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Degrees of unsolvability within a regressive isol
by

T. G. McLaughlin (Urbana 1)

Abstract. J. C. E. Dekker introduced in [2] the notion of degree of unsolvability
of @ regressive isol; his definition relies on the fact that among all the sets belonging
to a regressive isol J there is one of smallest degree. We here prove that there exist
regressive isol J and representatives 4 eJ, B ¢J such that A and B are of incomparable
degree; the proof is a version of the standard approach to the Friedberg-Muénik result
concerning existence of incomparable .e. degrees. With the aid of a theorem of Shoen-
field, we establish that, additionally, J, 4, and B can be required to satisfy the con-
dition: 4, B are separated by r.e. sets and degree (4 U B) is r.e. As a corollary, we
conclude that not every immune regressive set of r.e. degree is introreduecible.

1. Introduction. Tn [2], Dekker defined the degree of wunsolvability
of a regressive isol 3 as the Turing degree of a retraceable representative
of J. This definition is based on the observations that every regressive
isol has a retraceable representative ([1]) and that the Turing degree of amy
retraceable element of 3 is the g.l.b. of the Turing degrees of all elements of I
([2]). For a given regressive isol J, let D(J) denote the seb of all Turing
degrees D of sets D belonging to 3. We shall prove the existence of re-
gressive isols 3, of degree < O, such that D(3) is not a linearly ordered
set of degrees. Our proof will be a variation on the usual proof of the
Triedberg—Muénik theorem. ().

) We are indebted to the referee for some astute remarks on exposition. While
we have not adopted wholesale his recommendations on format, two features of the
present form of our proof of Theorem 2.2 which serve to make it more readablesshould
e credited to him: first, a brief intuitive discussion of our attack on individual require-
ments precedes the detailed construction; and second, several lemmasg of a thoroughly
routine and typical nature have been stated with only the barest accompanying indi-
cations of proof (since in those cases the somewhat tedious verifications can be supplied
easily by any reader experienced in recursion theory).
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For the most part, our notation and terminology follow the con.
ventions employed in [1]. Let <py*>5., be a standard enumeration (e.g.,
that of [4], § 68) of the class of unary partial recursive operators acting
on subsets X of N and taking (unary) partial X -recursive functions ag
values; here, of course, I denotes the set {0,1, 2, ...} of all natural num-
bers. From here on, by the term function (partial function) we shall always
mean a function whose domain is = N™ for some integer # == 1 (C N™ for
gome n > 1) and whoge range is C V. By ph¥o® we mean the set of pairs
placed in gb¥ by the end of the sth computational step, according to
some fixed definition of “computational step” which is fully effective
as a function of the pair <&, Ox[sD. (By fully ¢ffective, wo mean that
the ewact (finite) membership of @}*® is computed from <k, Ox[sl);
here (x[s] denotes the characteristic function of X Trestricted to argu-
ments <s. For the sake of definiteness, we remark that our convention
regarding characteristic functions is: Ou(#) =0 I wed & Our)=1
if 2 ¢ A.) We also assume, of course, that p}* = (| ¢y®* holds for all X

8
and %; and as a matter of convenience, we shall further assume that
(VE) (V) (Vs) [ ™ C op™*']. It will \be assumed that our enumeration
<pXye  satisfios, the condition (V.X)[gy* = @]. For f a partial function
and for any @ <N, J(z) denotes the “orbit” {w,f(®),f(f(»)),...}; here,
of course, the sequence of iterates halts at any point at which the last
term obtained is not in ¢f. (As in [1], we denote the domain and range
of f by &f and of respectively.) The notations f*(z) and f*(») (where % >0
=g ¢ df and where J(@) is subjected to suitable restrictions) are to he
understood as in [1]. Let W, denote dp., where <{p,>or, is & standard re-
cursive enmmeration (as in [4]) of the partial recursive functions of one
variable; thus W, = the eth recursively enumerable get (). Further, let
W$ denote {z|x is in dp. after s steps of computation}; here again, we
refer to some fixed, fully effective definition of “step of computation”,
this time in connection with a simultaneous computation of the funetions
@es ¢ € N. In the statement of Theorem 2.2 of the next gection, =~ denotes
(a8 usual in contexts involving isols) the relation of recursive equivalence;
al b, for any two degrees a and b, means that « and b are incomparable.
The statement that a partial recursive function p regresses a soti A, 4 in-
finite, means that there is a non-repeating sequential ordering a,, @y,
4y . 0f A such that 4 Cép & p(ay) = a; & (Vn)[p(t,.,) == an]. Given
that the infinite set A iy regressed by the parfial recursive function p
‘with respeet to the ordering a,, ay, s, ... of 4, we denote by H(A; p) the
set {az| k& € N} (the “even half” of A relative to p) and by O(4; p) the
866 {@pp4q| ke N} (the “odd half” of A relative to p). We shall conclude

(*) Fox convenience, we identify ¢, with ¢f.
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this introductory. section by explicitly recalling some terminology, re-

garding limits and uniformity, introduced by Shoenfield in [5]. A se-

quence {&,n=o of umary functions is said to be uniform in a degree a just

in case there-exists & binary function v of degree < a such that

(Vn)(Ym)[én(m) = 7(n, m)]. Suppose that <£ >, is a sequence of unary

funetions with the property that lim &,(m) exists for all # and m. A mo-
. Mm—>00

dulus of convergence for <&, is a unary function = such that

(Vo) (V) (V) [(m = () & g = 7(n))= &n(m) = &a(q)] -

2. Isolated regressive sets whose even and odd halves are recursively
equivalent but Turing incomparable.

2.1. LevwmaA ([6]). Let A be a set of natural numbers whose characieristie
function Ca satisfies the condition .

(i) (Va)[Oa(x) = lim &w)], where <&,>%., is a sequence of fumctions

N~
uniform in the degree O of the empty set; suppose further that

(ii) the sequence <{&,»m—y of (i) admits a modulus of convergence x such
that the degree x of » is < the degree A of A.

Then A contains o d’ecwsiwly enumerable set.

(As noted in [5], property (i) suffices for the conclusion that 4 has
degres < O'. This observation, together with its converse, has become
one of the most frequently exploited technicalities in the theory of relative
recursivity.) .

2.2, TeEOREM. There ewist am immunme set A of natural numbers,
(4 infinite) and a partial recursive function p which regresses A, such that

the following assertions hold:

1) (Vo) [Oa(w) = Lim &x(@)], where {&;>%o s uniform in O and admits
koo

a modulus of comvergence recursive in A;

(2) B(4; p) =~ 0(4; p);

(3) E(4; p)|O(4; p)-

Proof. In view of the Friedberg-Munénik theorem, since all r.e. sets
are regressive, the result would be immediate if the requirement of im-
munity were omitted; however, in the present paper our interest is con-
centrated on. isols, i.c., on recursive equivalence types of immune sets.
Accordingly, our construction must insure that A is not recursively
enumerable. This demand is very easily met. Moreover, to make A im-
mune it in fact suffices to insure that A is not r.e., since all non-T.e. regres-
give sets are immune. To facilitate our description of the construction
of A (and, simultaneously, of functions p and g such that p regresses A
and ¢ witnesses B (4; p)=~0(4;p)), we shall employ two sequences,
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A imo a0d {Z)5L,, of “movable markers”; Ay will be nsed. to keep track
of our attacks on the operator g™ at the argument X = H(4; p), and )
will have « similar role to play with respect to @y* at X = O(4; p). The
priority ordering imposed on the markers (and so on the pairs {ph%, X,
X = 0(4; p) or B(4; p)) is the nsnal “interlace” ordering A, < 2 < 4,
<2 <o < dpyy < Zpyy <., Whete A < Xy < A, signifies that Ay
has Righer priority than Z; which in turn has higher priovity tham Ay,
A number % will be called free, at (a given point during) a given Stage s of
the construction, provided no number j = & has borne a marker or 3 tag
or been paired with another number at any prior point in the construction,
We shall so arrange the construction that at the end of any given Stage s,
the A-markers and X-markers which are attached to numbers ag we
await the beginning of Stage s+1 are precisely the members of the get

{di| &< B(8)} v {Zk| k< B(s)}, where 8 is a recursive function of §; in -

describing the (s+1)-st Stage, we understand B(s) to have been calculated
at the end of Stage s, and we then conclude Stage s41 by calculating
B(s+1). If ¢<< §(s), then A7, of respectively denote the positions of 4,
and X at the end of Stage s. We now give a short informal discussion
of the way in which we shall attack the individual requirements involved
in satisfying condition (3) and in insuring the non-r.e. character of 4.
(Of course, the constrnction ag a whole proceeds by way of ever-oxpanding
finite approximations to the graphs of p and ¢, with all individual re-
quirements treated simultaneously via the priority ordering.) To get 4
non-r.e., we attempt to associate with each r.e. set W, o number N sSuch
that ne will be banished permanently from A in case we discover that
e € We. Such banishment is easily accomplished, since we are allowed
unlimited branchings in the construction of a regressive set. To insure
that the eth partial recursive operator does not reduce F(4; p) to
0(4; p), we attempt to- associate with e a number m, so that if at gome
point in the construction our current approximation to the characteristic
funetion of H(4; p) threatens (when plugged into the eth operator) to
assert correctly that me¢ O(4; p), then m, is placed in A with odd
P -height; simultaneously, we strive to freeze all information about B(4; p)
used in an essential way in the offending computation. In putting me
inte 4, we shall in general be obliged to (permanently) exclude certain
othet numbers w from A. (Similar measures prevail against reductions
from O(4; p) to B(4; p).) Since the requirements in question are all
purely local, finitely many attempts will suffice for each requirement
(provided only that we adhere to the Pre-specified order of priorities).
Finally, to insure that we can also verify property (1) for A we need only
be a little careful about specifying the branching which oceurs when
a number #, or w is kicked out of A,
The formal stage-by-stage procedure is as follows.

icm°

Regressive isol 33

Stage 0. Attach A, to 2 and %, to 3. Set P9 = {0, 0, <1,05,
€2,15,¢3,2>} and ¢ = {<0, 1, <1, 0}, <2, 3%, <8, 2>}. Let 4 be paired
with 2, and 5 with 3. Aftach a tag [0 to 6 and a tag A0 to 7. Let 8 be
paired with 6, and 9 with 7. Set 7@ = @ = 4®; then go to Stage 1. (Note
that f(0) = 0.)

Stage s+1. Our procedure here divides into three steps, the first
of which is designed to insure that 4 is not recursively enumerable.

Step A. There are two cases.

Case AL. (W1)(Hm)[t< f(s) & (m = Hoorm=of) &me W&t does
not eurrently bear an e-tag].

In this case, let #, be the least such ¢ and let 7y be the corresponding m
of smallest p®-height. Give #, an e-tag. Detach all A; and X; such that
by <4< f(s). Let % be the number paived with A and let j, be the
number paired with of. Attach 4, to %, and %y, to jo. Define sle+D
= 90 {<o, K>y <Ko, 2®(m,)>Y. (When our description of the construection
is complete, it will be clear that A, is paived with & number &, > AL, that
oj, 18 paired with a number j, >of where j, # &, & {Jo, Ty} N~ (89 U
U 8¢®) = @, that &, and j, can be effectively calculated from %, and of,

that one of 73, of is the p-image of the other, and that 1;(\’)(50) termi-
nates at 0 for each @ of the form f or of, t < B(s).) Next, define 4&+V
= ¢& U {Chy, Jo>, <ho, od}. Remove all currently attached tags of the
forms [Jj, Aj, where j=1,. Let n, be the smallest number currently
free. ‘Give n, a tag (i, and give n,+1 a tag Af,. Pair M+ 1+2 with
Mo+14, 4 =10 or 1. ,

Finally, detach all tags of the forms O and Yy which are found to
be attached to numbers ¢ satisfying 4, < 4. Then proceed to Step B.

Case A2. No such pair <f,m) exists. In this case, go immediately
to Step B.

Step B.If Case Al held at Step A, let o denote the position of X,
at the conclusion of Step A, ¢, as in our description of Case A1, Otherwise,

let o¥ denote of i B} denot Fer (%) & e n) 35 even);
et o; denote of,. Lot H; denote {n|n e r*+D(c*) & ¢ ;

and let O} denote {n| n e@’(a‘f) & %) iy odd}. Again, there are
two cases.

Case B1. (Hk)(Hm)[m >0 & k < &, = the largest index among all
indices of markers still attached after Step A & ([py%%(m) is defined
and =1 & m ¢ 6r°™ & m bears a tag of the form [k &% does not cur-
rently bear a tag of the form Ox] or [pk%(m) is defined and =1 & m
¢ v & m bears a tag of the form Ak &% does not currently bear
a tag of the form )/])]. (When our description of the construction is com-
plete, it will be clear that tags are assigned during the various stages in
3 — Fundamenta Mathematicae, T. LXXXVI
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a fully effective way, so that we are able fo tell effectively whether
Cage Bl holds and, if so, exactly which of the alternatives within its
statement are true.) i

Let &* be the least such %, and let m* be the largest such corre-
sponding number m. There are two subcases, corresponding to the two
halves of the incomparability condition. ‘

Subease Bl (i). ¢4 (m*) is defined and = 1 & m* bears a tag
of the form [I&* & m* ¢ 671 & I* does not currently bear a tag of the
form Ow. In this event, we proceed as follows. First, defach all markers 4,
and X such that &* < i < k. Give &* a tag of the form Osx, and attach
Ags to m* and Iy to #¥, where #” is the least number currently ivee,
Pair n*+1 with a* Define #0+V0= 700 {cm* 0%, ", oY} and
W= DG Lem*, n*y, <n*,m™>}. (When our description of the construc-
tion is done, it will be seen readily that m* cannot have been in dul*h)

Let ¢* be the (new) smallest free number, and attach a tag AK* to ¢
Pair ¢*+1 with ¢*. Remove AL* from any number w s ¢* such that w
currently bears AL*. Remove all tags of the form [Jw or Aw for w > 1
and remove all tags Ox from numbers k > &* and all tags 1/ from numbers
k> &*. Then go to Step C. ‘

Subease Bl (ii). Subease BL (i) does not hold. Then, since Case Bl
is in force, we have that ¢}@:%(m*) is defined and = 1 & m* ¢ or®™) & &*
does not curently bear a tag of the form 1/ & m" bears a tag of the
form AK*. Here again, we detach all markers A; and Xy such that 5* < i< k.
Give k™ a tag of the form y/. Attach A,. to #* and Zy. to m*, where n* i
a8 in Subease B1 (i). Pair n*+1 with »*. Define #¢* = ¢#6+0  {¢a®, m™),
¢m*, of}; and define 4@+ exactly as in Subease B1 (i). Let ¢* be chosen
as in Subease BL (i). Give ¢* a tag of the form [14* and remove [IF*
from any other numbers to which it is currently attached. Pair ¢*+1
with ¢*. Remove all tags of the form [w or Aw for w > k*.. Remove
all tags of the form O or y/ from numbers % > %*. Then go to Step C.

Case B2. The hypothesis of Case Bl does not hold. In this event,
go- directly to Step C. .

Step C. Let j, denote the largest number j such that X; and 4;
are attached at the end of Step B. (Clearly, from the fully effective character
of our procedure up to this point, j, is effectively caleulable provided thatb
no non-effective measures are taken in the remainder of Stage s--1;
but, as the reader will easily note, none are.) Let #, be the smallest number
currently free. Attach A, ., to %, and Z,,, to {,+1. Give t,--2 a tag of
the form [j,+1; and give {3 a tag of the form Af,~+1. Pair t,--i-+4
with )44, 0 < i<C 3. Let ¢* be the position of M at the end of Step B,
there M is whichever one of X, 4, is attached to the number of greatest
r-height at the end of Step B. Define p®+)= {o+0 ( (¢4, t,
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oy ) and q(s+1) = et <t +1,14

oy Bo+10). T
= jy+1, and proceed to Stage s-+-2. > Sos L0} Compute Bls+1)

That completes our description of the constrmction
observation is that (Vs)[p® C p®+9], whence (from the
the econstruction) we have that p= | Jp

8

(®). Our first
effectiveness of
© determines p as a partial

reeur{?ive function. To see this, note that if & number # ig placed into
510(84-1. d_umn.g a given stage s--1 of the construetion, then # is either
free 311513 prior to that placement or else ig g tagged or paired number
not proviously in 6p°*™. But it is plain from our description. of Stage s--1
that no number can have entered sp“+ at some earlier point and yet
remained. free, since as soon as we place a number into 8p¥ Y we give
a marker either to it or to some larger number, Tt follows that {Jp® is
" . . g’ . 8

a function; hence if p = | p®, then P 18 a partial recursive funetion.

8
Accordingly, we define p by: p = | p®. We shall now exhibit a sequence

8

of eight lemmas which, in sum, establish that eur construetion has the
desired effects. The first seven of these lemmas are rather typieal of
proofs based on the elementary (“finite injury”) priority technique; in
each case, the lemma in question follows from the statement of the éon—
struction (perhaps msing some of the Preceding lemmas in the sequence).
by a more-or-less routine application of Mathematical Induction. We
therefore leave the detailed verifications, for the first seven cases, to the
reader. Lemma 2.2.H is also based on an induction argument; however,
the content of Lemma 2.2.H is a bit nnusnal (in that, in the great majority
of such theorems, property (1) is either not considered or else is superflu-
ous because the set being constructed is itself r.e.) and we shall therefore
supply a detailed justification of it.

2.2.A. LeMMA. For each & > 0, there are numbers Ay, s(k) and numbers

oy B(k) such that (i) Ay s attached o Ay throughout all stages s > s(k), and (i)

2y ds altached to on throughout oll stages t3=t(k). (Consequently, Az

= lim 2}, & oy, == t]imtt‘,c. Note, in connection with Lemma 2.2.A, that no
oD

8-+00

marker is ever attached to more than one number at a time).

dr o0 n (=] ~
2.2.B. Lmvwa, If A = | [(4a), then also A= {f(o,) and, moreover,

ne=l n=0

A is an infinite set regressed by p.

(*) There are, of course, alternative ways of framing the construction. One such
alternative, noted by the referee, leads to a rather mneat alternate verifieation of
Lemma 2.2. H below, i.e., of property (1).

3%
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o0
22.C. Levus, If qil—_f U9, then q is a 1—1 partial recursive
§=0

function such that B(A;p)Coq & q(B(4; p) = 0(4; p). (Here, as in
the other lemmas which follow, A is the set defined in the statement of
Lemma 2.2.B.)

2.2.D. LEMMA. Once a marker Ly s in final position om, oll numbers
not i P(om)© P(Am) which are subsequently placed in JSp must be
>max({a:] @ € P (om) Uﬁ(lm)}) . ‘

2.2.E. LevmA. (Ve)[4 = We]. (The proof of this lemma consists in
showing that if there is any “persistent” threat of the equation 4 = W,
holding, then this threat is eventually comntered (permanently) via
Step A.)

N
2.2.F. LevmA. (Vs)[o* is of odd p-height] & (Vs) (V) [a; € 1oy
) 2N SN 2N 2N
—{o}} =min (Fe+3(})— (r*+(of) r@+9(28))) > max (1““‘1)(0%)}]. (This Temma
is a purely technical fact useful in establishing 2.2.G.)

2.2.G. LeMmA. Neither of E(4; p), O(4; p) is Turing reducible to
the other; thus, E(A; p)|0(4;p). (4 key ingredient in the proof of
Lemms 2.2.G, of conrse, in addition to Step B, is the continuity of partial

“recursive operators. The treatment of the two halves of the incomparability
relation are different, essentially because movements of Xy induce move-
ments of Az even thongh A; < Zy; the difference, however, is very slight.)

22.H. Levmma. The characteristic function Oa(®) of A is the limit,
ar
limg(s, ), of & recursive fumction g(s,x) such that if & (x)=g(s,z) for
8—>00 P
each fized s, then (E(x)>er, admits a modulus of convergence recursive in
the degree. of A.

Proof of Lemma 2.2.H. We shall argue that there is a function
74(2), recursive in A4, such that

{ﬁ (z) /\i i
D (Vo)lzedwaept “’(o;'(“,fw))] & p' )(‘Tﬁ(t)) ~{yl y< a}

- pmwm(w)

Hoaion) "Y1 Y < @}
holds for all ¢ = 74(w) .
/{f this is so, then we can define g(s ,8)=0 or 1 according as
N
z ep(’)(aggs,) or & ¢ p)(03,); the function g, so defined, will clearly have
the required properties. To verify (I), we first show that with the help
of ¢4 (= the characteristic function of 4) we can inductively compute
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the terms of the sequence oy, oy, 0y, ... To begin with, we know that gy = 3.
Suppose that oy, ..., oy are already known. Run the construetion out to
the first stage s+1 at which (a) o3, 0 << i < k, are defined and respectively
equal to o1, 0 <4< E, and (b) of,, is defined and belongs to A; here
obviously, (b) can be handled with help of ¢4. Now, it is clear from thé
construction that no marker ever returns to a previously abandoned
position; hence o} = of for 0<i<% and all { > s. Next we observe that
if X4, Were fo move from of ; via Step A at some Stage £ > s+1, then o}, ,
would thereby be excluded permanently from membership in 4; hence, if
Zy1 moves after Stage s it must do 5o for the first time via Step B. But at the
beginning of Stage s--1, there are exactly two numbers, say m, and My,
which bear tags of the forms [Tk+1, Ak-+1; and m, and m, can be found -
explicitly by examining the construstion up to the beginning of Stage s--1.
The numbers 1, and n, paired with m, and m, respectively, at the beginning
of Stage s+1, can also be found effectively. Suppose, for definiteness,
that m, bears [Jk-+1 and m, bears Ak-+1 at the beginning of Stage s4-1.
There are now a number of cases to be considered; we shall trace out
the procedure in just one such case, leaving the similar treatment of the
remaining cases to the reader. To begin with, it is plain from the con-
struction that at most one of ca(my), ca(ny), ca(my), ca(n,) can be =0. If all
these numbers are =1, then, clearly, ¢}, = o;,,. Suppose (for definite-
ness) that we have, instead, c4(m,) = 0. This means that the first move-

-ment of Xy, after Stage s, say ab Stage ¢ > s, occurs on account of Sub-

case Bl (i). Then, having (effectively) found #;, we caleulate the numbers
71, 7, such that, at the end of Stage t,, r, bears A%k-+1 and r, is paired
with 7. Again, exacily one of the equations cu(ry) =0, eslr))=0
can hold. If ¢a(r;) = ca(rs) = 1, then off,, = 0y,,; so let us assume, say,
04(rz) = 0. This means that A, and X, ,; make their next move via
Step A, at some stage f, >1t. Having calculated f,, we note that no
further movement of 2, under Step A will ever occur. Let 75 bear (k-1
and 7, bear Ak-1 at the end of Stage t,. I ca(r,) = ca(r,) = 1, then
oty = 0y, Suppose instead that es(r,) = 0. This means that there is
a first stage &, > 1, at which X, moves, and that the movement of Xy,
at Stage %, ocenrs via Subease Bl (ii). Having calculated f,, let r; be the
number which bears [Jk--1 at the end of Stage #,. Suppose ca(rs) = L.
Then o%,, = 0),,. This completes the analysis of one particular case
among all possible cases. Disposing of the various other possibilities in

. like manner, we conclude (by induction on the index n of the marker Xn)

that there is a function &(z), recursive in 4, such that (Vs)[£(n) = o]
To obtain our desired fumnction va(x), we now define:

7 4(@) = (us) o < B(8) & o = 0]
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It is obvious from the construetion of A that # < op holds for all g
hence, in view of Lemma 2.2.D, we have

6\(})) 74(%) @(}» x4(x) /(\t) ] -
(Vo)lwed<waep (™) wep (o%teaien)] & DN ope) N {y] ¥y < @}

N
= praN @) )~ fy| y<a} for all ¢ > Ta(@),

and the proof is complete (since 74(x), so defined, is plainly recursive in 4).

2.3. Remark. The sets 4, 0(4; p), and H(4; p) constiructed in our
proof of Theorem 2.2 are all differences of r.c. seis (4). It clearly suffices
to establish this fact for 4, and for 4 it is an easy consequence of the
following readily verifiable feature of the comstruction: for all m, if
(Es)[@ € B (ohe) — P (o) then o ¢ 4.

3. Some consequences of Theorem 2.2. We ghall now make a couple
of applications of § 2 to the class of those regressive isols having degree < 0',
3.1. CorOLLARY. There exist degrees Dy and Dg, with v.c. least upper
bound, and a regressive isol 3 such that 3 ~ Dy B, 3 ~ D, # @, and D|D,.
Proof. Theorem 2.2 and Lemma 2.1.

3.2. Remark. Let Ae¢3J D, and BeJ~ D,, where Dy, D,, and J
are as in Corollary 3.1. Then it is not possible for either A or B to have
recursively enumerable complement. This observation follows from [2],
Proposition P14, and [1], Proposition 10.

3.3. CoroLLARY. There emists an imiune regressive set A., of recursively
enumerable degree, which s not introreducible. (By contrast, it is well known
that all refraceadls sefs are introreducible; for a general study of intro-
reducibility and the associated concept of introenumerability, see [3].)

Proof. Let 4 and p be as in Theorem 2.2. Since B (4; p) and O (4; p)
are separated by disjoint recursively enumerable sets, we have that
A= E(4; p) join O(4; p). Now, if A were introreducible we would
have, for instance, 4 < E(4;p). But O(4;p)<< 4 wsince A= E(d;p)
join O(4; p), and we get a contradiction. Therefore A is not introreducible.
By Lemma 2.1, 4 is of r.e. degree.

From Corollary 3.3, since the property of infroreducibility is in-
variant under recursive permutations of N, we at once get:

3.4. COROLLARY. There ewists an immune regressive scb of degree < O
which i not recursively isomorphic to amy relraceable set. (Deklker showed
in [1] that every regressive set is recursively equivalent to a rvetraceable
sg‘v; and in [1], Proposition 10, it was established that ANy €o-7.e. Tegres-
sive set is recursively isqmorpim’c‘to a (co-r.e.) retraceable set.)

(*) This was brought to our attention by the referee.
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35. Remark. It is possible to prove, by direct construction, a con-
siderably stronger version of Corollary 3.4: there is am immune regressive
set of degree <O' which is not a finite union of recursive isomorphs of re-
traceable sets. We plan to publish the latter result as a portion of a fl{ture
article. |

4. Some additional results and open questions.

4.1. The standard generalization of Theorem 2.2 would consist in
effectively breaking (a suitable) 4 up into &, mutnglly (r.e.)-sepaxrated
pieces forming a (sequentially) Turing-independent collection of recursiv-
ely equivalent regressive subsets of A. However, our technique for in-
suring H(4; p)= O(4; p) in the foregoing proof of Theorem 2.2 is not
only simple but excessively rigid: we have not been able to endow it
with enough flexibility to get us to the theorem in question. We con-
jecture, however, that what we have just called the “standard generali-
zation” of Theorem 2.2 is indeed true. On the other hand, we can prove
a related though weaker result, namely: there is a sequentially Turing-
independent family of s, immune regressive sets, each of degree <O,
such that the corresponding isols ave finite translates of one another.
(Hence, there is a regressive isol 3, of degree < O', having &, representatives
which form a (not necessarily sequentially) Turing-independent family.)

4.2. Using the well-known “permitting” technique of Friedberg and
Yates, we can rather easily obtain J, D,, D, as in Corollary 3.1, with D,
and D, each < @ given non-zero r.e. degree; but, we do not know whether 4
(of Theorem 2.2) can be made to have arbitrary non-zero r.e. degree.

4.3. Finally, we observe that there are some interesting limitations
on the properties possible for D, and D, as members of the full Turing
semilattice. For example, it is clear that since any retraceable element
of 3 hags minimtm degree among all members of J, D; and D, cannot
constitute & minimal pair; nor, of course, can either of D,, D, separately
be minimal. We do not discern with any accuracy, however, the range
of such limitations. For ingtance, can D, and D, belong to the subsemilattice
of r.e. dogrees? (Theorem 2.2 only places the join of D, and D, among
the r.0. degrees.) Prosumably they can, though all that we have so far
been able to extract (from our particular construction) in this regard is
that it is possible to require D; > d & D, = ¢ & d|c for some pair d, ¢ of
r.e. degrees. (Remark 2.3, unfortunately, is of no help in this respect,
sinee, ag hag been shown by A. H. Lachlan, there exist differences of r.e.
sets which are not of r.c. degree.) As to the lack of complexity which
D(I) may exhibit, it suffices to remark that it A is any relraceable set of
degree == 0!, then every set recursively equivalent to A has the same
degree as 4.
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On h-regular graded algebras
by

A. Tyc (Torut)

Abstract. Let E be a commutative ring with identity. In the paper the well-known
notion of a regular sequence in B (or an R-sequence) is generalized as follows: A se~
qUence U, ..., Un, Us ¢ R, is called an h-regular sequence in B if (uy, ey Un) # B and
(W s Wpt) (W) = (Ugs es Ugegs B° ) (6= 1, oy ), where hy= h(ws) is the mini-
mum of integers n > 0 such that »f = 0 (if there is no such an integer (u;) = oo and
u® = 0). A local Noetherian ring R is said to be h-regular if its unique maximal ideal
is generated by an h-regular sequence. It is shown that any commutative graded R-al-

(=<}
gebra A = @ A; with the ideal T = @ 4, generated by an h-regular set is of the form
=0 >0
@ R[X]/(XM) for some ks e NU {oco} (¥ is the set of positive integers). Moreover, the
[

Taite resolution of such algebras is found provided R is an h-regular local Noetherian rings

Introduction. Let B be a commutative local Noetherian ring with
the unique maximal ideal m. Recall that a sequence uy, ..., %n, Uz € M,
is called an B-sequence if (uy, oy ty_y)t (Uhg) = (Ugy vony Up_)fOr =1, ..., 1.
In [1] T. Jézefiak adapts this definition for commmutative graded R-al-
gebras. Namely, if A = @ A is guch an algebia, then a sequence o, ..., Uy
of homogeneons element from the ideal I = me(@® 4:;)C A is said to

>0
be normal (ov regular) (*) in A provided
( (Ugy ouey Upy) if deguy is even,
Uy ven T (up) =
o e Wma) © (1) (U y ovey W) it deguy is odd
for k=1, ..,n (we assume #?= 2 for any homogeneons element ¢4
of odd degree). In this paper the notion of a regular sequence in 4 ig

(*) The term “regular sequence” instead of “normal sequence” is used in Jézefiak's
next paper [3]. We prefer the term “regular sequence” also.
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