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A theory of proper shape for locally
compact metric spaces
by
B. J. Ball and R. B. Sher (Athens, Georgia)

Abstract. The notion of the topological shape of a compactum was introduced by
K. Borsuk in 1968; it may be considered a generalization of homotopy type in the
gense that (1) any two compact metric spaces of the same homotopy type have the
same shape and (2) any two compaet ANR’s which have the same shape are of

_the same homotopy type. Of the several extensions of Borsuk's shape theory which

have been suggested, all retain the applicable versions of (1) and (2) and hence
generalize the notion of homotopy type. For noncompact spaces, however, a more
geometric approach might be to generalize proper homotopy type instead, and one
way of doing this, for locally compact metric spaces, is given here. This notion, called
“proper shape”, agrees with Borsuk’s definition of shape in the case of compacta and
satisties (1) and (2) with “compact’? replaced by “locally compact” and “homotopy
type” by “proper homotopy type”.

1. Introduction. The notion of topological shape was first introdnced
by K. Borsuk ([1], [4]) for eompact metric spaces. The concept has been
extended to arbitrary metrizable spaces by Borsuk ([5], [6]) and by
R. H. Fox [12], to compact Hausdorff spaces by S. Mardedié and J. Segal
([19], [20]), to arbitrary topological spaces by Mardeiié [17], and to
Hausdorff spaces by L. R. Rubin and T. J. Sanders [21]. While these
extensions do not all agree on the overlap of their domains ([15], [22]),
all coincide with Borsuk’s original notion in the case of compacta and
all share with the original theory the property of generalizing homotopy
types, in the sense that any two spaces (in the class considered) which
are of the same homotopy type have the same shape.

In the case of compacta, spaces of the same homotopy type have
a certain geometric similarity, and compacta of the same shape have
a corresponding (global) geometric similarity. For non-compact spaces,
however, homotopy type does not seem to distinguish adequately between
spaces with essentially different geometric properties. The homotopy
type of a point, for example, includes such geometrically diverse spaces
as a closed interval, a line, a ray, the plane, all Buclidean spaces and
half-spaces, the Hilbert cube and Hilbert space, ebc., and thus all these
spaces have the same shape in each of the extensions mentioned above
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{except, of course, that of Marde¥ié-Segal, which does not apply to non.
compact spaces).

The notion of proper homotopy type seems to give a more ap-
propriste geometric classification for non-compact spaces which are
locally nice (e.g., locally compact ANR’s) than does the notion of homo-
topy type, and this suggests that in extending Borsuk’s shape theory
for compacta to apply to non-compact spaces, it might be more appropriate
to retain the property of generalizing proper homotopy types rather
than that of generalizing homotopy types. One way of doing this is given
here, for locally compact metrizable spaces; on the class of all such Spaces,
we define an equivalence relation, “having the same proper shape”, which
satisfies the following conditions:

(1) two compact metrizable spaces have the same proper shape if
and only if they have the same shape in Borsuk’s original sense,

(2) any two locally compact metrizable spaces of the same proper
homotopy type have the same proper shape, and

(3) two locally compact ANR’s have the same proper shape if and
only if they are of the same proper homotopy type.

It follows easily from our definition that (within the class of locally
compact metrizable spaces) a compact space cannot have the same proper
shape as & non-compact Space, nor can a separable space have the same
proper shape as 2 non-separable one. We show also that if X and ¥ are
separable, locally compact metrizable spaces which have the same proper
shape, then their one-point compactifications have the same shape (in
Borsuk’s original sense), and so do their Freudenthal (endpoint) com-
Pactifications FX and PY in case these are metrizable. In particular,
the number of “ends” of a connected manifold or other suitable space
is a proper shape invariant. A (one-direction) analog of Chapman’s charac-

terization [8] of shapes of compacta is also given, as are several results
on sums and partitions of spaces having the same proper shape.

2. Definitions and conventions. Although -many of the congepts dis-
<cussed below are applicable to more general spaces, for convenience we
assume at the outset that all spaces considered are metrizable.

A map f: P—@ is said to be proper if f7Y(0)
compact subset € of Q. It is clear that the comp

maps is proper. It will be useful to note the fo
mentary facts.

is compact for every
osition of two proper
lowing additional ele-

(1) & f: P—Q is a proper map and P’ is a closed subset of P, then
JIP’: P'>Q is a proper map. '

) Ii f: P—@ is a proper map, @ is a closed subspace of Q' and
J: @@’ is the inclusion map, then jf: P—@’ is proper.

. -
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(8) It f: P—@Q is a proper map, Q' is a closed subset of ¢ containing
f(P), and f's P—Q" agrees with £, then f* is a proper map. .}Tote also that
a proper map f: P—@ is necessarily a closed map; i.e., if K is a closed sub-
set of P, then f(K) is closed in @.

Two aps f, g: P—Q are said to be properly homotopic, denoted by
f oz g, if there exists a proper map g: Px I—@ such that (2, 0) = f(x)

&naa @(z,1) = g(») for each z ¢ P. (It is sometimes convenient to ObSGITV(%
that f =2 ¢ if and only if there exists a proper map y: P x I—-Q x I with

p(@, 0){-— (f(x), 0) and p(z, 1) = (f(m), 1) for each z e P. The map p can
he required to be level-preserving; i.e., for each t e T, 'q)(w,.t).sQX{t.}.) Itis
a well known and easily verifiable fact that o~ is a compositive equivalence

P 3

i the same proper homoiopy type if
relation. Two spaces X,Y belong to .

there exist proper maps f: X—Y¥, g Y—X such that gf ~ ix and fg

D
iy, where ix: X—X and iy: ¥Y— Y are the respective identity maps;
=3 £ .

i:f’ only the relation fg o iy is assumed, then X is said to property hometopic-
My dominate Y. » .

“ If Q,, @, and Z are subsets of a space @, then n}a,ps for P—0Qy,

fu: P—Q, are said to be properly homotopic in Z if there is a proper map

qal Px I—Z with ¢(x,0) = f(z) and ¢(z,1) = g(x) for each z < P; this
relation will be denoted by “fy = f; in Z”.

If YCgQ, then maps f, g:pl’—d’ are said to be weakly properly
? B -
homotopic in @ if for every neighborhood V of ¥ in @, f=g in V.

» .

By a directed set we understand a non-empty set A togetlzar tv}gil;
a transitive binary relation > on 4 suc?l that for each 4, zg.m ,r Ihere
is 8 led with A=A, A= 4. It is evident that t‘he cartesm.i pthe et
Ax A of two directed sets is itself a di:re(.:ted- set .Wl’Gh rezpect Wj;)l et
lation (4, 8) = (%9, ) < A = Ay, 6 = & This dmectgg rele-b 101; i
be intended whenever we refer to the product of two dlfree e e 1;_.,Q

A net of maps of P into @ is a family f= {f;] 2 A} of maps f;: ,
indexed by a directed set 4.

3. Separable local compacta. Throughout ‘Fhis sec?n(:}n, fwleI leg if{: ]1;]—8
—{w}, where H is the Hilbert cub(.e a:nd  is & poin of H.
homogeneous [16], the choice of w is immadterial. ' ‘o

3.1. LemmA. Bvery separable locally compact metrizable space X ca
be embedded as a closed subset of K.

Proof. If X is compact, it can be embedded as & ‘proper subse;;aifs
of H; if w;eH—X’, then H—{»'} is homeomorphic to K and . con

’
X' as a closed subset.
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If X is not compact, its one-point compactification X o {7} can
be embedded as a subset X' {p'} of H, and then H— {p'} is homeo.
morphic to K and contains X’ as a closed subset.

In view of Lemma 3.1 and the fact (to be established later) that Proper
shapes arve topologically invariant, it is sufficient here to consider only
the closed subsets of K. Our development in this case will closely paralle]
that given by Borsuk in [1] for compacta. The only essential differenceg
in the definitions are the replacement of the sequence {fi| & = 1,2,.}
of maps fy: H—H by a net {f;| 1 ¢ 4} Of. maps f;: K— K, and the addition
of the requirement (automatically satisfied in the compact case) that
all homotopies involved be proper homotopies on closed neighborhoods,
Many of the basic results will have proofs nearly identical with thoge
which apply in the case of compacta. (Indeed, if one omits the re-
quirement that the homotopies in the definitions Dbe proper, a notion
of shape is obtained which generalizes homotopy type, can be readily
adapted to apply to arbitrary metrizable spaces, and requires virtuslly
1o changes in the proofs of all basic properties; this notion of shape differs
from that given by Borsuk in [5], but may well coincide with the notion
developed by Fox [12].)

Suppose X and ¥ are closed subsets of K. If f= {f;| 1 e A} is a net
of maps of K into K, then the ordered triple ( f_, X,Y) will be called
a proper fundamental net from X to Y (in K) provided that for every
closed meighborhood V of ¥, there exist a closed neighborhood U of X
and an index % ¢4 such that for all indices 4 > A,

U =FflU V.
D

Two proper fundamental nets (f ,X,¥) and (g, X,Y), where
F={fil 2¢4} and g=1{gl 64}, are said to be prgpeﬂy homotopie,
denoted by (_f, X, Y) (g, X, ), if for every closed neighborhood ¥ of Y,

- 2
there exist a closed meighborhood U of X and indices A, e 4, ;e 4 such
that for all 1> 1), 6= &y, .

HlU=glU invV.
P

T f={fil Aed} ana 9=1{gs] 64} are nets of maps of I into I,
then e.leef.ﬂy o = {gfil (1,8) € Ax 4} is a net of maps of K into K. More-
gei, it i easy to verify that it X » ¥ and Z ave closed subsets of I such

at (f, X, ¥) and (9; ¥, Z) ave proper fundamental nets from X to ¥
and from Y to Z, respectively, then (gf, X, Z) is a proper fundamental
net from X to Z; (gf, X, %) is called the composition of the proper funda-
mental nets (f, X, ¥) and (g, Y, 7).
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For directed sets 4, 4, X, we will not distinguish between the products
(Ax4)xZ and AX(4xX), identifying each with A% 4 x X, Hence com-
position of proper fundamental nets, when defined, is associative.

It can be shown, by virtually the same argument as in the compact
ease ([1], p. 232, Th. 6.4) that if (f, X, ¥) =~ (f', X, ¥) and (g, ¥, 2)
= (g, ¥, 2), then (¢f, X, 2) = (¢, X, 5). "

2 »
I fyy E—~K and 4, is the degenerate directed set {0}, then

f=1{fil e} = {50} is a degencrate net, consisting of the single fun-
ction f,. The degenerate net i = {iz} where iz: K—X is the identity map,
is called the identity net (om K). It is clear that for every closed subset X
of K, the triple (¢, X, X) is a proper fundamental net from X to X.
We will use the phrase “f is a proper fundamental net from X to ¥*,
or the nota.tionj : X— 7, to indicate that (f, X, Y)is a proper fundamental
net. When confusion is unlikely, we will use the notation f = g rather

P
than the more cumbersome ( _f, X, Y) = (g, X, Y). In addition, we use ix

to denote the proper fundamental nez (i, X, X).

As in the case of fundamental sequences, the set of all proper funda-
mental nets from X to Y is divided into equivalence classes by the re-
lation of proper homotopy; the equivalence class confaining a given
proper fundamental net f: X— Y will be denoted by [f] and will be called
a proper fundamental class. If we define the composition [g][f] of two
proper fundamental classes [f] and [g], where f: X—Y and g: Y—Z,
to be the proper fundamental class [¢f], then — almost exactly as in the
case of compacta — it is easy to verify that a category is obtained whose
objects are the closed subsets of K and whose morphisms are the proper
fundamental classes. This category, or variants of it, will be the proper
shape category. In particular, two closed subsets X, ¥ of K will be said
to be properly fundamentally equivalent it X and ¥ are equivalent objects
in this category; i.e., if there exist proper fundamental nets f: X—Y
and g: Y—X such that gf o ix and fg = 4p; if only the condition fg = ir

» » »
is assumed, then X is said to properly fundamentally dominate Y. These

relations will be denoted by X ~ ¥ and X > ¥, respectively. It is easy
pF

j24 3
to see that the relation > is transitive and that =z is an equivalence

P pF
relation on the class of cfosed subsets of X (ef. [2], p. 25, Th. 5.2). We
will show that proper fundamental equivalence of élosed subsets of K is
topologieally invariant, and will then define proper shapes for separable,
locally compact metrizable spaces by saying that two such spaces have
the same proper shape if and only if they have embeddings as closed
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subsets of K which are properly fundamentally equivalent. First e
establish some preliminary results, most of which have analogs in the
compact case.

A proper fundamental net f= {f,] 44} is said to be generateq by
s map f: X—Y if for each 1e 4, fi(w) = f(z) for all z e X. Clearly, if
fi X—X generates a proper fundamental net j: X— ¥, then f is neces-
sarily & proper map; conversely, as shown below, every proper map
f: X—Y generates & proper fundamental net f: X—7.

3.2. LEMMA. Suppose P and @ are locally compact metz'izable Spaces,
X is a closed subset of P and f: X—Q is a proper map. If f: P—Q is an
extension of f, there is a closed neighborhood U of X in P such that f |U: U@
18 @ proper map.

Proof. Since @ is locally compact and paracompact, there is a locally
finite cover U = {V, | a e A} of @ by open sets with compact closures,
and since @ is normal, there is an open cover W= {W,| a ¢ A} of Q with
W,CV, for each «.

Let ¥ = f(X). Since f: X—@ is a proper map, ¥ is closed in Q. For
each ae 4, let ¥,= Y~ W, and let X, = f*(¥,); since ¥, is compact
and f is proper, X, is compact. Hence, since f (X,) = ¥,C W, C V., there
is & compact neighborhood U, of X, in P such that F(U,)C V,. Since
{V.l @ e A} is locally finite in @, {U,| a .4} is locally finite in P and it
follows that U= J U, is a closed neighborhood of X in P.

eed
If C is & compact subset of @, then ¢ ~V, = @ for all but a finite
number of indices a in 4, and hence f~*(0) intersects at most a finite
number of the U/s. Thus (F{T)"(0) is a closed subset of the union of
o finite number of compact sets and hence is compact. Therefore f|T:
U—@ is a proper map. ‘

3.3. CororLARY. If X and Y are closed subsets of K, then every proper
map f: X~ generates a proper fundamental net f: X— 7.

Proof. Let j: ¥—X& be the inclusion map. Since K is an AR, jf: XK
can be extended to a map f: K— K. Since if is a proper map, it follows
from Lemma 3.2 that there is & closed neighborhood U of X in K such
that f |U: U—X is a proper map. The degenerate net {f} is then a proper
fundamental net from X to ¥ generated by f. '

The proof of the next lemma is modeled on the argument given for
Lemma 4.2 of [1]; some care is needed to insure that the homotopy of the
conclusion is proper. -

3.4. Leanva. Tet P be a locally compact metrizable space and Q a Tocally
compaci ANR. Suppose X is o closed subset of P and f, g: X—Q are maps
which are properly homotopic in a closed subset 7 of Q. If f, §: P—Q are

) ©
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emtensions of f and g, respectively, and V is o closed neighborhood of Z in @,
then there is a closed neighborhood U of X in P such that flU=gIUm7T.
»

Proof. Let V; be a closed neighborhood of Z in ¢ such that ¥V, C IntV.
By Lemma 3.2, there is a closed neighborhood U, of X in P such thab
{1U, and §|U; are proper maps; since ¥, is a neighborhood of §(X) U § (X)
in @, U, may be chosen so that f(U,) v g (T, CV,.

Let g: X X I—Z be a proper map such that

o, 0)=f(#) and o, 1)=g(z) for every zeX.

Let T'= (U X {0}) v (XXI)u (Ux{1}), and define a map w: TV,
by setting :

w(z,t) =@(z,t) for (z,f)eXXI,
p(@,0)=F(2)  for (z,0)eU;x{0}, and
p@,1)=g(@  for (z,1)eU;x{1}.

For each compact subset C of Vy, »~(C) is the union of the compact
sets (F|U1)7H(0) x {0}, ¢7(0), and (§]Uy)7(0) x {1}. Hence p: T—T, is
a Proper map. :

Let y' = jy, where j: V,—IntV is the inclusion map. Since 7, is
closed in IntV, »': T—IntV is proper. Since T is a closed subset of U; x I
and IntV is an ANR, there exist an open neighborhood @ of T'in U, x I
and an extension of v’ 0 a map ¥: G—IntV. Since @ and V are locally
eompaeﬁ, T is a closed subset of @ and ¥: @—IntV is an extension of the
proper map ¢’: T—IntV, by Lemma 3.2 there is a closed neighborhood
of T in @ such that ¥|Gy: G,—IntV is proper.

Let V, be a closed neighborhood of V, in @ such that V,C IntV,
and let U be a closed neighborhood of X in P such that UX IC & and
Y(UXI)CV,. Let &= ¥Y|UxI. Since UxI is closed in G, &: UXI
—IntV is proper. Let @': UxI—V agree with @; since (Z*(UX.I)C‘V2
and V, is a closed subset of ¥, @' is & proper map. Sinece U C Uy, it easily
follows that &'(z,0)= f (») and @'(z,1)=-g (») for every z < X. Hence
FlU=GUn V.

;5. Lemya. Suppose X and Y are closed subsets of K and f, g: X — Y‘
are weakly properly homotopic maps. If f, g: X— Y are proper fundamental
nets generated by f and: g, respectively, then f % g

Proof. Let f= {fyl Ac4} and g=-{gl ded}, and suppose V is
a closed neighborhood of ¥ (in K). Since f and g are proper fundaa.nel?tal
nets from X to ¥, there exist a closed neighborhood U, of X and indices
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Jpedy doed such that for 2> 2o, fol Uy = f,|Uy in ¥ and for 6> 4,
»
95l Ur 22 9,/ U1 In V.

Lgb j: ¥—K be the inclusion map, and let f' = jf, ¢’ = jg. Let V' be
& closed neighborhood of ¥ such that 7' C IntV. Since f and ¢ are weakly
properly homotopic in K, f* =< g in V. Since f, is an extension of f', 95,

»
is an extension of ¢’ and ¥ iz a closed neighborhood of V’, it follows from
Lemma 3.4 that there is a closed neighborhood U of X such that

FulUs2g,lU in7V.
D

Clearly U may be chosen so that U C U,, and then for 1> 4, and § > 3y,
FlT e f,|U = g,|U 2 g,|U, allin 7V,
¥4 » »

and it follows that f =~ g.

»
3.6. LeMMA. If X and Y are closed subsets of K and f,g: X—¥
generale proper fundamental nets f: X— Y and g: X— Y, respectively, such

thai f = g, then f and g are wea,kiy properly ho';wtopic in K.
=g g
P

3.7. Lemma. If Y s an ANR embedded as a closed subset of a locally
compact metrizable space P, then there exisi a closed neighborhood W of ¥
in P and a proper map r: W—Y such that r(y) =y for each Yy eX; ie.,
7 is a proper retraction of W to ¥. Moreover, for every closed neighborhood
Vof X in P with VC W, there exist a olosed neighborhood V'’ of Y inV and
a proper map ¢: V'X I—V such that ¢y, 0)=y ond oy, 1) = r(y) for
each yeV'.

Proof. Since Y is an ANR, there exist a cloged neighborhood W’
of ¥ in P and a retraction r of W’ to Y. Since W’ and ¥ are locally com-
pact metric spaces, ¥ is a closed subset of W’ and »: W'— ¥ is an extension
of the identity map iy: Y-¥, it follows from Lemma 3.4 that there is
a closed neighborhood W of Y in W', and hence in P, such that r|W:
W—Y is proper.

Suppose V is a closed neighborhood of ¥ in W. There exist a closed
neighborhood V' of ¥ in ¥V and a homotopy ¢: V"X I—V such that
9, 0)=y and ¢(y, 1) = r(y) for every y e V", and ¢(y, 1) = y for every
yeX, tel (cf. [2], Lemma 3.8 or [1], Lemma 5.2).

Let T' denote the closed subset (V"X {0}) v (XX I)u (V"' x {1}) of
V" xI. Since

U=y for (y,0)e(V'x{0})u (T xI)
and

W, D =r@y) for (y,1)eV'x{1},

@ © '
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p|T: T—V is a proper map. Hence by Lemma 3.2, there is a closed neighbor-
hood G of T'in V"' X I such that ¢|G: G-V ig proper. Let 7’ be a closed
neighborhood of ¥ in V" such that V' % I C U. Then eV x It V' IV
is a proper mayp satisfying the desired econditions.

3.8. COROLLARY. If X and Y are closed subsets of K, Y is an ANR,
and the maps f, g: X— Y are weakly properly homotopic in K, then f ~ g.
B D

Proof. By Lemma 3.7, there exist a closed neighborhood W of ¥
and a proper retraction r of W to Y. If @ X X I—-W is a proper homotopy
joining f and ¢ in W, then rp: X x I—Y is a proper homotopy joining f
and g in Y.

3.9. TeeOREM. If X and Y are closed subsets of K and ¥ is an ANR,
then every proper fundamental net from X to Y is properly homotopic to one
generated by a map (i.e., every proper fundamental class [f]l: XY is gener-
ated by a map f: X—7Y). -

Theorem. 3.9 can be proved by an argument essentially identical
to that for Theorem 3.7 of [2], using the above Lemma 8.7 in place of
Lemma 3.8 of [2] to guarantee that the homotopies involved are proper.

3.10. TemoREM. If X and Y are closed subsets of K which are of the
same proper homotopy type, then X ~ Y.
pF

Proof. Let f: X— Y and g: ¥—X be proper maps such that gf o~ ix
»
and fg o iy. By Corollary 3.3, f and g generate proper fundamental

i .
nets f: X —¥ and ¢g: ¥ —X, respectively. Since gf is generated by gf and ix
ig ge—nera.ted by ix, it follows from Lemma 3.5 that gf = ix. Similarly,
D

fo = iy, and hence X ~ ¥.
B 4 oF

3.11. Remark. It clearly follows from the argument for Theorem 3.10
that if X properly homotopically dominates ¥, then X %«* Y.

b2

From 3.10 and 3.11 we obtain immediately that if X, X', ¥, ¥’ are
closed subsets of K with X homeomorphic to X’ and ¥ 1‘10meomorph1_c
to Y', then X ~ ¥ if and only if X'~ ¥’ and X > ¥ if and only if

oF oF YT oF
X' > Y'. Thus we may make the following definition:
R

Two separable, locally compact metrizable spaces are sa.id' to have
the same proper shape, Shy X = Sh,Y, if and only if there exm‘: closed;
subsets X', ¥’ of K with X homeomorphic to X’, ¥ homeomorphic to ¥
and X'~ Y.

oF

6 — Fundamenta Mathematicae T. LXXXVI


GUEST


172 B.J. Ball and R. B. Sher

Similarly, we say that ShyX > Sh,Y if there exist closed subsets

X’, ¥’ of K homeomorphic to X and ¥, respectively, such that X’ = v,
pE

3.12. Taeorm. If X and Y are locally compact separable ANR,
then Shy X = Sh,Y if and only if X and Y are of the same proper homotopy
type, and Shy X > Sh,Y if and only if X properly homotopically dom-
nates Y.

Proof. Suppose Shy X = Sh, Y and assume X and Y are, embedded
a5 closed subsets of K. Then X o~ ¥ and hence there exist proper funda-

pF
mental nets f: X—Y, g: Y—X such that _gfg ix and_fg = 1y. By Theo-

» P
rem 3.9, there exist proper fundamental nets _f’: XY, _g’: Y—X such
that f' =~ f and ¢’ =~ ¢, and such that f’ is generated by a map f: X—¥

? .
and ¢’ is generated by a map g: Y—X. Since 9T =2 gf = ix and g7 is

» »
generated by gf and ix is generated by ix, it follows by Lemma 3.6 that
gf is weakly properly homotopie to ix in K; since X is an ANR, this implies,
by Lemma 3.8, that gf = ix. Similarly, fg o iz and it follows that X

D
and Y are of the same Zi)roper homotopy type. The proof that proper
shape domination implies proper homotopy domination is implicit in the
above argument, and of course the converses follow from Theorem 3.10
and Remark 3.11.

Remark. If X and Y are closed subsets of K and f= {f,| 1ecA}
is & proper fundamental net from X to ¥, then X is compact if ¥ is; to see
this, it is only necessary to consider a compact neighborhood ¥V of ¥ and
observe that for some e, f,(X)CV and il X: X—K is a proper
map, whence X = (f,|X)"(V) is necessarily compact. In particular, no
compact space can have the same proper shape as a non-compact space,
nor can any compact space properly fundamentally dominate or be
dominated by a non-compact space.

3.18. Lemva. If X and ¥ are compact subseis of K and f

={filk=1,2,..} is o fundamental sequence (in the sense of [2]) from X
to Y in (K, K), then f is also a proper fundamental net from X to X. More-
over, any two homotopic fundamental sequences from X to ¥ are properly
homotopie.

Proof. Suppose V is a closed neighborhood of ¥ and let V, be
a compact neighborhood of ¥ with ¥, CV. Since f is a fundamental
sequence from X to ¥, there exist a closed neighborhood U of X and
& positive integer &, such that for & >k, f|U o iU in V. Let U, be
& compact neighborhood of X with U, C U. Then for & = Ky, fi| Uy = Tl Un
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in ¥y, and since U, and ¥V, are compact, fz|Uy = f,, 1T, in V,. The proot

of the second part of the theorem is analogofm.

3.14. LEMMA. If X and Y are compact subsets of K, then every proper

fundamental net from X to ¥ is properly homotopic to a Sundamental se-
quence from X to X.

Proof. Supposehf = {fil 2ed} is a fundamental net from X to Y.
Sinee Y is compact, there is a cofinal sequence V3% of closed neighhor-
hoods of ¥ in K. It is easy to obtain a sequence {U}%.; of closed neighbor-
hoods of X and an increasing sequence {4} of elements of 4 such that
for each 1,

flUi=flUs  in Vi, for all indices 4> J;.
»

Hf = {fil ¢=1,2,..}, it readily follows that f* is a proper fundamental
net (and hence a fundamental sequence) from X to Y, and that f' =~ f.
E gt

3.15. TEmOREM. If X and Y are compact subsets of K, then Shy X
= 8h,Y if and only if ShX = ShY.

Proof. If ShX = ShY, there exist fundamental sequences f: XY
in (K, XK) and g: ¥->X in (K, K) such that of == ix and fg g_iy. By
Lemma 3.13, f and g are also proper fundamental nets from X to ¥ and
from ¥ to X, respe—ctively, and gf o= éx, fg = iv. Hence Sh, X = Sh, Y.

» »
Conversely, suppose ShyX = Sh,Y and let f: X—Y and g: T—X
be fundamental nets such that gf ~ ix and fy ~ iy. By Lemma 3.14,

» »
there exist- fundamental sequences f': X—¥ and g: Y—X such that
f=f" and g=~y¢'. Then ¢ =gf ~ix and f'¢’ ~fg =6z, s0 ShX
it =9 75 =49 9 =l
= ShY.

4. One-point and Freudenthal compactifications. Throughout this section
we shall continue to restriect our attention, unless otherwise stated, to
separable, locally compact metrizable spaces. If X is such a space, we
shall let 0X = X o {co} denote the one-point compactifieation of X.
It is well known that 0X is metrizable (e.g., [10], p. 247). If ¥ is another
such space and f: X—Y is a proper map, then f has a unigue extension
o' a map of pairs Of: (0X, {co})>(CY, {co}).

Recall that if M and N are topological spaces, f: M —XN and g: M—N
are mapy, and M,C M, then f and g are homotopic rel M,, denoted f
=2 grel My, if there exists a homotopy ¢: M X I— XN joining f and g such
that for m e M, and t e I, o(m, t) = f(m) = g(m).

6%
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The following facts, which are incorporated into a lemma for con-
venience, are immediate.

41. Levma. (a) If X is a locally compact, separable metrizable space,
then Gix = 'ECX'

() If f: XY and g: Y—Z are pioper maps between locally compact,
separable metrizable spaces, then C(gf) = (0g)(Cf).

(¢) If f: X—Y and g: X—Y are proper maps between locally compact,
separable metrizable spaces and f = g, then Cf o Cgrel { o0}

o

The interval (0, 1) has two ends while [0, 1) has one. The geometric
appeal of this statement is evident, and is made precise by the well known
theory of ends due to Freudenthal ([18], [14]). This theory is of funda-
mental importance in geometric topology and has appeared in a variety
of contexts; in this section we shall show, among other things, that the
number of ends of a locally compact, connected, separable metrizable
space is a proper shape invariant.

Tn [14], Freudenthal defines, for sufficiently nice metrizable spaces X,
the set of ends of X and the compactification of X by its endpoint set;
these sets will here be denoted by BX and FX = X u EX, respectively.
The necessary conditions on X are (1) X is separable, (2) X is semi-compact
(i.e., each point of X has arbitrarily small neighborhoods with compact
boundary), and (3) QX, the space of quasi-components of X, is compaet.
The space QX is defined in a natural way (see [14, Section 5]), and we
simply remark here that the compactness of QX is equivalent to the con-
dition that every decreasing sequence of nonempty open-closed subsets
of X has nonempty intersection. Condition (3) is not required in order
to define F.X, but is necessary in order that FX be metrizable.

While we shall omit here the precise definition of the set EX, we
shall make use of the fact, proved in [14], that F'X is characterized, among
compactifications of X, by the following properties:

(a) BX is 0-dimensional, and

(b) no open neighborhood of a point ¢ ¢ EX is separated by BX into
two sets each of which is open in X and each of which has e as a limit point.

Perhaps it should be remarked that in many recent investigations,
[13] has been used as a reference for the theory of ends. Actually, [13] ap-
plies only to locally connected spaces and is not adequate for the more
general case considered here. Of course, the construction of [14] reduces
to that of [13] in the locally connected case.

4.2 LEMMA. Suppose X and ¥ are locally compact, separable melriz-
able spaces, that QX and QY are compact, and that f: XY is a proper map.
Then f has a unique extension to o map of pairs Ff: (FX, BX)—(FY, BY).

Proof. Suppose {#;}%2, is a sequence of points of X converging to
e BX. Then {f()}, has an accumulation point ¢’ e FY and, since f is
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proper, ¢ € EY. Suppose now that ¢’ # ¢ is also an aceumulation point
of {f(ri)}7=,. Since ¢’ and e" are distinet endpoints of ¥, there exist dis-
joint open neighborhoods Uy and U, of ¢ and ¢, respectively, in FY,
such that the boundaries of U, and T, in FY are compact subsets of Y.
Then, since f is proper, f~U,w U,) =TV, is an open set in X whose
poundary in X is compact. It follows that

V-="V,u{zeBK| 2 is a limit point of V,}

is an open neighborhood in FX of e. But V— EX is the union of two
disjoint open subsets of X, namely f~'(T;) and f~U,), each having ¢ as
a limit point. This is a contradiction, so {f(#:)}%, has precisely one accumu-
lation pcint, ¢', in FY and, by the same argument, ¢ is independent of
the choice of the sequence {w}y.,. Thus we may define Ff by letting
Ff(e) = ¢'. It is easy to see that the resulting function is eontinuous and
carries the pair (FX, EX) into the pair (FY,EY).

4.3. LEMMA. (a) If X is a locally compaci, separable metrizable space
and QX is compact, then Fix = igpx.

(b) If f: X—>Y and g: Y—Z are proper maps between locally compact,
separable metrizable spaces, where QX, QY, and QZ are compact, then F(gf)
= (Fg)(Ff)-

(¢) If f: XY and g: X—Y are proper maps between locally compact,
separable metrizable spaces, where QX and QY are compact, and f=g,
then Ff o~ Fgrel BX. ?

Proof. Parts (a) and (b) are immediate. Suppose ¢: XX I—-Y is
a proper homotopy joining f and g. It will be shown that for each ¢ el
and ¢ ¢ BX, Ff(e) = Fole). It easily follows that if &: FX X I-FY is
defined by @ (2, t) = Fo,(z) for e;ach 2z e X and ¢ e I, then @ is & homotopy
from Ff to Fgrel ZX. For simplicity, we may assume ¢= 1.

Supposing now that for some ¢ ¢ BX, Ff(e) # Fg(e), let U be an open
neighborhood in FY of Ff(e) such that Fg(e) ¢ C1U and the boundary
of U in FY, BAT, is 2 compact subset Jf ¥. Now let {#:};2, be a sequence
of points of X converging to e such that if i=1,2,.., then f(@) e U
and g(z;) ¢ U. Tt follows that if ¢=1,2, ..., there exists #; e I such that
@ (@, t:) « BAU, but this contradicts the fact that ¢ is proper.

Tn order to state the results of this section in the strongest possible
form, we digress momentarily to give strengthened versions of the notions
of fundamental sequences between pairs and relative shape [of. 1]. In the
following paragraph then, all pairs are compact Pairs in the Hilbert
cube H; details are omitted since they follow precisely as in [1] with the
obvious modifications.

A fundamental sequence o from (X, Xy) to (X, Xo) rel X, is a sequence
{fi., ‘of maps fi (H, Xo)—(H, ¥,) such that for each neighborhood ¥

=1
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of ¥ in H, there exist a neighborhood U of X in H and an integer 4, > 0
such that if ¢ = 4, fil U o2 f;,| U rel X,in V. Two such sequences, a = {f;}®,
and g = {g:}5., are homotopic rel X, if for each neighborhood V of ¥
in H, there exist a neighborhood U of X in H and an infeger i, > 0 such
that if >4y, filU == ¢:|Uzrel X, in V. This being the case, we write
a o= frel X,. Homotopy rel X, is an equivalence relation on the funda-
mental sequences from (X, X,) to (¥, X,)rel X,. Compositions are de-
fined as usual, and respect equivalence classes. Letting : denote the
sequence each term of which is the identity map on H, we say that (X, X,)
and (Y, ¥,) are fundamentally equivalent vel (X,, ¥,) if there exist a funda-
mental sequence o from (X, X,) to (¥, ¥,)rel X, and a fundamental
sequence § from (Y, ¥,) to (X, X,) relY, such that fa = ¢rel X; and
aff =~ rel ¥,. For this, we write

(X, Xo) % (¥, Yo) rel (X, Xy) -

As expected, an equivalence relation is obtained and, if the pairs (X, X,)
and (X', X;) are homotopically equivalent rel (X,, X;), then (X, X,)
(X', Xg)rel (X, X;). The latter follows from the facts, to be used

o2
F

subsequently, that & map (X, X,)—(Y, Y,) generates a fundamental
sequence from (X, X,) to. (¥, ¥,) rel X, that two homotopic such maps
generate homotopic fundamental sequences rel X;, and that the assign-
ment preserves compositions up to homotopy rel X, and carries [4] to [z].

It follows, in particular,.that if (Z’,Z,) ~ (Z”, Z;') are compact
pairs in H, then (Z, zg)%(z", Zy') rel (Zy, Z;). Hence, if (X, X,)

and (Y, Y,) are compact metrizable pairs, we may write Sh(X, X,
= Sh(Y, ¥,) rel (X,, ¥,) provided there exist homeomorphic copies
(X', X;) and (¥, ¥,) of (X, X)) and (¥, Xy), respectively, in H so that
(X', Xp) % (Y, ¥y) rel (X, X;), and a well-defined equivalence relation
results. In the obvious way, Sh(X, X,) = 8h(Y, T,) rel (X,, ¥,) is also
defined.

It should be remarked that if Sh(X, X,) = Sh(¥, ¥,) rel (X,, T,),
then (X, X,) and (¥, ¥,) have the same shape as pairs in the sense of 11,
and therefore [18, Remark 1] in the sense of [19], which (as shown in [18]1)
differs from that of [1]. The converses are not true, however.

Now, for convenience in stating our results, we shall define several
categories and functors.

The category %,. The objects.of 38, Ob (%,), are the locally compact,
separable metrizable spaces. If X, ¥ « Ob (%,), then the morphisms from
X t0. ¥, ¥,(X, ¥), are the proper homotopy classes of proper maps from
X to T, with composition defined in the usual way.

icm°®
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The category &,. &, is the full subcategory of 3, whose objects are
those X e Ob(#;) for which QX is compact.

The category 3,. The objects of 3, are the compact metrizable pairs.
If (X, X,) and (Y, ¥,) are tiwo such pairs, then 36,{(X, X,), (¥, T,)) con-
sists of the homotopy classes rel T, of maps from (X, X,) to (Y, T,),
with composition defined in the usual way. '

The category 8;. The objects of 8, are the locally compact, separable
metrizable spaces. To each X ¢ Ob(S;) assign a closed subset X’ of K
= Hx[0,1) so that X ~ X'. Then, if X, ¥ ¢ Ob(S,), S,(X, ¥) consists
of the set of proper fundamental classes (of proper fundamental nets)
from X’ to ¥’ in K. Composition is defined as in Section 3.

Of course, §,(X,Y) depends on the choice of X’ and ¥, but the
isomorphism class of 8; is independent of this choice; this follows from
the comments following 3.11. Also by this remark, we shall simply regard
each X € Ob(8;) as being a closed subspace of K in the remainder of this
section. It is easy.to verify that if X « Ob(8,) and QX is compact, then X’
can be chosen so that the closure of X' in H, = H x [0, 1] can be identified
with F.X. For technical reasons (e.g., the proof of Theorem 4.5) we shall
suppose X’ has been chosen in this way.

The category gl. §1 is the full subeategory of 8§; whose objects are
those X ¢ Ob(S8,) for which @X is compact.

The category S,. The objects of 8, are the compaect metrizable pairs.
To each (X, X;) e OD(S,) assign & closed pair (X', X;) in H so that (X, X,)
2 (X', X;). Then, i (X,Xy), (Y, ¥,)ec0b(Sy), 8{(X,X,),(Y,T,) is
defined to be the set of homotopy classes rel X, of fundamental sequences
from (X', X;) to (X', ¥g) rel X;. As above, the isomorphism class of §,
is independent of the choice of (X', X;), and for simplification we shall
usually regard an object of 8, as being a compact pair in the Hilbert cube.

Perhaps it should be pointed out that Shy X = Sh,Y if and only
if X and Y are equivalent objects in the category §; and Sh(X, X,)
= Sh(T, ¥,) rel (X,, ¥,) if and only if (X, X,) and (¥, Y,) are equivalent
objects in the category §,.

The functor 8y: 38,—8,. Define Sp by S(X) = X for each X ¢ Ob (%)
and Sp([f]) = [f] for each f e #,(X, ¥), where f is & proper fundamental
net generated I;y f. (Here, and later, we shall use [ ] for the equivalence
class of an object mnder an equivalence relation. The relation will not
usually De explicitly mentioned, but will always be made - clear from
context.) That 8, is well-defined and a functor follows from the results
of Section 3.

The functor 8p: £,—8,. Sp is the restriction to R, of 8p.
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The funcior Fng: 32— 8a. Define F,y on Ob(X,) by Foo((X,X,)
= (X, X,) for each (X, Xo) € Ob(%,). T [f]e WX, Xo), (¥, X)), define
Foul[f]) to be [al, where « is a fundamental sequence from (;T , Xo} to
(T, Ty) zel (X, To) generated by f. By our earlier remarks of this Section,
Fy is well-defined and is a functor.

The functor ®: 3&,—X,. Define & by &(X) = (0X, {c0}) for each
X < Ob(se,) and O(f]) = [Of] for each [f]e %,(X,Y). By Lemma 4.1,
& is well-defined and a functor. N

The functor &: J,—%,. Define @ by (DSX)= (FX, BX) for each
X cOb(R,) and B([f]) = [Ff] for each [f]e Fy(X, Y). By Lemma 43,
& is well-defined and is a functor.

With the above machinery now at hand, we are able to state the
main results of this section.

4.4, TEEOREM. There exisis a funclor ¥: 8;—8, such that the following
diagram s commutative.

Jel_z._> 362

= Spj/ lF rel

Sy

4.5. TasoreM. There exists a functor : §,—8, such that the following
diagram is commutative.

'3
'—'_>Je.z

&,
8p i lF rel
8,

—8

Before proving Theorems 4.4 and 4.5, we pause to note the following
corollaries.

4.6. CoroLLARY. If X and Y are locally compact, separable metrizable
spaces and Shp X = ShpY, then

Sh(0X, {e0}) = Sh(CY, {oo}) rel ({oo}, {ec}) .

The following is @ corollary to Corollary 4.6 (see [1], Section 12).

4.7. CorOLIARY. If X and Y are locally compact, separable metrizable
spaces and Shp X = Sh, Y, then the pointed compacta (CX, oo) and (0Y,)
have the same pointed shape. .

4.8. CoroxrAwY, If X and Y are locally compact, separable metrizable

spaces with QX and QY compact and Shy X = Sh, Y, then Sh(FX, BX)
— Sh(FY, EY)rel (EX, BY).

icm°
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4.9. QOROLLARY. If X and Y are locally compact, separable metrizable
spaces with QX and QY compact and Shy,X = Sh, ¥, then EX ~ EY.

The following is a corollary to Corollary 4.8 (see [1], Section 8).

4‘10.. COROLLARY. If X and Y are locally compact, separable metrizable
spaces with QX and QY compact and Shy X = Sh, Y, then the pairs (X, BX)
aond (FY, EY) have the same shape.

There are obvious analogs of each of the above corollaries (except
4.9) with the notion of equivalence replaced by that of domination in
each case.

For the definition of Z-set, see [8].

4.11. CorOLLARY. Suppose X and Y are Z-sets in K and ShpX
= 8h,Y. Then E—X ~ K—Y.

Proof. It follows from Corollary 4.6 that (X and CY are fundament-
ally equivalent in CK. Also, 0X and CY are Z-sets in K, so according
to Chapman [8], OK—(CX =~ (K—(0Y. But CK—CX=K—X and
(K- (0Y =EK-Y.

The converse of Corollary 4.11 does not hold, as shown by taking X
to be 2 triod less two endpoints and ¥ to be a “circle with a sticker” less
the endpoint of the “sticker”. For suppose X and Y are embedded as
Z-sets in K. Then X and OY are Z-sets in CK and Sh(CX) = Sh(CY).
By [8], OK— 00X ~ (K— (0Y, 50 K—X ~ E—Y, but Shy(X) # Shy(¥).
Another example is afforded by 4.14.

Borsuk has shown [1, p. 236] that among plane continua. there are
only countably many shapes. By the following, the analog of this result
does not hold for proper shapes.

4.12. CoROLLARY. There ewists an uncountable collection of closed
conmected subsets of the plane mo two of which have the same proper shape.

Proof. Let I denote an arc in the 2-sphere &2, We identity the
plane with S2—T. There exists an uncountable family {Z,] aed} of
(countable) compact 0-dimensional sets in I so that it o # a5, then
Z, # Z,. It is easy to construct, for each ac 4, a 1-dimensijonal eon-
nected set X, C S*—I so.that the pairs (X,v Z,, Z,) and (FX,, BX)
are homeomorphic. By Corollary 4.9, if a; # o, then 8hy(X,,) # Shy(X,,)-

The following result will be necessary for the proof of Theorems 4.4
and 4.5. We note that its proof is quite similar to the proof of Proposi-
tion 4.7 of [12] and of Lemma 4 of [20].

4.13. Lmvma. Suppose given the following data:

a) closed pairs (X, X,) and (¥, ¥,) in H;


GUEST


®
180 B.J. Ball and R.B. Sher Im@)

b) closed sets 4,0 A;D 4,0 .0 X =) A;, and closed sets B,DB,
i-1
DB;D..0Y = By
=1

maps fis (Aiy Xo)—(Bs, X,) such that for ¢=1,2,3, ey fild,
= [ 76l Xy in B, : e

Then fhero exists a wnique (up to homotopy rel X,) fundamental sequence
@ = {f}is from (X, X,) to (¥, ¥,) rel X, such that fyld; = f;.

Proof. Let' H=V,DV,2¥%;D... be open sets in H such that

¢

<=

:‘1 Vi=Y and B;CV; for ¢=1,2,3,.. Let f,: H—H be an extension
of f; and let U, = H.
~ Now suppose, inductively, that £,f,..,fi: H—H and closed

neighborhoods U, D U,D..D U, of 4,0 4,0 ...0 4, , respectively, have
been defined so that

(D) f; is an extension of f;,

(i) #f L<i<j<h<wn, then f}|T: o f,|Uirel X, in ¥y, and

(1) fa(Tn) C V.

Now, foe = fuldpy 16l Xy in B, C V. Hence, by (iii) and the
Borsuk extension theorern [3, p. 94], we may extend farr 1o a map
gnt Up—7V, such that Gn o f;lUn rel X, in V,. Now suppose, inducting
downwards, that g, has been extended to a maP ¢m: Up—Vp, where
1<k<mn, such that if m <i<n, gu|Us = f,|U;rel X, in V;. By (ii)
and the Borsuk extension theorem, we may extend gm G0 a map ¢, _,:
‘Umd—‘»Vm_l such that g,,_, o f,|U, _ el X, in V, _1- Continuing mt_hle
Induction we obtain g;: U,—V, and we let 91= Fpiz- l

It is elear from the construction that {f3%., is a fundamental se-
quence from X to ¥ rel X,. To show uniqueness, suppose {7;}5, is a funda-
mental sequence from X to ¥ rel X, such that for m; 1,2,38
ff]4;= fi=fjl4:. Let V be an open neighborhood of Y. T]:’uan7 tl’tnt;;é
exists a neighborhood W of X and a positive integer j, such that if > j,
flw 'g_‘f,-nﬂerelXo in V and f|W =J \Wrel X, in V. Let 4, = b(;
a positive integer so that B;,CV and 4, CW. Let o

F=Wx{0}uvd,xIu Wx{1}CwxI.
Define h: F—V by
fol) i =0,

h@, ) =1 fo@) # oed,,
fal®)  # t=1.
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Then, since ¥ is an ANR, & extends to a map of R into V where R is
a neighborhood of F in W x I. Now, let U be a neighborhood of X such
that UxICR. Then, if ¢ >4,

FlU e fol U = F;|U =Fi|Urel X, in V.

Hence, {f’l}fﬁ-——l = {fifi el X,

Proof of Theorems 4.4. and 4.5. We explicitly prove Theorem 4.5.
The same proof suffices for Theorem 4.4 upon replacement of & by ¥,
#, by H,= O(Hx[0,1), FX by OX, BX by {cc}, ete.

-Suppose X € Ob(8,). Define F(X) to he the pair (FX,EX). Now
suppose Y e Ob(gl) and [_f] € SNI(X, ¥Y). Recall that we are regarding X
and Y as closed subspaces of K= HXx[0,1) with the property that
01X in H, = H x[0,1]is F.X and C1Y in H, is PY. Suppose f = {f,| 4 ¢ A}
is @ proper fundamental net from X to Y in K. h

Let B;D B,D B,D ... be closed neighborhoods of ¥ in K so that
ﬁ B,=Y and, it ¢=1,2,.., then FB;= ClB; in H,= B, BY. This
f;’;ter condition can be guaranteed by taking each B to be the union of
a locally finite countable collection of closed Hilbert cubes in K each of
which interseets ¥ and whose elements form a null-sequence. Denote
FB; by B;. Now, since f is a proper fundamental net, there exist a closed

neighborhood A; of XinK and 7, € A such that if 2> A, fil 4] == f;, |4,

k4
in B;. We may suppose in addition that A; lies in the 1-neighborhood
of X in K and that F4, = Cl4; in H,= 4; v EX.
This begins the inductive construction of a sequence 4;2.4;D 43D ...
of closed neighborhoods of X and indices A < 7, < 4 <t ... such that if
i=1,2,.., then

(i) Al lies in the ~-neighborhood of X in I,
[

(ii) Fd;= Cl4, in Hy= Ajv BX, and
(ili) if A= A, then f|A; ~f, 4] in Bj.

»

Now, denote FA; by A; and let fi: {A¢, BX)—(B:, EY) be the map
F(f,|4}). Then, by Lemma 4.13, there exists a unique (up to homo-
topy rel BX) fundamental sequence o= {f}%, from (FX,EX) .to
(FY, BY)rel BX such that if i=1,2,.., then fildi=7fi. We define
Z([fD) to be [a] B .

Tof course,” we need to show that [a] is independent of the chome;s
made during the construction of a. To this end, suppose g: X—Y i8

a proper fundarental net such that f o g, where g = {gs| 6 1}. Suppose
o, . - p .
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D;DD,2 Dy ... are closed neighborhoods of ¥ in K so that ﬁo D=7,
~ i=1

and if i= 1,2, ..., then FD;= ClD; in H,= D; v EY. Suppose ¢, (!

D C.D ... are closed neighborhoods of X and 6, < 6, < & < ... are indic e;

such that if 1=1,2, ..., then

1
(i) O; lies in the Z7-,neighborhood. of X in K,

(i) PO, = C1C; in H,= 0} v BX, and
(iii) if & > 6;, then g,|C; = g,,|0; in D
»

Let 0y=F0;, Di=FD}, gi: (i, BX)— (Di, B¥) be the map
F(g,l0;). Let § = {g;}72, be a fundamental sequence from (FX, EX) to
(FY,EY)rel EX such that if i=1,2, ..., then §,/Ci= g;. It is neces-
sary to show that a =~ frel EX.

Let ¥ be an open meighborhood in H, of BY. Let & be a positive
integer and let 4,>>% be a positive integer so that B; w Dj C V. Let
Bj, v D;, = V’. Then, since f o g, there exist indices 4, and &, and a cloged

. 0 ?
neighborhood W’ of X in K such that if 1> 1, and 6 = d,, then
flW = glW’ in V. We may also suppose that A, = Ayyy Og=0,, W
o 0
CAin 0, and FW' = CIW’' in Hy= W'u EX. Then

Ful P 2f W m V' (since k>4, W' CAi, B, CVY),

GuW' = g [W' V' (since 8> b, W' C G, D, C V),
Tl W o2 g |W' in V' (since Jy >y, 6= &) .
P
Hence, f‘a.,lW’ % 9,/ W' in V'. Let W=FW’. It follows that
folW g, |WrelBEX  in V.

Sinece V is an ANR,&it follows that there is an open neighborhood U of W
such that f,:nlU I~ giD]AU. rel BX in V. Since 4, was chosen o De larger
than];he arblflra.ry positive integer %, this clearly shows that o ~ prel BX

is easily verified from our construction that ¥ is i d :
and that OF, — 78 is indeed a functor

‘We remark that it is possible to identify Je, wi y

Ter : with a subeategory of §

by restricting the morphisms of S, to those ge o -
nerated . imi

remark allows us o identify ¥, ; . o aaps. & similar

think of 8, and F,, as being inclusions and of & a§ being the restriction

iom®

with & subcategory of §,, so that we can .
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of ¥. In this way, the shape categories 8, and S, can be thought of as
“enlargements” of the homotopy categories %, and Je,. Similar remarks
apply, of course, to &, 8, §,, @ and ¥.

414, EXAMPLE. DLet X = {(m, Nel] 0<z<l, y= Sj_nf} v
&

u{{0,y) —1<y<1} and let ¥ = {(z,0)¢F* 2>0}. Then Sh,¥
1z 8hp X.
Proof. Let B denote {(#,y) e B*| —2 <y< 1+ |a]}. Then B ~ E2.
We may regard X, Y and F as closed subspaces of HxF = K, =~ K,
and we shall henceforth view K, and K as having been identified.
Suppose, contrary to the above claim, that there exist proper funda-
mental nets f: X—¥ and g: ¥ —X such that gf = ix, where f= {f}] 1 e 4}
EA 2 2o £

and g = {gs| <4} We shall show that this supposition brings about
a contradiction.

2 2
fi=1,2,.., let p1= (ri—{—l’ 1— _471+1) ¢ B, and let Ny be a closed
cireular disk containing p; and lying in #— X. Let V= H x [E— {_ IntN,].
i=1

Then V is a closed neighborhood of X in K,. Hence, there exist Jged,
6, € 4, and a closed neighborhood U of X such that if 1 > 4, and 6 > &,
then g,f,|U = iy in V. Since g is a proper fundamental net, there exist

a closed neig%borhood U, of ¥ and 6, € 4 such that 6, > & and g, (U CV.
We may further suppose that U, is simply connected. Since f is & proper
fundamental net, there exists 4 > A, such that f; (X) CIntT,. Let W De
a neighborhood of (0, —1)eX such that WC U and f,(W) C IntU,.

2
Let & be a positive integer such that the segment A joining (47—_1’ ~1)
and (4—-—]62_'—_—5, —1> lies in W and let J denote the (unique) simple closed

¢ enrve lying in X v 4.

Now J C U, and hence g, f),|J =2 igld in V. But fi,(J) C Uy, 65,(Ty)
CV,and U, is simply connected. This implies that g, fy[J is nullhomotopic
in V. This is a contradiction, since J is essential in V.

We note that Example 4.14 shows that the converse of each of
Corollaries 4.6, 4.7, 4.8, 4.9, 4£.10, and 4.11 is false.

_5. Non-separable spaces. We first ,gen‘emlize the definitions of funda-
mental nets and related notions by removing the condition fhat all sets
involved be contained in the one space K = H—{w} used heretotore;
this is necessary because, of course, non-separable spaces caunot be
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embedded in K. The generalizations and terminology are entirely analog-
ous to those used for fundamental sequences in [2] (cf. also [5]).

If X and Y are closed subsets of spaces P and @, respectively, and
J={fil 2 ¢ 4} is a net of maps f;: P—@, then the ordered triple (f, X,7)
is called & (proper) fundamental net from X to ¥ in (P, Q) if for every closed
neighborhood V of Y in @, there exist a closed neighborhood U of X in p
and an index 4, € 4 such that for 2 = 4, f}|U = f, |U in V. The definitiong

»

of (properly) homotopic fundamental nets from X to ¥ in (P, Q) and
of the composition of a fundamental net from X to ¥ in (P, Q) with
o fundamental net from ¥ to Z in (@, R) are the obvious ones; the de-
generate fundamental net ({ip}, X, X) is called the identity fundamenta]
net on X in P, and will be denoted by ix . We will use the phrase “f is
& fundamental net from X to ¥ in (P, )", or “f: XY in (P, @), to
indicate that (f, X, ¥) is a proper fundamental net from X to ¥ in (P, Q).

If X and Y are closed subsets of P and Q, respectively, and there
exist fundamental nets f: XY in (P, Q) and g: ¥—X in (@, P) such
that gf ~ iz » and fgé'i_ly’o, then X and ¥ are said to be properly
fundame;mlly equivalent in (P, Q); if only the relation fg o iy, 18 as-
sumed, then X is said to properly fundamentally dominate pY i (P, Q).
These relations are denoted by “X ~ ¥ in (P, @)” and “X = Y in (P, Q)"
respectively. F oF

Tt is clear (cf. Lemma 3.2) that if X and Y are closed subsets of

locally compact metrizable spaces P and Q, respectively, and @ is an AR, -

then every proper map f: X—Y generates a proper fundamental net

f: XY in (P, Q). It therefore follows, by an argument identical to that

given for Theorem 3.1 of [5], that if M, N, M', N are locally compact

AR’s and X, ¥, X', X' are closed subsets of M, N; M', N', respectively,

suchthat X~ X' and Y= ¥, then X = Y in (M, N)if and only if X' > ¥’
F

2. F
in (M',N) and X =~ Y in (I, N} if and only of X'~ Y in (3L, N")
oF

F

Since a locally compact AR is necessarily separable, :;ve need a glightly
more general result in order to handle arbitrary locally compact metriz-
able spaces. We first prove & useful theorem on partitions of spaces.

A collection {X] a €A} of subsets of a space P is said to be diserete
in P if for each p < P, there is a neighborhood U of p in P such that there
is at most one a in 4 for which U ~ X, # 0. By a partition of a space P
we will mean a collection {P,] ae A} of hon-empty subsets of P such

that P = L:iPA and such that {P,| ae A} is discrete in P; note that

each P, ‘is necessarily open and closed in P, and hence P is the free sum
(topological sum, disjoint union) of the subspaces P,. We note also that
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it X is a closed subset of P and {X,| ac 4} is a parbition of X, then
{X,| a A} is discrete in P.

5.1. LEMMA. Suppose A and C are metrizable spaces and f,g: A—C
are maps which are properly homotopic in a closed subsei B of C. If A, 4s
a closed subset of A and By is an open and dlosed subset of B such that
f(4y) C By, then flA, % gl4, in B;.

Proof. Let ¢: AX I—B be a proper map such that for each a <4,
p(a, 0) = f(a) and ¢(a,;1)=g(a). If a, ¢ A;, then p({a,}xI) is a con-
nected subset of B containing the point ¢(a,, 0) = f(a,) of B,, and sinee
B, is open and closed in B, it follows that ¢({a;} x I) C B,. Hence (4, x I}
CB, and sinee A, x I is closed in Ax I and B, is closed in B, the map
p: Ay X I— B, defined by (2, ?) = ¢(,1) for each ze 4;,teI is a proper
map. Since p(z, 0) = ¢(#, 0) = f(2) and y(z,1) = p(v, 1) = g(x) for each
ze Ay, p is a proper homotopy joining f{4; to g|4, in B,.

5.2. THEOREM. Suppose P and Q are locally compact metrizable spaces,
X and Y are closed subsets of P and Q, respectively, and f: X—Y in (P, @),

g: Y—X in (@, P) are fundamental nets such that gf o L‘?x, p If {X,| ac A}
- T p

is a partition of X, then there exists a partition {Y,| a e A} of ¥ sucl.z that
for each a e A, f: X,—X, i (P,Q), ¢ Y, —~X, i (@, P) and g:f% ix,pe

Moréover, if fg = iy,q, then also for each a, fg = iy_q-
- T p

»
Proof. Let f= {fil 2¢ 4} and g= {g,| 5 ¢ 4}.
Since {X,| « e A} is a discrete collection of closed subsets of P, there
exists (see [9], p. 308) & discrete collection {V,| a ¢ A} of subsets of P r?ueh
that for each ae A, V, is a closed neighborhood of X,. Let V= { JV,.

agd
Since {V,| a € A} is discrete in P, it follows that ¥ is a closed peighbor-
hood of X in P. Hence since g is a fundamental net from ¥ to X in (9, P),

there exist a closed neighbo?h.ood W of ¥ in @ and an index §; in 4 such
that for all 6 = §,,
Gl W2 gy |W inV.
»

Sinee f is a fundamental net from X to.¥ in (P, @), there exist a closed
neighborhood U, of X in P and an index 4 4 such that for all 1> 2,
| flTy =0, i W.
»

Since gf o= iy, p, there exist a closed neighborhood U of X in P and

indices 4 e A,pao e 4 such that for all (4, 8) = (% &) 5
gfil Uy WV,
»
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clearly it may also be required that UC U~V and that 2;> 4 and
8= 0;.

For each acd, let U,= Un7V,. Since U,CV, and V, is open and
closed in V, it follows from Lemma 5.1 that for each « ¢ A and each (4, 6)
= (N, 0) In A X 4, .

9filUa =iy, V.
»

For each aecd, let W,=W ~g;}(V,) and let ¥, = ¥ ~ W,. Since
{V.l aed} is diserete in P, {g5,(V,)] ¢ <A} is discrete in @; hence also
{W, aeA}is discrete in Q. Since W = W, and W is'a closed neighbor-

4

. ae.
hood of ¥ in @, it follows that W, is a closed neighborhood of ¥, in Q,
for all a e A. Moreover, since &, >4;, for all 6 =&y, gs|W == g,|W in V7

and since g, (W,)CV, it follows by Lemma 5.1 that ng 22 g5l W,

in ¥,, for each « ¢ 4 and all § > &,. In particular, then, g,(W,) c v, for
aed, 6= 4.
Suppose e U, and 1ed, 2> 4. Since =14 and U C Uy, f(U)
C W, so fi(z) e W. Since
95 T2l U 22 iU., in V.,
»

Fslfi()) € ¥, and hence fy(z) € g5.1(V,). Thus for each we U,, fi(@)e Wn
NG (V) = W,, so f(U,)CW,. In particular, f(X,)C W, for each
aecd, =1

Now suppose that for some cyed, ¥, =@ Let W =W—-W,.
Then W' is a closed neighborhood of Y in @ and since f is a funda.menta?l
net from X to ¥ in (P, Q), there exist a closed neigﬁborhood U of X
in P and a 1> J, such that f(U') C W'. Sinee 1 > Ay, fi(X,,) C W,, and
this is & contradiction since W, ~ W' = @ and X, is a non-empty ;ubset
of U’. Hence for each a ¢ 4, ¥, + @. It follows that {¥,| a <A} is a par-
tition of ¥. '

) Suppose ay¢ A and W, is a closed nsighborhood of Y,, in @, with
We C Wopo Let W=W, u(W—W,). Since f is a fundamental net
from X to Y in (P, Q), there exist a closed ngighborhood U of X in P
and a 7; e A such that U'C U, 2 = 4, and for all 1> 4;,

HU =T W
P

Let U,, = U’ ~ U, Since i; > 2, for all 2= 4, fi U,)C W, and hence

JdTs,) C W3 since also f(T,,) C W', it follows that £,(T,)C W,. Hence
by Lemma 5.1, for all 13> 4, “ )

U, = £, i W,.
p .

Thus I is & fundamental net from X . 10 Y, in (P,Q)
a ag *

e
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Similar arguments show that for a, € 4, ¢ is a fundamental net from
7,, to X, and that 9f =2 ix,, P B
LM

In case it is also true that fg o iy o, the above proof may be applied

14
to the partition {¥,| a« 4} of ¥ to obtain a partition {X.| ae 4} of X
guch that for each a €A, g Y,—~X, in (@, P), f: X, —Y,in (P,Q) and
fg =2 ip,q- (From the fact that ¢ is a fundamental net from ¥, to X,

anéD algo from Y, to X, in (@, P), it easily follows that X.= X_.)

5.3. IemMa. If X and X are closed subsets of locally compact metriz-
able spaces P and Q, respectively, and there is ¢ fundamental net f = {f;] 1 € A}
from X to ¥ in (P, Q), then X 1s separable if ¥ is separable.”

Proof. Suppose Y is separable. Then since @ is locally compact,
there is a closed neighborhood V of Y in @ which is the union of & count-
able collection {V;}32, of compact sets. Since f is a proper fundamental
pet from X to Y in (P, Q), there is a }tOeA— such that f,(X)CV and
fulX: X—@Q is a proper map. I Xi= (f,| X)(Vy), i=1,2,..., then
X = | X; and each X; is compact, so X is separable.

=1

The fact (see, e.g., [10], p. 241, Th. 7.3) that any locally compact
metrizable space can be partitioned into separable subspaces suggests
the following extension of our definition of proper shape for separable,
locally compact metiizable spaces to arbitrary locally compact metriz-
able spaces.

5.4, DEFINITION. Two locally compact metrizable spaces X, ¥ will
De said to have the same proper shape, denoted by Shy X = 8h, Y, provided
there exist partitions {X,| a ¢ A} and {¥,j ac A} of X and ¥, respectively,
such that for each « ¢ A, X, and ¥, are separable and ShpX, = Shy¥,.

Tn order that this should be & reasonable definition, it is necessary,
of course, 0 show that the relation “X and Y have the same proper
shape” is an equivalence relation on the class of all locally compact metriz-
able spaces. Since this relation is clearly reflexive and symmetrie, it is
only necessary to show that ShyX =ShyY and Sh,Y = 8h,Z imply
Shy X = ShyZ. This will require several preliminary results. .

5.5 LevMA. If X and Y are locally compact melrizable spaces having
the same proper shape, then there exist locally compact ANR's P and @
containing X and ¥, respectively, as closed subsets such that X =~ Y
in (P, Q. "

Proof. Tet {X,| aeA} and {¥,| acA} be partitions of X and Y,
regpectively, into separable subspaces. such that for each ae A, ShyX,
= 8h,Y,. For each ac A, there exist locally compact spaces Pu; Qo
each homeomorphic to K = H— {w}, containing Xo; ¥, respectively, as
7 — Fundamenta Mathematicae T. LXXXVI
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cloged subsets, and fundamental nets, f*: X,—Y, in (P,,Q,), g T,-x,
in (Q,, P,) such that ¢°f* = ix, p, and %" = 4y, 0. Tt may be assumeq
I 4 - p
that P, ~n Py, =0 and @,~ @y =@ for « # f. Let
P=@®P, and @=@4Q,
acd aed

be the free sums of {P,| ae A} and {Q,| o< A}. Tt follows immediately
from the definition of ANR’s that each of P and @ is an ANR. For each

aed, lot f*={ff] Aed} and g"= (g de4,}. Let A——-[ZA,,, with

aE,
d={4 aed}>1={}| acd} if and only if A, > 4! for each acd;
clearly A is a directed set with respect to this order relation. Let 4 — I14.,

aed

with the divecting relation in 4 defined similarly. For each 1 = {Ad a4}
€ 4, let f;: P—Q be the combination ([11], p. 69) of the maps fai Py—Qu
ie., for each z ¢ P, fj(w) = fi(») if e P,. Similarly, for 6 = {3,| a4},
let g;: @—.P be the combination of the maps 95g: Q= P, It follows easily
that f= {f;] Ae A} and g = {g,| b ¢ 4} are proper fundamental nets from
X to ¥ in (P, Q) and from ¥ to X in (Q, P) and that of = ix p and fg

=3 £

=iy, Hence X =~ Y in (P, Q).
y 2 ok

Suppose X is a closed subset of P, Y is a closed subset of § and
F={fil 14} is a proper fundamental net from X to ¥ in (P,Q). 1t Pis
a closed subset of M and Q is a closed subset of ¥ , then a proper funda-
mental net 7 : X—Y in (M, ) is said to be an extension of fif f = {f;] 2 e 4}
and for each A 4, fi: M—N agrees with f,: P—@ at every point z ¢ P
(cf. [7], p. 56). Although the following results hold in somewhsat more
general settings, for simplicity we adopt the STANDING HYPOTHESIS, for
the next two lemmas, that X and ¥ are dosed subsets of P and Q, P and @
are locally compact ANR’s, and M and N are locally compact AR’s con-
taining P and Q, respectively, as closed subsets.

5.6. LEMMA. Bvery proper Jundamental net f: X—7Y in (P, Q) can
be extended 1o a proper fundamental net f: XY in (M, N)

Proof. Let f= {f| A1 4}. If j: QSN is the inclusion map and jf
= {jfil % € A4}, then ];f is & proper fundamental net from X to Y in (P, N7
and any proper fundamental net from X to Y in (M, N)
extension of jf is also an extension of f. Hence it

which is an
may be assumed that

By Lemma 3.7, since P is an ANR, there exist a closed neighbor-
hood W of P in M and a proper retraction r: W—P of W to P. For each

Aed, let fj:flr: W—»N.A Sin(ie M is an AR, each f; can be extended
to a map f;: H—N. Let f = {f) Aed}.

icm°®
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Suppose V is a closed neighborhood of ¥ in @. Sinee  f is a proper

fundamental net from X to ¥ in (P, ), there exist a closed neighborhood
U, of X in P and a 4 e 4 such that for 1> 1,

S AU =f|T, V.
»

Let U=+""(U,). Then U is a closed neighborhood of X in W, and hence
in M.

Suppose 1= 1, and let ¢: U;XI-V he a Proper map such that
o(z, 0) = fi,(#) and @(z, 1) = fi(z), for each z e U,. De’.ﬁ_ne y: UXI-V
by setting v(z, t) = @(r(z), 1) for each (»,?)e Ux I. Since r and ¢ are
proper maps, 50 is y. Moreover, for each z¢ U, (v, 0)=glr(z),0)
= fo(r(@)) = fi(#) = fi,(®) and, similarly, v(z,1) = filz). Hence j|U
= f,,|U in V, and it follows that f: XY in (M, N).

?

5.7 LeMMA. If f: X—Y in (P, Q) and g XY in (P, Q) are properly
homotopic proper fundamental nets and f XY in (M, N), §: XY in
(M,N) are extensions of f and g, respectively, then Jeg.

- - b

Proof. If j: @— N is the inclusion map, then ];f and jg (defined as
in the proof of Lemma 5.6) are proper fundamental nets ﬁfom XtoX in
(P, N), jf == jg, and f,d are extensions of ]:f , jg, respectively. Hence it

Coeld ERkA
may be assumed that @ = N. A . ) .

Let f={fil 2e 4}, g={g, S 4}, f={fil e A} and g={g,| 56{1},
with f;: M—N an extension of f;; P—X and §;: M—N an extension
of g, P—N for all led, §ed. )

gﬂSuppose V is a closed neighborhood of ¥ in N and let V, be a closed
neighborhood of ¥ in N such that ¥, C IntV. Since f and g are propeley
homotopic proper fundamental nets from X to ¥ in (P, N), there exist
a closed neighborhood W of X in P and indices ;e A,' b ed su;h th%f
for 137, 0> 8, LW f[W i V, W g|W iV and j|
=~ ¢g,/W in V,. Since f al.)nd g are proper fundamental nets from X

ffb Y in (M,N), there exist a closed neighborhood U, of Xai.n llﬁ
and indices Ay ed, 8 €4 such that UynPCW, A=>h,06 >0 an
for A= 4, 6= by,

. - . o ~ g, |U, inV;.
AU =f0 iy and gl = gV :

i 4
Since A, > A, and & = &y, fi,| X = 4,/ X in V,. Hence by Lemma 3.4,

¥4 . ‘s
since fzo and «aﬁo are extensions of f | X and g,,| X, respectively, and V i

o
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a closed neighborhood of V5, there is a closed neighborhood T of X in 1
such that UC U, and ﬁalUg 5/ U in V. Then for 2> 1y, 6 > &,
»

FAU 2 U = G| U= 3| U 0 7,
» » 4

leyy

80 f =z f.
-

5.8. Leyma. If X and Y are locally compact metrizable spaces having
the same proper shape and {X,| a € A} is a partition of X into separable
subspaces, then there is a partition {¥,| ae A} of Y into separable sub-
spaces such that for each a e A, Shp X, = ShpY,.

Proof. By Lemma 5.5, there exist locally compact ANR’s P and Q
containing X and Y, respectively, as closed subsetis and proper fundamental
nets f: X—Y in (P,Q) and g: Y—X in (@, P) such that _gfg ix,p and

/4
_fg = iy 5. By Lemma 5.2, there is & partition {¥,| « ¢ A} of ¥ such that

»
for each ae A, f is a proper fundamental net from X, to ¥, in (P, Q),
g is a proper fundamental net from ¥, to X, in (@, P),

gf =ix,p and fyo= 170.q -
= = p

Consider a fixed a ¢ 4, and let P, denote the union of all components
of P which intersect X, and let @, be the union of all components of
which interseet ¥,. By hypothesis, X, iz separable and hence by
Lemma 5.8, since g: ¥~ X, in (@, P), ¥, is also separable. Hence there
are only a countable number of components of P which intersect X, and
only a countable number of components of ¢ which infersect - ¥,, so P,
and @, are separable. Therefore, by Lemma 3.1, there exist locally com-

pact absolute retracts M, and N, containing P, and Q,, respectively,
a8 closed subsets.

By Lemma 5.6, f can be extended to a proper fundamental net
f: X, —»¥,in (M,,N,) and g can be extended to a proper fundamental
net §: ¥,~X, in (¥, I,). Then gf : X,~X, in (M,, M,) is an extension
of gf: X,—X_ in (P,, P,) and since 9f = ix, p it follows by Lemma 5.7

~n . o . A . - )
that gf =iz y . Similarly, fg ~ iy, N, 804 hence Shy X, = Sh,¥,.

T~ T o

5.9. TEEOREM. If X, Y and Z are locally compact metrizable spaces
such that Shp X = Shy¥ and Sh,¥ = ShyZ, then ShpX = Sh,Z.

Pr.oof. Let {X,] ae A} and {¥| aeA} be partitions of X and Y,
respectively, into separable subspaces such that Shy X, = Sh, Y, for each
a sA.z and l-et {X;'| BB} and {Zsl B < B} e partitions of ¥ and Z, re-
spectively, into separable subspaces such that Shy ¥y = 8Shy Z; for each
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peB. Let G={(e,p)c AX B Y, ¥y # 0} and for each y = (a0, B) e G,
let ¥, = Y, Y. Then {¥,| yeG@} is a partition of ¥ into separable
subspaces and hence by Lemma 5.8, there exist partitions Xl ye@y
and {Z,| y < G} of X and Z, respectively, such that for each y €@,

ShyX, = Sh,Y, and Sh,Z,— Sh,Y,.

Hence for each y ¢ G, ShpX, = 8hyZ, and therefore Shy X = Sh,Z .

Thus the relation Shp, X = Sh,Y, as given in Definition 5.4, is an
equivalence relation on the class of all locally compact metrizable spaces,
as desired. Clearly one can define the relation Sh,X > Sh,Y in an analog-
ous fashion and, using appropriate modifications of Lemmas 5.5 and 5.8,
show that Shy X = Sh,¥ and ShyY > ShyZ imply ShpX > Sh,Z.

5.10. TeroREM. If X and Y are locally compact metrizable spaces
and X is properly homotopically equivalent to ¥, then ShpX = Sh,Y.

"Proof. Let f: X— Y, g: Y—X be maps such that gf o« ix and fg = iy

o b4
Let {X,| a e A} be a partition of X into separable subspaces and for each
aed,let ¥, = g~ 4(X,). Since X, is open and closed in X, ¥, is open and

closed in Y. Since gf =2 ix and X, is open and closed in X, gf(X,) C X,
p»
and hence f(X,)C g~ (X,)= ¥Y,. Hence since X, # @, ¥, # @ for each

aeA. Thus {Y,| aeA} is a partition of Y. Since X, is separable and
therefore o-compact and ¢|¥Y,: Y,—X is a proper map with g(¥,) C X,
it easily follows that ¥,= ¢™(X,) is o-compact and hence sepal:a.ble.
It f,: X,— ¥, is defined by f,(#) = f(2) for # ¢ X, and g,: ¥,—X, is de-
fined by g,(¥) = g(y) for y € X, then since X, and ¥, are open and closed
in X and ¥, respectively, and gf =~ ix, fg = iv, it follows from Lemma 5.1

v n ~
that g,f, = ix, and f.g, = ir,. Hence, for each ae 4, X, and Y, are

properly }fomotopiea,lly e(fuiva,lent and therefore by Theorem 3.10, Shy X,
= 8h,Y,. Then by Definition 5.4, Shy X = Shy¥.

5.11. TEeoREM. If X and Y are locally compaci ANR's and Shp X
= 8h,Y, then X and Y are properly homotopically equivalent.

Proof. Let {X,| aeA} and {¥,| aeA} be partitions of X and ¥,
respectively, into separable subspaces such that for each aed, ShpX,
= 8h,Y,. Since X and ¥ ave ANR’s and X, and ¥, are open subsegs
of X and Y, respectively, X, and ¥, are ANR’s and hence, by Theorem 3.12,
X, and Y, are properly homotopically equivalent. ]?‘01‘ each asA,.let
fi X,— Y, and g, ¥,—X, be maps such that g.f, = ix, and fof, = iz,

» P
Let f: X—¥, g: ¥—X be the combinations of {f,| as4} and {g.| asA.%
respectively. It readily follows that gf =~ ix and fg % ir, and hence

I4
and Y are properly homotopically equivalent.
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- On level sets of Darboux functions
by
J. S. Lipinski (Gdafisk)

Abstract. K. M. Garg [2] has found the necessary conditions that a set of real
numbers be the set of all points y such that the level sets f-3(y) are single point sets,
dense in the selves sets, closed sets, connected sets and perfect sets, where f is a free
choice Darboux function. The aim of this paper is to give a proof that all Garg’s con-
ditions are not only necessary but also sufficient.

Let f be a real function of a real variable. The set {x: f(x) = y} = f~(y)
will be referred to as the level set of f corresponding to the value y. Gener-
ally we are not able to draw conclusions as to the properties of functions
from the properties of their level sets. B.g., it is well known [5] that all
level sets may be closed sets, even one point sets, whereas the function
itself is not measurable in the sense of Lebesgue. However, under certain
additional stipulations as to the function there follow from an appropriate
regularity of. sufficiently many level sets strong conclusions about the
funetion itself. B.g. if the function f possesses the Darboux property,
and the set of those values 4 for which the level sets f~'(y) are closedis
dense, then f is continuous [3].

Special families of level sets of continuous funetions have been dis-
cussed in [4], [1] and [2]. .

Let us denote by I the family of all single-point sets on the real axis,
Furthermore, let us denote by @ the family of all sets dense in themselves,
by % the family of all closed sets, by ¢ the family of all connectgd fse?;s,
by p the family of all perfect sets and finally by co the family of all infinite
sets. This rather non-typical notation will be adopted here beca‘use of the
notation adopted in other papers on level sets. If * is & family of sets
and f a fixed function, we shall put Yu(f) = {: i) e *}.wLet us denote,
in the usual way, by @, the family of all sets of the form (N Gn where Gy

n=1
o o0
are open sets, and by F,, the family of all sets of the form kol ;k;JIFk,,,
where ¥, , are closed sets. Let F~ denote the family of all sets of the
form ANB, where 4 is a closed set and Bis a s‘ubseﬁ of t.he set of ‘a,]l end-
points of components of the complement of A. Every point of B is hence
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