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Prime sequences and
distributivity in local Noether lattices *

by

E. W. Johnson (Iowa City, Ia.) and M. Detlefsen (Slippery Rock, Penn.)

Abstract. We investigate the influence of a prime sequence on the multiplicative
sublattice of a local Noether it generates. This sublattice is isomorphic to BIL;. We
also investigate some conditions sufficient for a local Noether lattice to be distri-
‘butive. :

1. Introduction. If I is a distributive regular local Noether lattice,
K. Bogart [3] showed that L is isomorphic to RLy, where k is the dimension
of I and RILi is the multiplicative sublattice of the ideal lattice of
Fx, ..., #x] generated by the principal ideals (z:), F a field. In this paper
we generalize Bogart’s result and investigate distributivity in local Noether
lattices in general. One distinguishing characteristic of. RLx is that it is
generated by a prime sequence (Definition 2.2) of length k. In Theorem 2.10
we show that, in a local Noether lattice, the sub-multiplicative-lattice
generated by any prime sequence of length % is isomorphic to RLg. Theo-
rem 3.1 shows that if (L, M) is a local Noether lattice and each M -primary
element distributes, then L is distributive. Theorem 3.2 shows that
(L, M) is distributive provided that each element in a set of parameters
for I distributes. In Theorem 3.3 we show that, in the regular case, L is
distributive if some powers of each three-element subset of Lform a distri-
butive triple in L.

2. Prime sequences and RI;. If B is a commutative Noetherian ring
with identity and 4 and B are ideals of R, then if 7 is an element of A+ B,
7= g--b, for some @ in A and b in B. Moreover,

(1) +(8) = (1)+(b) = (a)+(B)

where ( ) denotes ideal generation. The following theorem gives an ap-
propriate analog for this property in local Noether lattices and is @ nsefnl
computational tool in these lattices.

* Thig research was supported in part by Nasa Granb NGT 16-001-004.
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For the remainder of this seetion, (L, M) is a local Noether lattice
unless otherwise specified.

THEOREM 2.1. Let A be a principal element and B and C be elements
of (L, M) such that A < BV C. Then there emist principal elemenis B' < B
and C'< C in L such that

AVB' = Av(C' = B'v('.

Proof. Let By, ..., B be principal elements with join BA(4v().
Since 4 < Bv(, it follows by modularity that AvC0 = B,V...vB,v(.
Angd since Av( is principal in L/C, it follows that AvC = B;v(, for
some ¢ =1, ..., n. Hence, there exists a principal element B’ << B such
that 4 < B'v( and, consequently, a principal element 0’ < ¢ such thas
A<BvC.

Xow, suppose 4 << BV as in the hypothesis of the theorem. Qur
result holds if A <B or A< (. So, assume 4 £ B and A £ C. Since
A & A\ (BvM"0)= B, we choose j so that 4 < BVMIQ but A £ By

VM?*(. Then there exists a principal element €' < M?C such that
A< BvC', Similarly, since 4 £ ' = A (M"Bv ("), there is a prineipal
element B'< M*B such that 4 < B'v(’, where 4 < M*Bv( but
A & M*'By (. Moreover,

AVB = B'V((AVB)AC') = B'V[(4VE'): 0] C".

¥ (AvB'): ("< M, then A< B vVMC < ByMi+(, Hence, (AvB’): ("
=1 and ("< AVB'. Therefore, AVB' = B'v('. Similarly, Av ¢’
=B'v('. QZE.D.

DEFINITION 2.2. An (ordeved) set of principal elements, 4, ..., 4,
in & Noether lattice forms a prime sequence if A; = I for 4= 1,.,n
and if (4;v..vA; ) Ad;= 4, v..vA, | for each {— 1,0 (We set
Ay=10.)

Our first objective is to remove the parenthesized “ordered” in the
definition in the semi-local case.

THEOREM 2.3. Let L' be a semi-local Noether lattice with Jacobson
radical, M. If 4,, .., 4, is a prime sequence in L' such that A; < M for
i=1,..,n, then any permutation of the Ays is also a prime sequence.

Proof. Tt suffices to establish the case # = 9. Hence, assume
0:4, =0 and 4;: 4, = A4,. Since

(Ap: d)) A, = ((AZ:-A-I)Al)I\Az = ({(_AE: AI)AI)‘: Az),fl_2
S {4y o)A, < A, 4,,
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it follows that A,:4;<<A4,. On the other hand, 0:d, < A A, = A,
50 0:dy= (0: A)AA; = ((0: dy): A4, = ((0: 4y): A,) 4, = (0: 4,)4,, so
0: 4,= 0, by the Intersection Theorem. Q.B.D.

In particular, any permutation of a prime sequence in (L, M) is
a prime sequence. We use this result in

LuMMA 2.4. Let Ay, ..., A, be a prime sequence in (L, M), C a principal
element in L, and A = A;V..VA,. Tﬂm for all m=1,

(1) A™: Ay =A™, and

(2) A: 0= A implies A™:C = A™, ‘

Proof. Let A4,:C = A, and ¥ be a principal element such that
B< A™ (< A;:0=A4,. Choose ¢ so that B<< Al but B ¢ A and
suppose t << m. Then there exists a principal clement F such that B = FAL
and FALQ < AP Hence, FC < AT, since 0: 4, =0. So F< 4, by
induction on m, and B = FA! < A" which contradicts our choice of 4.
Therefore, B < AT and AP: 0= AP, for all m > 1. Hence, (1) and (2)
hold for all m, if # = 1. .

Now, assume (1) and (2) hold for all m, if » <s.

Let 4, .., 4., be a prime sequence. Set B = 4;Vv..v4, and 4
= BvAd,,. Assume m > 2. ; o

It 04y, < A™= B™vA™4,,,, where ¢ is a principal element,
then (Theorem 2.1) ’

CAg VD = CAg VEA = DVEA,,,,

for some principal elements D < B™and B < A™ . Hence, D < (OVE) 4,4,
and D=FA,,,, for some principal ¥ < CVE. ‘Consefluently, FA, +1
=D<B" and F<(B™A,,)=B" by the mduegwe lany_liothesm.
Therefore CA,,, < (BVF)4,.,,a0d O <FVE < BTV A" = A™1, Hence
" = A™1, for all m.
4 J?N%wl;v, let O ,and D be principal elements such that 4: 0= A a,n"(li
0D < A™ Then CODA,,; <B™A,, in Lld,,, so D[4y, < (B/ASH,Z; s
since B[4, is the join of a prime sequence of length s. ].E[egcelDlg B‘ {:/
VA,,. Then DVE = DVFA,,, = BVFA,,,, for some principa. elements
B < B™ and F. Therefore OFA,,, < CDvOH < A™, so that CFmiA
by the above. By induction on m, it now follows that F< A™, :mjt
hence that D < BVFA,,, <B"VA™ 4, <A™ Therefore 4:0=
implies 4™: ¢ = A™, for all m. Q.E.D. :
We define a Macaulay loeal lattice to be a local No?ther lattice Vi!;]ll](;h
has & prime sequence of length equal to its altitude. We note tha.t11 Zt E
lattice satisfies the union condition on prime elements. (81, t.he 1en°'
of a maximal prime sequence is an invariant for the lattice. Using atm]c;
theoretic interpretations for the discussion in [11, IT, p. 397] we remark:
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THEOREM 2.5. Leét (L, M) be a Macaulay local lattice of aliitude q
satisfying the union condition on prime elements, and let A, ..., As be prine;-
pal elements in I such thot the allitude of L{(A;V...VAs) @8 d—s. Then
Ay, ey As is a prime sequence in L and every prime divisor of A,v...vA,
has height s and depth d—s.

Now, let 4, ..., 4, be a prime sequence in (L, M). Let RL(A4,, ..., 4,)
= RL{A4;) be the multiplicative sublattice of I generated by the collection
of finite joins of products of the 4;’s. Our objective is to show that RL(4;)
is a distributive sublattice of I isomorphic to RIz [see 3].

By Lemma 2.4, since (4dg:4dy) = A; for ¢ # j, (4L:4;) = 4% for all
positive integers f, whenever ¢ s j. More generally,

Lemma 2.7, Let J be a join of products of Ay, ..., An. Then (J:4;)=J.

Proof. Assume that J is the join of products of 4,,...,4,. By
renumbering, if necessary, we may assume that A4, actually appears in
one of the products.

Write J = K VA, B, when K is the join of products of 4,,..., 4, ,,
and B is the join of products of 4,, ..., 4». We induct on the sum of the
degrees of the products which form J.

Assume XA, <J. Then in L/4,, (X[4Az)(4,/4,) < K/A,, where K is
the join of products of 4,/d,, ..., 4,.,/4,. Since the sum of the degrees
of the produets which form K/4, is smaller than the sum of the degrees
of the products which form J, we have that X/4, < K/A4,, and hence
that X < Kv A, in L. It follows that

XVE = EV(XVE)ANAn)= EV(XVE): 4s) 4y,
and hence that
(XVE): An)dnd, < XA,VEA, < EVA.B .
Therefore, by the inductive hypothesis,

(XVE): 4n) 4, < (EVAnB): Ay < (K: A)vB< EVB,
and ;

(XVE): 4, < KVB.
Hence,

X <EV(XVE):4n)dn=KVA,B=J. QED.

If Py, P, are products of the Ay, let GCD(P,, P,) be the product,
Q, of the A, of greatest degree such that P, = QP; and P, = QP).. Tf no
such product exists, we set GOD(P,, P;) = 1I. Since for -each non-zero
product @, 0:9 =0,

(P12 Py) = (QP: QP;) = (Pp: Py) .

COROLLARY_2.8. If VWi j=1,..,8 is a finite join of elements in
RL(4:) and P is a product of the A, then (V) P)=\/ (J: P)
i i

icm®

Prime sequences and distributivity in local Noether laitices 153

Proof. We induct on ¢ and the sum of the degrees of the J;. Corol-
lary 2.8 holds if some J; = I, or by induction if some J; = 0. If GCD(J;, P)
— I for each j, then by Lemma 2.7, our conclusion holds. So assnme
G0DW, P) = @ < I.Then

-1
(\VI): P)= ((‘\=/1JJ)VQJ;: QP

i~

= ((l/:J,)vQJ;:Q):P'
i-1

= (((V T:Q)vT;): P
j=1
-1

= (((j\=/1 (i @)VI3): P’
i—1

= ((1'\=/1 (5 Q): P VT P)

t—1
=\ (5 P)ViJi: P

§=1
i
=V P,
§=1
by induction on ¢ and induction on the sum of the degrees of the J;.
Q.E.D.
COROLLARY 2.9. RL(As) is a distributive sub-Noether lattice of L.

Proof. Suppose J = \/J;e RL(4:), where the J; are products of
0, I, and the A, and let P be such & product. Then in L,

(VINAP = (\VJ5: P)P = (V5 P)P = VI3 P)P) = V(s ) -

Since I is modular, it follows that joins of products of the As distribute
over joins of joins of products of the Ai. Hence, by Corollary 2.8, the

- collection. of joins of products of the A, together with 0 and I, is closed

under the residuation and meet operations of I and forms a d%str%but%ve
multiplicative-sublattice of L. If is now clear that RL{4:) is a distributive
sub-Noether lattice of L. QE.D.

RIL(A;) is clearly a local Noether lattice with maximal element,
AyV...VAy. Consequently, from [3, Thm. 5], we have

THROREM 2.10. RL(A:) is o distributive regular local Noether lattice
of altitude n, and hence isomorphic to Rln.

Proof. Since 4, .., ds is & prime sequence in RL(A:E) as well gs
in L, RL(A:) is a distributive regular local Noether lattice. Q.E.D.
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3. Conditions for distributivity. It follows from the Artin-Rees Lemma
for Noether lattices [7], that if 4, B, and C are elements of a Noether
lattice, then there is a positive integer, %, such that

AABVOR) < (AAB)VACY* < (AAB)VO™™*  for all n> k.

If A, B, and C form a distributive triple as in [1], we write (4, B, 0)D.
If (4, B, C)D for all B and ( in a local Noether lattice L, we say that 4
distributes over L.
TeeoREM 3.1. If (@), @s, @s)D for all Qi which are M -primary ele-
ments in (L, M), local, then L is distributive.
Proof. Let 4, B, and C be elements in I and choose & so that
(AVHMA(BVM™) < ((AVH™)AB)yV M™% < (AAB)V M™*
and
VMM A(OV ™) < (AVM™A )V U™ F < (AAC) VL™ F
for all # = k. Then
AN(BVO) < (AVMMA((BVH™)V(CVM™)
= ((AVM™)ABYVH™)V(AVH™)A(CVH™)
< {AAB)VAAO)V U E
for all # > &, since elements joined with M™ are primary for M. Hence,
AABVO) < />\k(((AAB)V(AA G))vM“‘k) = (AAB)V(AACQ)
n=.
by [4, Cor. 3.2, p. 487]. Hence, L is distributive. Q.E.D.

. TeeoREM 3.2. Assume (L, M) is a local Noether lattice. If M is the
Join of principal .elements M, ..., My which distribute over L, then L is
distributive.

Prooi Ii (E, 0, D)is a distributive triple in which B is principal, then
{(CvD):B|E = (C:B)EV(D:E)E, so (CVD):E= (C:E)v(D:H).

Hence, if F and ¥ are principal elements which distribute over L, then EF
distributes over L. Also, since T is modular, the join of elements which
_ distribute over I distributes over L.
Since M, ..., Mz are principal elements which distribute over I
it follows from the above that joins of power products of My, .. M;Z
distribute over L. However, as in [2, prf. of Thm. 5.1], every p,l'in:)ipal
element is a power product of M, ..., My, so I is distributive. Q.E.D.
) C:OROLLARY. Let (L, M) be a local Noether lattice. If M is the join of
principal elements M, ..., My such that, for each 4, 0: M;= 0 and some
power of My distributes over L, then I is distributive.
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Proof. Assume M distributes over T, t>>1. Let € and D b.e
arbitrary elements of L. Then

MA(M OV M D) = (M4A(MOV M,D): MM, = (MiA(CVD)) M,
and
(M AM,0)V (ME A MDYy = (MA(M,C: M) B,y (MEA(M,D: M) M,
= ((M{AC)V(ALADY) M, .

Hence MiA(CVD)= (MinC)V(MiAD), and L is distributive, by Theo-
rem 3.2. Q.E.D.

In the case of a regular local Noether lattice, we obtain the following
generalization:

THEOREM 3.3. Let (L, M) be a regular local Noether latiice and M, ..., My
principal elements with join M. Assume thal each of the elements My,
i=1, ..., k, has the property that, given B, C ¢ L, there exist natural numbers
r, 8,1 such that (M}, B%, (F) is a distributive triple. Then L 4s, distributive.

Proof. Reduce My, ..., Mz to a minimal base M,,.., M, for M,
so that M., ..., M, form a regular system of parameters. Let E < M be
any principal element of L.

Let g be least such that B is < the join of g of the elements M, ..., M,.
We assume that B < M,V...v.My, and that g > 1. Choose r, 8, % so that
(M7, B®) (Myv...v Mp)) is a distributive triple. Then

(B (MY oV I B = (B BP)V((MoV v LY ).

However, by Lemma 2.7, B is prime to M} and to (M,V...v My)', whereas
B < M,V...v M, which is a prime of MIV(M,V...vM,). Hence g=1
and B < M,. As in the previous theorem it now follows that every princi-
pal element of L is a power produet of M, .., M,, so that I
= RL(M, ..., M,). Hence, L is distributive, by Theorem 2.10. Q.E.D.
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Remarks on the absolute suspension
by

Andrzej Szymanski (Katowice)

Abstract. There is proved that an n-dimensional compact metric space is n-di-
mensional sphere whenever each pair of distinet points is a pair of tops of some suspension
representation and n =1, 2, 3. This is a positive answer, for » < 3, on de Groot’s con-
jecture.

A suspension over Y is a space S8Y formed from ¥ X[—1,1] by
identifying ¥ x {1} and ¥ x {—1} to single points, called the fops of the
suspension (the resulting set being equipped with the quotient topology).

A metrizable compact space will be said to be an absoluie suspension
it for each pair p, q of its distinet points it is a topologically suspension
with tops p and gq. ) :

Tf X is the suspension over ¥, then for F C ¥, we can assume that ¥
and SF are the subspaces of X.

Professor de Groot at the Prague Symposium 1971 asked whether
an absolute suspension is homeomorphic to an #-sphere, whenever it
is m-dimensional. We shall show that this conjecture is true in dimen-
sions 1, 2 and 3. .

Throughout the paper all the spaces will be assumed to be metrie
with the finite dimension in the sense of dim.

As was shown by de Groot in [4], Theorem 2, it suffices to show that
the absolute suspension is a manifold in order to get the solution even
for an arbitrary finite dimension. Thus showing that the abgolute sus-
p engion in the dimensions 1, 2 and 3 is a manifold, is the most important
step in the proof.

Lmyma 1 (Hurewicz; see Kuratowski [2], p. 311). If Y is compact
and dimZ = 1, then dim(¥Y X Z)= dim¥+1.

LenMA 2. If X is compact and X = Y, then Y is compact.

Proof. Sinee ¥ x[— %, 4] is a closed subset of compact space X, it
is compact. Hence Y is compact.
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