1 onto z_2 , n_2 , z_1 , and let γ : $C \to X$ be defined by $$\gamma(z) = egin{cases} \gamma_1(z) & ext{if} & z \in C(t, t+\pi) \;, \ \gamma_2(z) & ext{if} & z \in C(t+\pi, t+2\pi) \;. \end{cases}$$ It is clear that $\gamma = \Gamma$, so $\Gamma/C(t, t+\pi)$ and $\Gamma/C(t+\pi, t+2\pi)$ are two isometries. This completes the proof, since for any pair of points $z, z' \in C$, $z = re^{it}$, both points z and z' belong to one of the two half-circles $C(t, t+\pi)$, $C(t+\pi, t+2\pi)$, where Γ is an isometry. ## References A. D. Berard, Jr., Characterizations of metric spaces by the use of their midsets: intervals, Fund. Math. 73 (1971), pp. 1-7. [2] L. M. Blumenthal, Theory and Applications of Distance Geometry, Oxford 1953. [3] H. Buseman, The Geometry of Geodesics, New York 1959. [4] A. Lelek and W. Nitka, On convex metric spaces I, Fund. Math. 49 (1961), pp. 168-204. [5] K. Menger, Untersuchungen über allegemeine metrik, Math. Ann. 100 (1928), pp. 75-163. KING'S COLLEGE Wilkes-Barre, Pennsylvania INSTITUTE OF MATHEMATICS, WROCŁAW UNIVERSITY DEPARTMENT OF MATHEMATICS, ORAN UNIVERSITY Recu par la Rédaction le 17. 2. 1973