116 B. Weglorz

TaEOREM. Let [B] = 4, B satisfy o-co, and A% < % Moreover, suppose
that for each ZF-formula @ with parameters frgm V we have ||| <{0,1}
(i.e. [D] from § 1). Then E(x, x) implies |E(x, x)| = 1 in 7,

Proof. Since |%| = 1, B satisfies o-ce, A < » and E(x, ») are agsumed,
by the Main Lemma we have E(3, ). Next, obviously ¢ < %; thus &
satisfies also »-ce. Consequently all the assumptions of Theorem 1.9.2
are fulfilled. Thus, by 1.9.2, we have |[E(%, )| = 1. Q.E.D.
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Examples of disks in EG whijch cannot
be approximated by P-liftable disks *

by

Edythe P. Woodruff (Trenton, N, 1)

Abstract. In Conditions under which dishs are P-liftable the author defined a set
X CE°|G to be P-liftable if there exists a set X’ C B such that X and X’ are homeo-
morphic and X is the image of X’ under the natural Projection mapping P. It was proved
that in certain decomposition spaces, each disk D CEPG can be approximated by
P-liftable disks, i.e., for any &> 0 there exists a P-liftable disk D, that is e-homeo-
morphie to D. In this paper we give examples of decomposition sp.
a disk D that cannot be approximated by P-liftable disks.

Analogous to the problem of the existence of an approximating P-liftable disk
is a question posed by Armentrout for 2-spheres when & is & pointlike decomposition.
This question is answered in the negative. )

An example is given of a pair of decomposition spaces that are “equivalent” in
the terminology of Armentrout, Lininger, and Meyer, but differ in the property of
containing P-liftable approximating disks.

A construction called a knit Oantor set of nondegenerate elements is defined. A newly
defined property entitled equi-locally connected is not possessed by every point of a knit
Cantor set of nondegenerate elements. Hypothesizing this property for the points in
the nondegenerate elements, questions are formulated concerning the existence of
P.liftable approximating disks.

aces each containing

Key words and phrases. Lift of a space, P-lift, topology of E?, de-
composition space, monotone decomposition, Cantor set of nondegenerate
elements, equi-LC", equi-locally connected.

1. Introduction. In Conditions under which disks are P-lifiable [16]
the author defined a set X C H%@ to be P-liftable if there exists a seb
X' C E® such that X and X’ are homeomorphic and X is the image of X’
under the natural projection mapping P. The set X’ is said to be the
P-lift of X. Note that this generalizes the lifting concept (MeAuley [97)
in which the projection mapping is & homeomorphism on the set that is
called the lift. For spaces which (1) are definable by 3 -cells, or (2) in which
@ has a countable number of nondegenerate elements and E*/@ is homeo-

* A portion of this paper represents a portion of the author’s Ph. D. dissertation
written under the direction of Louis F. McAuley and presented to the faculty of the
State University of New York at Binghamton.
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morphic to B, it was proved that for each disk D C B*/@ and each & >0
there exists a P-liftable disk D, that is ¢-homeomorphic to D.

In this paper sections.3 and 4 are each an example of a decomposition
space containing a disk D such that fcr each sufficiently small £~ ¢
there is no P-liftable disk D, that is ¢é-homeomorphic to D. The example
in section 3 uses & (2,1) toroidal decomposition. The disk in thiy de-
composition space is not an image of a locelly connected set in E°. On
the other hand, in the section 4 example the disk D in that decomposition
space is the image of a 2-complex in B*, but the decomposition of B
is not as simple as a (2,1) toroidal decomposition. A construction called
& knit Cantor set of nondegenerate elements is nsed to define the de-
composition in section 4. The properties of this construction should make
it wseful for other kinds of counterexamples. The decompositions in both
sections 3 and 4 have the following properties:

(1) B*@ is homeomorphic to P,

(2) each g e H is a tame are,

(3) H is continuous and closed,

- (4) P(H) is a Cantor set,

(8) H is not definable by 3-cells.

In section 2 a lemma is proved that is basie to the examples in
sections 3 and 4.

Armentrout [1] has asked a question concerning 2-spheres that is
analogous to the problem of the existence of a P-liftable disk D, approxi-
mating a given disk D. In section 5 this question is answered in the
negative by an example in the (2,1) toroidal decomposition space.

Pairs of equivalent deeomposition spaces (Armentrout, Lininger,
and Meyer [2]) are discussed in section 6. Omne of each pair is the de-
composition space used in the .section 3 or 4 example. An equivalent
decomposition space with only a ‘countable number of nondegenerate
elements exists. A theorem cited above proves that in the countable
decomposition every disk can be approximated by P-liftable disks. Thus,
we demonstrate that there is a Property not shared by equivalent de-
compositions.

In section 7 a concept entitled equi-locally connected is defined for
 collection of closed point sets. It is noted that a knit Cantor set of non-
degenerate elements containg point that does not have this equi-locally
connected property. With this property questions are formulated con-
cerning the existence of P-liftable disks that approximate a given disk
which is itself the image of 5 locally connected set.

It is instructive to cormpare tameness of a disk D with the property

that in a neighborhood of D there exists 5 P-liftable disk D,. Since tame-
ness is equivalent to bicollarability, it, too

) 18 & property of the neighbor- .
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hood of D. Neither of these neighborhood properties implies the other.
The disk in the section 3 example can be chosen to be either tame or

- wild. On the other hand, if the projection map is taken to be the 1dentity

map, then any wild or tame disk in the image space is P-liftable.

Notation and terminology. Throughout the paper we denote set
closure by Cl, interior by Int, and boundary by Bd. The symbol H denotes
the set of nondegenerate elements of a decomposition @, and H* is the
union of the elements of H. We use P to denote the natural projection
mapping of B° onto I%G. The distance between points p and ¢ is de-
noted by d(p, q)-

A sequence My, My, My, ... of compact 3-manifolds-with-bonndary
is & defining sequence for a decomposition G of E® if and only if for each
positive integer 4, M,,, CIntM;, and the nondegenerate components of

ﬁ M; are the nondegenerate elements of Q.

= A decomposition is called foroidal if it has a defining sequence MM,
M,, M, ... such that every component of M; is a golid torus. It is cal}ed
an (m,n) toroidal decomposition if it is an iteration of the embedding
of m solid tori each of which is shrinkable in the previous stage and whose
union essentially wraps # times around (Sher [12]).

For a positive integer n, lot JM, be the nth element of a defining se-
quence for a (2,1) toroidal decomposition. Let T with a subscript of
digits, each of which is a one or two, be a toroidal component of M.
As is conventional, the first & digits of the subscript indicate the com-
ponent of My in which the given torus lies. Thus, Ty C Tip. When we
are concerned with the tori imbedded in a given torus at the next stage
or the next few stages, the subscripts agree except in a small nurpber
of final digits. A notation introduced by Casler [7] is then convenient.
We let na denote a subscript of » digits, and append digits to na. Thus,
'Tmm C Tnal C T’na'

2. A basic lemma. The examples in this paper use the (2,1) toroidal
construetion and modifications of it, In this section we are concerned
with the manner in which a disk infiersects the tori in various stages of
the ‘defining sequonce of a (2,1) toroidal decomposition.

DuriNmioN. A disk D i3 said to be meridional in & solid torus T if
BAD circles BAL once meridionally. A subdisk D of a diskD, 1s'e.aﬂled
a meridional subdisk of D! in a torus T if and only if D is itself a mer%d%onal
digk in T and doos not properly contain a subdisk that is & meridional
disk in 7.

Note that a meridional disk D in a solid torus T is not required to
satisfy IntD C 1.
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Let My, M,, M, ... be the defining sequence for a (2,1) toroidal
decomposition @, with nondegenerate elements H,. Assume that each
M; is polyhedral, Furthermore, suppose that the sequence is so specified
that there are two parallel planes B and § that each contain one eng
point of each nondegenerate element (see Fig. 1).

Leyma 2.1. In the toroidal decomposition described above, let B’ be
a disk in E° that projects onto o disk in E°|G. Assume that B’ is locally
polyhedral off Hy, and in general position with respect to each Bd .M.
S-uppose that D, and D, are disjoint subdisks in B’ and that they are me-
ridional disks in the solid torus My. Then, for any ge Hyp, g~ B # @.

The proof of this lemma depends on Lemmas 2.2 and 2.3.

LEm .2.2. A_S’upposé that a disk D is locally polyhedral off Hry; in
gemeral position with respect to BA My for every positive integer n; and thal
for some torus T, the disk D is meridional in Ty Then for ¢ either 1 or 2,

the Zwk D contains two disjoint subdisks @ and e that are each meridional
in Tp,. . .

The proof of Lemma 2.2 is a modification of Bing’s Theorems 1-4

in [4], in which he uses a (2,2) toroidal decompositi i
ifi sition. Dets
modified proof are in [14]. ’ position. Defails of the

The following definition is used in Lemma 2.3.
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prrINiTIoN. Disjoint sets S; and 8, are said to link if there exist
simple closed curves J; C 8, and J, C 8, such that J, and J, link by Bing’s
definition in [B]. Tori Ty, and T, are said to link in T, if in the uni-
versal covering space of T, there are linked tori #,,, and ?,,; that project
onto Tpy and Th;, respectively. :

LEMMA 2.3. Assume the hypotheses of Lemma, 2.2, If for j o 4 the torus T,
misses D, then it is possible to choose the subdisks d and ¢ of Lemma 2.2
such that T, links D w A, where A is either component of Th,—(d v e).

Outline of a proof of Lemma 2.3. (Details are in [14].) Using
the linkings of T, and T, it can be shown that there is a disk 4
such that

(1) 4CT ka?
(2) 4~ Tpy=Bdd,
(8) Bd4 is a longitudinal simple closed curve in T',,

(4) 4 A T, is two disjoint disks 4, and 4, that are each meridional
in Ty, and
" (8) A misses D. (To get this, it may be necessary to remove from D
trivial subdisks that protrude outside T',.)

Let the components of T,,— (4, 4;) be V and W. Then Vv 4 is
2 set that links Bd.D. Tt follows that D contains in V a subdisk that is
meridional in T,,. Oall this subdisk & in the conclusion of the lemma.
Similarly, there is in W a subdisk that is meridienal in T, It can be
shown that these subdisks & and e satisfy the conclusion of the
lemma.. )

Outline of a proof of Lemma 2.1. (Details are in [14].) The
proof is indirect. At each stage a minimal set of meridional subdisks
satisfying Lemmas 2.2 and 2.3 is chosen. Because the existence of this
minimal set will lead to a contradiction, we can ignore any other meridional
subdisks.

Assume that there is some ¢, e Hy that misses B’. Then, for some
subseript naei, there are tori T, and T,,; containing g, and such that B’
contains a meridional digk in 7,,, but does not contain a meridional disk
in T,,. It can be shown that because B’ contains no meridional disks
in T, there must be four meridional disks Dy, Dy, Dy, and Dy in Ty,
where § # 4. At the next stage at least two of these must have pairs of
meridional disks in the same toroidal component. Suppose that D, and D,
have pairs Dy, Dy, and Dy, Dy, of meridional subdisks in Ty

The hypothesis that P(B’) is a disk implies that no nondegenerate
element intersects both D; and D,. Hence, there is some stage at which
subdisks of D, do not intersect both toroidal components. Without loss
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of generality, we can assume this happens in T,_.. (see Fi

> & naji g. 2). Lemma 2.
applied to Dy, T,,;, and T, can be used to showjr that one subdisk of D3
say Dy, contains a disk ¢ satisfying the following: v

(1) Each point of Bds lies farther from Plane S(R) than the poing
7(8), where » and s are points in Bd M; shown in Figure 1.

(2) Intd contains a pair of meridional disks at the next stage.

Tnejj

Dy ( [ Dy
Day |

Dpy

Fig. 2

N _Tluz; a,rg}unent can be used at each succesive stage. By a careful
mi of which subdisks one follows, it can be shown that there is an
b Bde &]slfaquence of nested disks &; such that 6,,, C Intd; and each poinf

0 lies farther from plane S than point 7 if 7 is even and farther from

Plane E than point s if 1 is odd. This con i
1 ) . tradicts th i "
4 disk and proves the lemma. m ° hypothost that s

abi EJS];A: T‘i{:rggie of a dlsk in E°/G that can not be approximated by P-lift-
o de(.:,om osﬁomposmon Gy of B® used in this example is the (2,1) to-
oG Fp 1‘ on. Let M, denote: the first stage of a defining sequence
. pmf;_‘;'tured_ ﬁe 3 thfz torus M, is shown with a set K. The set K is
e e gz:;ltmg from the removal of four open subdisks from
mmoridion simp?e elos;ch}::;:::s vﬁi alled Bg M, intersect in four disjoint
: ci we deno P g =

The punctured disk K misses Int M, . Since tglcﬂifoiazésesl ,K2,U3 ’]3231%[4.

1y

©
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there is an open neighborhood N of K u Bd M, on which the projection
map P is & homeomorphism. Hence, P(Bd M,) is a torus.

Recall that Bing proved [4] that for the (2,1) toroidal decomposi-
tion @y, the space B%/@, is homeomorphic to B Using the facts that P|N
is & homeomorphism and that H*CInt M,, it can be shown that P(M,)
is a solid torus bounded by the torus P(Bd M,). The set P (K ~BdM,)
is the four disjoint simple closed curves P (). They are unlinked in B%Gy
because their preimages are unlinked in Bd M,. It can be shown that
each P(e;) is meridional in P(Bd M)

C [ZR 5 M PR
o || —

[ S P i L7}
\
My
Fig. 3

Tn the solid torus P(M,) there must exist four disjoint meridional
disks d,, &y, ds, and d, that are bounded by P(e), P(e), P(cs), and Pey),
respectively. This implies that d, v ds © v 8y P(X)is a disk. Call it Dr.

The disk Dz C E%G will be shown to not be £-homeomorphie to any
P-liftable disk D, for ¢ less than & particular value &. We will now spe-
cify &. Assume M, and K are polyhedral. There is an infinite triangu-
lation of B*— H% such that K and Bd M, are complexes in it. Let 7; de-
note the regular neighborhood in this triangulation of the simple closed
curve ¢;. Choose & > 0 to be a distance such that for each ¢, the inverse
image of an &-neighborhood of Bdd; lies in 7; and the one of d; misses

4

(Bd My) — { 71. These conditions imply that for any disk D, that projects
i=1

onto & disk D, that is ¢-homeomorphic to Dr, it is true that D, ~Bd .M,

is contained in the regular meighborhood of K ~Bd M;.

TrmoREM 3.1. For any & < &, there is no P -liftable disk D, that is ¢-ho-
meomorphic to Dr.

Proof. Suppose that there is such a P-liftable disk D,. Let D, be
the P-lift disk. Then, by the choice of &, the set D, ~n M, contains four
meridional subdisks. Denote them by &, &, 0, and 8,. By Lemma 2.1
the set &, v 6, must intersect every nondegenerate element. Similarly,
8;u 0, intersects every mnondegenerate element. Therefore, each nomn-
degenerate element intersects more than one of the subdisks d;, 6s, 03,
and 6,. This implies that the images of these subdisks are not mutually
disjoint subsets in D,. This leads to = contradiction of the assumption
that D, is & disk and proves the theorem. M
3 — Fundamenta Mathematicae T. LXXXVI
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Notice that the disk Dy is not the image of any one of the following:
(1) a 2-complex,

(2) a locally connected set, or

(8) a simply connected set.

4. Another example of a disk in E°/G that can not be approximated by
P-liftable disks. The example we now consider is more easily visualized in B
than the last one. In this example the disk chosen in E3/G will be the
image of a simply connected 2-complex.

First, we will define a knit Cantor set of nondegenerate elements.
We will then construct a decomposition G of E® containing two lknit
Cantor sets of nondegenerate elements. In B® a 2-complex will be chosen
so0 that its image in B*/G; will be a disk Di. For any ¢ less than a partica-
lar &, there will be no P-liftable disk that is e-homeomorphic to Dj.

Let kyp and By be two line segments that have their endpoints in two
parallel planes, A and B, and are perpendicular o them.

DerryrioN. The countably infinite set of ares

{hi] —o0< i< 00} U (g} U {fig}
between planes A and B shown in Figure 4 is said to be knit from the point p

to the ?O‘Lﬂrt q.

— /\(;s
T

8
hg Py hy By h hy hy B

A

=

Fig. 4

(Although it is not necessary for this definition that p and ¢ be at
different heights, they are so shown in anticipation of a later step in the
construction.) Figure 5 illustrates the following generalization of the
knitting construction.

o DerFsrrios. A Cantor set H of ares is knit from a point p to a point ¢
if H can be realized by the following modification of a countably infinite
set of arcs knit from p to g. For each h; let N (%) be a tubular neighbor-

icm®
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hood of s, and let these be such that the members of the set {hp} v {h} v
U {N ()] — o< 4 <C oo} are pairwise disjoint. In each tubular neighbor-
hood replace the arc h; by a Cantor set H; of arcs, each one of which
intersects A and B in the same manner as hi.

Fig. 5

DerFINITION. Let N (H) be a closed neighborhood containing H and
such that @ ~BAN(H)= hy v hg. A set of nondegenerate elements H
in B? is said to be a knit Canior set of nondegenerate elements if there is
an embedding of IntN (H) into BE® that takes [H— (hy v kg)]* into H.

Next we describe a Cantor set of nondegenerate elements which we
will modify into a knit Cantor set of nondegenerate elements. The first
stage is the two disjoint tori pictured in Figure 6. We decompose each

Pig.- 6

by a (2,1) toroidal deecomposition. Figure 7 indicates the first embedding
of pairs of tori whose unions essentially wrap once around. Let P be
& plane that cuts each solid torus as indicated in the figure. ‘We can as-
sume that the nondegenerate elements of these two toroidal decompositions
interseet P in & standard Cantor set G of points in a line segment I. Fi-
gure 8 shows this plane and some of the points with their usual numerical
representation in base 3.

2+
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Fig. 9

In Figure 9 we have separated the fori on P. The two copies of P are
now labelled planes A and B. Between 4 and B we indicate the Cantor
set of straight line segments connecting copies of C in A and B. For this
Canfior set of segments we substitute the knit Cantor set of Figure 5
in the manner indicated in the following table. The notation [a, b] indi-

H—s ", H_, Eo H, H,
... [.0002, .001][.002, .01][.02, .1][.2, .21][.22, .221][.222, .2221] ...

cates the set of vertical segments containing points in C in the interval
[a,b]C I, and H; is a Cantor set of arcs in Figure 5. With these sub-

& ©
lm Baamples of disks in E*|G which cannot be approwimated by P-liftable disks 127

stitutions we have constructed a knit Cantor set of nondegenerate ele-
ments, H. Let g, and g, satisfy gy Dhy and g} D).

Let NV be a closed neighborhood of H such that BAN ~ H is the
elements gp and g;. Map N into E® in such a way that the following
conditions are satisfied. The elements g, and g, are identified and the
map is an embedding for N—(g, v g;). In Figure 10, parts of some ele-

P~
!

Fig. 10

ments are shown. Notice that p and ¢ are mapped to different points
in the identification of the two nondegenerate elements containing them.
Also, in Figure 10 is the 2-complex €, which can be specified by:

{(maf'/’z)i I<2<1,0<y<l, z= 0}7

{#,9,2)] —1<2<0, —1<y<0, 2=0},

{(w,y,z)l 0<‘”<17 '—1<‘3/<0, z:l},

{®,9,2)] —1<2<0, 0<y<1, 2=1},

{(@,y,2)] 8=0, —1<y<1l, 0<2<1}, and

{z,7,2)] —1l<e<l,y=00<2<1}.
The two identified elements of H are the nondegenerate element g,,
which is the segment of the z-axis: —1 <z < 2. The points p and ¢ are
2= 1 and z= %. The set H* ~ C is contained in the line segments g,,

{(myyyz)l &=, <2<l 2= 0}5 and .

{(a:,g/,z)[ r=—y, —1l<2<0, z=1}. )
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The last step of the construction is the addition of nondegenerate
elements in the half-space y < 0 in such a way that we have Symmetry
with respect to the z-axis. All the nondegenerate elements are indieated
in Figure 11. They form two knit Cantor sets of nondegenerate elements,
Let Gy denote this decomposition of E* and H,, denote its set of nondegener-
ate elements.

The space K°/Gr, where Gr is the (2,1) toroidal decomposition, is
shown by Bing in [4] to be homeomorphic to E®. ¥rom this it can be

Fig. 11

shown that B%G is also homeomorphie to B2 (In any element M; of the
defining sequence, it is possible to shrink the component containing g, t0
any prechosen small size. Then, since in each other component of M; the
decomposition is (2,1) toroidal, there is a shrinking homeomorphism in
its interior.) ‘

In BGy, the set P(0) is a disk. Tt is the disk Dy that we claim is
1ot e-homeomorphiec to any P-liftable disk for any positive distance &
less than a particular value £,. We choose this ¢ by a method analogous
to that used in the last section. For this we use the 3-manifold with

boundary shown in Figures 12 and 13 as the first element of a defining
sequence for Hy.

THEOREM 4.1. For any &< &, there is no P-liftable disk D, that is
e-homeomorphic to Dy.

e ©
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Outline of a proof (Details are in [14]): Assume that in B%Gy there
does exist a disk D, that is e-homeomorphic to Dy and is the image of
s disk D.C E°

Fig. 12

il
.

Fig. 18

The construction of Gr was based on a modified (2,1) toroidal de-
composition, because that makes the following result provable: Each
g € Hy intersects D.. This proof is similar to the proof of Lemma 2.1.
One assumes that there exists a g ¢ Hy that does not intersect D;. Then
there is some component BD g, of an element of a defining sequence
for Hy such that B does not intersect D,. Analysis is broken into cases
concerning whether B and the manifold at the previous stage contain-
ing R are tori or cubes-with-more-than-one-handle. It is shown that each
case can be reduced to Lemma 2.1.
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Recall that Hy consists of a countable collection of Cantor setg of
arcs knit in a specific manner described above. Let #£ denote a set gop.
sisting of g, plus exactly one are from each of these. Cantor sets of arcg,
Notice that + is the union of two countable sets, each of which is knit
from p eg, 10 q €g,. Associated with 4 there is a decomposition of g
having # as the set of nondegenerate elements. Denote this decompo-
sition by G and let Pg: B*—F°/G,. Tt can be shown that if the disk
D! exists, then P4(D;) is a disk.

By the definition of D}, its boundary lies in a regular neighborhood,
r,, of Bd (. Hence, D, w 0 U r, separates B’

Fig. 16

It is possible to define the knit portions of A* in & manner analogous
to that used by Fox and Artin for wild arcs [8]. An infinite number of
copies ofA a cube (Fig. 14) containing arcs are mapped into frusta of
a Pyra.mld (Fig. 15). Pigure 16 indieates the manner in which such pyra-
mids can “contain” the knitting of the set . Let s denote the pair of
pyramids shown in Figure 16. We will use frusta faces that contain maps

e ©
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of the left and right faces of the cube in Figure 14. One of these frusta
faces lies in the unbounded component of E*—(D.u O u 7). Let f; de-
note this face and let f; denote any other frustum face of %. By analyzing
possible infersections of D, with = between f; and f;, it can be shown
that f; also lies in the unbounded component of E°— (D, u € ur). This
result depends on the fact that P.(D)) is a disk.

It can now be shown that there must be four disjoint ares in D,
each from a point in BAD; to p or g eg,. These arcs can be ordered by
their endpoints in Bd.D,. In this ordering, they alternate with respect
to having p and ¢ as their second endpoint. This set of four ares unioned
with g, separate D, into four subdisks. A segment of g, is a common set
in the four boundaries of these disks. This contradicts the assumption
that D! is a disk and proves the theorem. m

5, Concerning a question asked by Armentrout. In [1] Armentrout asks
(Question 8): Suppose @ is a poinflike decomposition of B OIf S is
a 2-sphere in B%/@, does there exist a 2-sphere §’ in F* such that P[8’]
is & 2-sphere homeomorphically elose to 82 We now show that the answer
is negative.

Fig. 17

In the manner that is obvious in Figure 3, a disk in B*— M, can be
added to the punctured disk X in such a way that the resulting set be-
comes a punctured 2-sphere. This immediately gives a counterexample
to the question.

Tt is conjectured that a counterexample can be based on the example
in section 4. Because of the orientation of the knitting, it is not possible
to add a disk with the same boundary as the set C. Two copies of ¢ can
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be used and then the nondegenerate elements and the knitting 50 con-
structed that the boundaries of the two copies are homotopic in the de-
generate points of B°. A portion of such an arrangement is shown in Fj.
gure 17. Similar knitting is repeated in the other four quadrants. It seems
very likely that a proof similar to the one outlined in section 4 could be
given for this 2-sphere counterexample.

6. Examples in equivalent decompositions. The following definition ig
made by Armentrout, Lininger, and Meyer [2]:

Dermvrrion. If @ is any monotone decomposition of B3 let Hy
denote the union of the nondegenerate elements of @, and let Pg denote
the projection map from E* onto the decomposition space E¥G associated
with @. Suppose that F and @ are monotone decompositions of F®* such
that each of Cl(Py[Hy]) and Cl(Pe[He]) is compact and 0-dimensional.
Then F and @ are equivalent decompositions of E® if and only if there is
a homeomorphism % from EYF onto E%G such that ACL(PLLH,])]
= OL(Po[Hq)).

For each of the decompositions G and G above there is an equivalent
decomposition having only a countable number of nondegenerate ele-
ments. These can be defined using a technique due to Bing [6]. We briefly
describe it for Gr. For the (2,1) toroidal decomposition recall that each
component of each element of the defining sequence is denoted by T with
& subseript consisting of the digits one and two. We can required that
the diameter of any torus be less than one-half raised to the power equal
to the number of twos in the subscript notation. This method results in
only a countable number of nondegenerate elements.

As stated previously, B*/Gy and %@ are each homeomorphic to B3

A theorem proved in [16] states that if a decomposition @ has a count-
able number of nondegenerate elements and %@ is homeomorphie to B,
then for each disk .DC E¥@G and each s >0 there exists a .P-liftable
disk D, that is e-homeomorphic to D. Hence, the new equivalent de-
compositions differ from Gy and Gy in the property concerning the existence
of the P-liftable approximating disk D,.

7. Concluding remarks. The Kline sphere characterization of the
2-§phere states: A nondegenerate, locally connected, compact continuum
?vhmh.is separated by each of its simple closed curves but by no pair of
its points is homeomorphic with the 2-gphere [3]. Consider the two ex-
amples (one conjectured) in section 5 of 2-spheres that are not arbitrarily
close to P-.ijtab]e 2-spheres. The one based on the example in section 3
uses a set in B that is not locally connected; the one based on section 4
uses a set in F® that is not separated by each of its simple closed curves.
If one does mot require that the decomposition be pointlike, then one

e ©
lm Examples of disks in EG which cannot be approximated by P-liftable disks 133

can easily find other examples of spheres in B%/G that are not arbitrarily
close to P-liftable spheres. Try one ecircle as a nondegenerate element,
or use disconnected nondegenerate elements.

The author conmstructed the example in gection 4 when she was
attempting to prove a theorem concerning the existence of a P-liftable
disk near a given disk. For such a theorem, it seemed useful to hypothesize
that the decomposition satisfies a new property. For this, we make the
following definitions.

DEFINITION (Michael [11]). A collection G of closed points sets filling
a metric space is said to be equi-LC™ provided that it is true that, if y is
a point of an element g, of & and ¢ is a positive number, there is a positive
number & such that if g is an element of @, then any mapping of a k-sphere
(k < m) onto a subset of g ~ 8(y, ) is homotopic to a constant on a sub-
get of g~ S(y, ¢). (The notation S(y, d) denotes a &-neighborhood of 4.)

Observe that a knit Cantor set is equi-LC°. We now make new de-
finitions, which are not satisfied by a knit Cantor set at a point p from

which the set is knit.

DEFINITION. A collection @ of closed point sets in E® is said to be
equi-locally commected provided that, if y is a point of an element g, of &
and ¢ is a positive number, there is in the ¢-neighborhood of y a topological
3-cell B containing ¥ in its interior and such that if ¢ is an element of @,
then g ~ IntB is connected.

DEFINITION. A collection G of closed point sets in E® is said to be
strongly equi-locally connecied provided that, if y is a point of an element
g, of @ and ¢ is a positive number, there is in the e-neighborhood of ¥
a fopological 3-cell B containing ¥ in its interior and such that if g is an
element of @, then g ~» IntB and g » B are connected.

DEFINITION. A collection G of closed point sets in F? iz said to be
equi-locally connected and equi-semi-connected provided that, if y is a poing
of an element g, of @ and ¢ is a positive number, there is in the e-neighbor-
hood of ¥ & topological 3-cell B containing 4 in its interior and such that
if ¢ is an element of @, then g ~ IntB is connected and g ~ Ext B has no
more than two components.

QUuEsTION, Is the following true?

Let @ be an upper semicontinuous decomposition of B* with non-
degenerate elements H. Suppose that H is a continuous, strongly equi-
locally connected collection and that P(H) is 0-dimensional in E%@.
Furthermore, suppose that a disk D C B/@ is the image of a locally con-
nected set in E®. Then for any positive number ¢ there is a disk D, that
is e-homeomorphic to D and is the image of a disk under the projection
mapping P.
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Questions. Is the above true if we substitute one of the other threg
definitions of equi-local connectedness? Can the condition that P(H)
be 0-dimensional be dropped from the hypotheses?

Notice that the (2,1) toroidal decomposition space and Bing’s doghone
space [5] each satisfy the hypotheses in the above question.

Pig. 18

Because the dogbone space is not homeomorphic to E°, the method
?med in section 3 can not be used with this space. Hence, we ask the follow-
ing question. '

QUEsTION. Is every disk D in Bing’s dogbone space e-homeomorphic
to a P-liftable disk for any e > 02 ‘

The following leads me to think that the answer %o this question
may be affirmative. In the (2,1) toroidal decomposition it is not true
that every disk can be approximated by a P-liftable disk. This fact is
related to the existence of a non-locally connected set that projects onto
a disk. One can use the construction indicated in Figure 18 to get such
a nog«locaﬂy connected set. Shown are subdisks D' and D? that each
contain two subdisks intersecting a toroidal component T,... For each
.Df the two .subdisks of I* there must be 2 torus T With 7 = flor 2 that D*
%ntersects In two meridional subdisks. As shown, it is possible for T, to
intersect both subdisks of D' and T, to miss both. Similarly, Dk“:lizan
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interseet only Ty,.. The desired set is obtained by iteration of this con-
struetion. In the dogbone space there does not seem to be a similar con-
gtruction of a non-locally connected set that projects onto a disk.
Figure 19 indicates pushing subdisks of D', D? D® and D* in an attempt

Fig. 19

to have each dogbone at the next stage intersect only ome of these sub-
disks. Obviously, all the pushes shewn ean not be performed. Of course,
this only shows that one can not visualize a counterexample to the question
by this method. Tt would be guite exciting to find that the dogbone space
shares with the trivial decomposition a property that the (2,1) toroidal
decomposition lacks.
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A characterization of locally connectedness
by means of the set function T

by
Donald E. Bennett (Murray, Ken.)

Abstract. In this paper the connective properties of the set function 7' are in-
vestigated. In particular, the images of closed sets under T are shown to contain closed
connected subsets which are also in the image of 7. These results are used to give
a characterization of locally connectedness in unicoherent continua. This characteri-
zation generalizes a result of Kuratowski which concerned continua contractible with
respect to S

A continuum is a compact connected topological space. Throughout
this paper X will denote a continuum. If 4 C X, then the interior of 4
in X will be denoted by intxA and 2% will denote the collection of 21l
non-empty closed subsets of X. If 4 2% and p e X—A, then X is said
to be aposyndetic at p with respect to A provided there is a subcontinuum M
of X such that p € inty M C M C X— 4 [3]. The set function T is a mapping
from 2% into 2% such that for each 4 2%, T(A)= A vu{reX| X is not
aposyndetic at z with respect to A}

For terms used but not defined herein, the reader is referred to [4]
and [6].

It is easily seen that for each A 2%, T(4) is closed in X. In [1] it is
shown that if 4 is connected, then T(4) is also connected. In [5] Vought
proved that if X is n-aposyndetic and A is a set consisting of n-+1 points
then T(A4) is connected. We shall extend these results coneerning the
connective properties of T.

The proof of the following lemma parallels that of Lemma 3.1 of [5].

LEMMA 1. Suppose S € 2%, 8 is totally disconnected, p < T(8)—8, and
for each closed proper subset S’ of 8, p ¢ T(S'). Then T(8) is connected.

Proof. Let §, be a non-empty subset of § which is both open and
closed in §. Since p ¢ T(S—8,), there is a subcontinnum H such that
peintxH CHC X—(8—8,). Let {U)2, and {V,}o., be decreasing
sequences of open sets such that for each positive integer , 8—8,C Un,

8, CVa, U1“V1=U1“H=71n{p}:®’ and S—_SO:OlUn while
Soszn-

n=1
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