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Lusin area integral, and Walsh-Paley series”

by
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Abstract. We prove weighted integral inequalities between the Lusin area
function and nontangential maximal function of a harmonic function. We also obtain
results for Walsh-Paley series as a corollary of the method.

Introduction. In this paper we prove weighted integral inequalities
for the Lusin area function and the nontangential maximal function.
Specifically, we are able to answer some questions raised in [11], and
extend the inequalities proved there. Our results indicate that many of
the norm inequalities for HP-spaces in R%™ remain true for a wide class
of meagures on the boundary. Our method consists of showing that certain
distribution function inequalities, proved in [2] for the area function
and the nontangential maximal funetion, are valid not only for Lebesgue
measure, but also for this wide class of measures. These inequalities lead
easily to the desired norm. inequalities.

The technique used in studying the area integral may also be used
to obtain weighted norm inequalities for Walsh—Paley series. Inequalities
of this kind were first studied by Hirschman [6]; we are able to recover
and extend his results.

Theorems concerning the area function and nontangentlal maximal
function are in Section 1; Walsh-Pa'ey series are treated in Section 2.
Section 3 contains & remark on the radial maximal function.

1. We use the notation of [2]. A cone of opening & in R = {(z, 1):
e R" y > 0} is defined as

@) = I'(@, @) = {(s,9):

The area function, corresponding to a harmonic function u, is given by

A@) = A,)(@) = ( [ 31Vl pirdsay)’,

I'(x)

|z —s] << ay}.

* This research was partially supported by NSF Grants GP-19222, GP-20132,
and GP-20147.
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and the nontangential maximal function by

N(2) = Ng(u)(2) = sup lu(s,y)l.
(8, ) el(z)
Another auxiliary funetion is

D(x) = sup y|Vu(s,y).
(s, v)el(z)
“Local” versions of these functions are defined as follows: If R is
a measurable subset of R}, let

h@) =[] yVuls, y)rdsdy,

I(z)nR

Ng(z) = sup |u(s,y),
(9T @NR
and

Dr(@) = sup y|Vu(s,y)l.
(s v)el@)NR

These definitions make sense if I'(#)nR is nonempty; otherwise,
each function is defined to be zero. Notice that as R expands to the entire
_space R%™, each function inereases to its unrestricted version.

‘We often use m(-) to denote Lebesgue measure on R"; when it occurs
under an integral, we simply write dw.

The following class of measures was discovered by Benjamin Mucken-
houpt in connection with his disctission of norm inequalities for the
Hardy-Littlewood maximal function [8]. Let 1 < p < oo, ¢ = p/(p—1)
and

M (d) = w () de,

where w(x) is a non-negative, locally integrable function that satisfies

1 . 1
(45) (m(I) If w(@) d””)(m(l)

for all cubes I = R™ The constant ¢ is'independent of the cube I. Charles
Fefferman observed that any function w(z) that satisties condition A,

for some p > 1 has the following property: If H is a measurable subset
of a cube I, then

/g '
/ [w(w)rmdw)p <0< o
I

m(H) My, (B)

(4= w7 (D)

g Csl/r

for some C and ¢ > 1, independent of F and I. In fact, as Fefferman
pointed. out, property A follows easily from another fact about A,-func-
tions, due to Muckenhoupt ([8], see inequality (3.19) and Sectlon 7).
If w(w) satisties A,, then it also satisfies a “backwards Holder inequality”

icm
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‘ of the form

1 . 1
[m—(I)—if[w(m)] dm] <Cm1f'w(m)dm

for some € and s > 1, independent of the cube I. To see that A, follows
from this, we use Holder’s inequality to write

1 m(E) ir 1 ~ . 1fs
) Ef v < (7)) (o J o i

m(B)\r{ 1
<o(an) (o [ o)

I

where s~ 477! = 1. We may arrange this to obtain
My, (B) m B\
- L O |— ,
M, (1) m(I)

which is equivalent to A,.

Remarks. (a) It follows easily from Holder’s inequality that if
w(-) satisties A,, then it also satisfies A,,, for every ¢> 0. That i, in

. general, A, , is weaker than A, for s> 0.

(b) B. Muckenhoupt [9] has recently proved that condition A,
implies A, for some p > 1. (This, together with the converse indicated
above, shows that A, is equivalent to requiring condition A, for some
p >1, and explains our notation “A_”.) Muckenhoupt proved this fact
for functions w on R'; Wo-Sang Young has adapted the proof for functions
on R

(¢) If w(z) = |z|°, —1 < a< p—1, then w(x) satisfies condition A,
on R These weight functions have been considered by many authors.

(d) The inequality defining condition A, implies a converse also
holds. That is, if w(-) satisties A, then there exist constants p and ¢,
1< p < coand ¢ > 0, such that for any measurable subset F of a cube I,

my(B) _ (m(E) )p.

My (L)

a-1) Z N\

To show (1.1), observe by remark (b) that for some p, 1 <p < oo,
we have weA,. By Hoélder’s inequality,

m(B) = f WP =P g <L ( f wdm)llp( f w”q"’dw)llg.

Since B < I and w satisfies condition A,, we have

Jwtras < [w e do < Om (12 ( [was) ™.
& I ‘ !
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Combining these estimates, we obtain
m(B) < Om(I) (fwdm)up(fwdw)'llp,
b I

which is (1.1).
In particular, if tI denotes the cube with the same center as I whose
edges are t times as long as those of I then

my (1)

0-2) o)

>G;>0

for any ¢> 1. This implies that the A, criterion, stated originally for
cubes, holds if cubes are replaced by balls. Other variants are also possible.

(e) In the discussion of Walsh—Paley series, slightly weaker A, and A,
conditions are appropriate. Instead of requiring that w(-) satisfy the A,
or A, condition on all intervals, we demand that it hold only on intervals

I of the form (i k+l

on 7—) This condition is referred to as A, (dyadic)
or A, (dyadie). ,

THEOREM 1. Let D be a nondecreasing continuous function on the interval
0 <A< oo, such that @(0) = 0 and P(24) < C,D(1). If u(-) is harmonic
on RY™ and m,,(dw) satisfies condition A, then

() o [ B[4 () m,(dw) < [ B (N (u))m,,(da).
Conversely, if the left hand side of (i) is finite, w may be normalized by sub-

tracting a suitable constant so that it vanishes ot infinity; assuming this
normalization we have,

(ii) [ @ (N (W) my,(do) < C [ &(4(w))my,(de).

The constants ¢ and C depend only on the growth. constant for D, the
size of the opening of the cone I, the measure m,(dz), and the dimension n.
In particular, for 0 < p < oo,

[ LA @)1 my(do) = [ [N (w)]m,, (do)

for w suitably normalized if mecessary.

These inequalities complete and extend the partial results contained
in [11] (see Theorem 3).

CoROLLARY 1. Let u be o harmonic function on R, Then

e [TAw)]Pm,(ds) < sup [ (@, y) P, (d)

icm
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for 1< p < oo provided m,(dw) satisfies A,. If the left-hand side is finite,
w may be normalized to vawish at infinily so that

sup [ fua, )Pm, (o) < C [ T4 (w)Pm,(dz).
y>0

In this inequality, m.(dx) is required to satisfy only the condition A,.

This corollary extends Theorem 1 of [11].

Fefferman and Stein [3] have shown that the H? spaces in R,
for 0 < p < oo, can be characterized as the spaces of harmonic functions %
such that

JIV@Pde < co.

The key to this definition is the fact that
f [N (w)]Pds =~ f [4 (u)]Pd.

Theorem 1 shows that this important equivalence holds for all measures
in the class A, . We will discuss the analogous characterization for weighted
H? spaces briefly at the end of this section.

The same ideas that apply in Theorem 1 may be used to prove norm
inequalities for Walsh-Paley series. (See Section 2 for definitions.)

THEOREM 2. Let f = (fi,fz, ...) be the sequence of 2%th partial sums
of & Walsh-Paley series. If @ is a nondecreasing continuous Sfunetion with
@(0) = 0, B(21) < O, B(A), and m,,(dx) = w(x)dzr is a measure on the unit
interval that satisfies A, (dyadic), them

o [ D(S(f))mu(do) < [ B(Fymy(dn) < O [ D(S(f))mu(da)
where
I =suplfyl
and

- 2 ¥
8(F) = (3 Fan—Fl+7)"
n=1
In general, the proofs in this paper are minor modifications of those
in [2], and we do not reproduce all the details. Flowever, some lemmas
from [2] are treated again to take account of the change of measures.

Levya 1 (Lemma 2 of [2]). Let b > > 0. Then for all 1> 0
mw(Nb > A) < cmw(Na > A‘)

where w(-) satisfies A,,. The choice of ¢ depends only on m, the ratio a/b,
and the function w(-).

Proof. We use Muckenhoupt’s result that A, implies A, for some
p, 1< p < oo, (Remark b), and his theorem from [81:
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If w(-) satisfies A,
function of f, then
[ @ Pw@)ds < 0 [If(@)Pw(

where C depends only on p, w(-), and n.

The proof of Lemma 1 now follows the same lines as Lermoma 2 of
[2]. We replace the set

{Na>2'} =

gl <P < oo, zmd f 18 the Hardy—Litilewood maximal

U{B(z, ay): |u(z,y)| > 2}

by a larger set, using the Hardy-Littlewood maximal function f* of the
characteristic function f of the set {N,> 1}. In fact, by an elementary
geometric argument, given in [2],

N> ={f"=a

where « = a"/(a+b)". Therefore, by Muckenhoupt’s theorem quoted

above, we have

<
< o [If* (@) Pw(o)do
<

Ca™® f|f(m)|”w(‘m)da
= ' My (N, > A).
This proves Lemma 1.
The inequalities of Theorem 1 are consequences of certain distri-

bution function inequalities. These distribution function inequalities are

stated as Theorems 3 and 4, corresponding to Theorems 2 and 3 of [2].

TeEoREM 3. Let G be a bounded open subset of R™ and R the interior

of the complement of % I'(z); let m,,(dx) be a measure on R™ that satisfies A, .
x

“Given a > 1, f > 1, there ewist constants y and & such that
aMuy(Ar> A, Np < yd, Dp < 04) <

for all A > 0. The conclusion also holds for B = R by passage to the limit.

In the following theorem, corresponding to Theorem 3 of [2], we
need a variant of Np(z), defined as follows. If I'(®)NR is empty, let
N%(z) = 0; otherwise, let

Ni(@) =  sup
&) el(@NR

where (s, y;) is the point on the upper boundary of R directly above (s, y):

My(Ag > A)

(8, y)—u(s, )l

Y = sup{y': (s, y')e E}.
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TeroREM 4. Let G be o bounded open subset of R™ and R the interior
of the complement of \J I'(x). Given a>1, § > 1, there exist constants y
G

and & such that .

amy,(N% > A, Ap < yA, Dp < 04) < my (N > A)

for all 1> 0. The conclusion also holds for R = R by passage to the
limit.

We begin by proving Theorem 1 (i), assuming the validity of Theorem 3.
To avoid technical difficulties, we may assume that « is continuous in
the closed half-space {(@,¥): y=>0}. If necessary, replace u(z,y) by
uy(@, 4) = u(m,y+08), 8> 0; if inequality (1.3) holds for u;, we may
obtain it for » = hmud by the monotone convergence theorem.

The first step ]S to show that _
(1.3) [odg)dm, < 0 [B(Ng) dmy,+C [ ®(Dg)dm

where R is any region of the kind described in Theorem 1, for % harmonic
in R™** and continuous in the closed half-space. In this case, the integrals
in (1.3) are all finite since Ap, N and Dy are bounded and have compact
support. To prove (1.3), write(?)

ARE®)

f f (A1) M, (de)

RrRn O

[ o(4z)m, (@) =

- fmw(AR> ) D(A).

Notice that
[ B(AR)my(dz) < O, [ @3 Ag)m,(da)
=0, [ my,(4g > 22)B(dd),
[1]

by the growth condition imposed on @. Now we use Theorem 3 with
a=2C, and § = 2:

Mup(Ag > 23) < My(Ap > 24, Ng < phy Dp < 04)+my(Ng > yA) +

+my (D > 84)

< My (Ag > A) My (N > pA)+my(Dg > 64).

20,

(*) The following computations are slmpler and somewhat more general than
those in [2]; they were communicated to us by D. L. Burkholder.
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Therefore, we may integrate both sides of this inequality to obtain

[olag)ym,(dn) < O, [ my,(dp > 22) B(aR)

<3 [ @(Ag)my(da)+C, [ Dy~ Ng)m,,(dx) +Cy [ @87 D)y, (d0).

Since both sides -of this inequality are finite, we may subtract the first
term on the right-hand side from both sides, and use the growth con-
dition on @ to obtain

[o(dg)m, (@) <

Now we let R expand indefinitely and apply the monotone convergence
theorem to obtain

[@(4ym,(do) < C [ S(N)m,,(da)+C [ G(D)m,(dx).
The second step of the proof is to show that
(1.4) [ @(Dym,(dz) < C [ (H)my(dar).
‘We use the inequality

<O [O(Ng) My () +C [ ®(Dg)my, (d).

D(2) = Dy(s) < ON,(a)
if > a> 0. (See Stein [12], p. 207.) Therefore,
My (D > 2) < My, (ONy > )
< Om,(CN, > 4)

by Lemma 1. This inequality, together with the growth condition im-
posed on @, implies inequality (1.4).
Therefore,
fdi(A)mw(dw) < 0[¢(N)mw(dm)—i—Of(D(_D)mw(dm)
< C [ D(Nym,(dz),
§o that Theorem 1 is proved.

Proof of Theorem 3. The key to the proof of this theorem is simply
to isolate the relevant part of the proof of inmequality (29) of [2].

Let R, = {(z,y)e B,y > ¢}; then Ap is a continnous function on,

R7*! that vanishes outside of @. Therefore, @,

= {4p, > 1} is an open
set whose closure is contained in G. Let

= {dp > 2, Np, < v, Dp < 04}

where y and & are suitably chosen, the choice to depend only on o, 8,
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and n. To prove Theorem 3, it is’ enough to prove

(1.5) My (E) < my,(Gy). )

(Since the choice of constants y and é is independent of ¢, we may obtain
am({Adg > BA, Ng< yi, Dp < 01) < m(dg> 1)

by letting R, — R as £ tends to zero.)

In order to prove (L.5), we decompose G, into disjoint cubes I, using
the Whitney decomposition theorem (see Stein [12]). Bach cube I is
covered by an open ball B, with the same center, contained in G, and
such that

diameter Bj < ¢(diameter Ip).

Furthermore, each ball is required to have at least one of its boundary
points contained in the complement of &,. For each cube I, in the Whitney
decomposition, there is such a ball Bj: Consider all balls centered at
the center of I, containing I, and contained in @,. This family is non-
empty since the Whitney cube I, has the property that its diameter
is less than its distance to the boundary of @,. Let B be the union of
all members of this family. The maximality of B gnarantees that at least
one of its boundary points belongs to the complement of &,. The crucial
fact needed to prove (1.5) is the following:

For such balls B, there ewist constants y and 6, depending only on ag, B,
and n such that

(1.6) aym(ENB) < m(B).
As before, the constants o, and p are restricted only by the assumption

that they are greater than one. We refer to inequality (1.6) as the “special”
inequality. It differs from the general inequality (1.5) in that it refers

_only to Lebesgue measure and to balls B, contained in G, with at least

one boundary point in the complement of G,.

Before proving the special inequality, let us indicate how the general
inequality (1.5) follows from it. If B is any “Whitney ball”, as described
above, then

aom(BENB) < m(B)
implies

am,(ENB) < m,(B)
where o = Cal”, by the A, condition applied to balls instead of cubes
(see Remark (d)). Then

amy,(H) = az My, (B NI) <

< D) my(By)
2

ame(Ean

< 02 ML) = emy,(Gh),
%
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since condition A, implies

) Moy (B} < oMy, (1)
by Remark (d). Thus,
amy,(B) < 6m,(G,)

for all a > 1. Bince ¢ is independent of ¢, this is equivalent to the general
inequality (1.3).

The proof of the special inequality (1.6) is contained in the proof
of Theorem 3, [2]. In the notation of [2] (see especially, the discussion
following inequality (29)), the argument consists of showing that

m(B) < aym(ENB)

is not possible with a, greater than a fixed constant 265y > 1 and con-
stants ¢ and & arbitrarily small. This, of course, is equivalent to our
assertion. For the details of this argument we refer the reader to [2].

Theorem 1 (ii) follows from Theorem 4 in almost the same way as
Theorem 1 (i) follows from Theorem 3. If

[ ®(4)my,(dw) < oo,

then % may be normalized to vanish at infinity by, the same argument
used in the proof of Theorem 1 of [2]. (The essential point to check is
that m,,(dx) is always an unbounded measure on R". This follows inimedia-
tely from remark (d).) Therefore

lim N%(x) = N (=),
BRI

5o that Fatow’s lemma implies

f B (V) my (dr) < limint f D (NS m,, ()

8
< C [ D(A)my(d);

the last inequality is proved from Theorem 4 in the same way Theorem 3
is used to prove part (i).

The proof of Theorem 4 follows the same lines as the proof of Theorem 3.
The crucial fact needed is the following. Given a ball B < {N% > A}
with at least one boundary point in {N% < 1}, constants o and g iarger
than 1, there exist constants y and § such that

(1.7) am{BENB) < m(B),

where B = {N}’g >BphLA<E, Dy, < 04} and f* is the Hardy-Littlewood
maximal function of the characteristic function of {45 > yi}. Again,
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(1.7) is a routine extension of inequalities proved in [2]—see in particular
inequalities (34) and (35) and the ensuing argument. The remainder of
the proof of Theorem 4, using A, to mediate between Lebesgue measure
and m,, is virtually the same as in Theorem 3.

Proof of Corollary 1. To prove the first part of Corollary 1, we
claim that if 1 <p < oo and

sup [ |u(@,y)Pm,(ds) = 0y < oo,
v>0 gy

for a funetion w which satisfies A,, then u is the Poisson integral of a
function f with

[ 1@ Pme(do) < 0,
RT

From this we can derive the first inequality of the corollary as follows.
([12], p. 92),
N (w)(z) < ef (@),
where f* is the Hardy—Littlewood maximal function of f Therefore,
by Theorem 1 (i) and [8],

[T (W) Pmy(do) < o [ LN (w)Pmy,(do) < ¢ [[fFm,(dz)
<o [1fPmy(do) < 0y

To establish the claim, observe that the LP(m,(ds)) norms of the
functions %,(z) = w(%, y) are uniformly bounded by C}”. Hence there
exists a sequence ¥, converging to zero and a function f with

JigEm,(dn) < ¢

guch that u(x, y;) converges weakly to f(z)—
(1.8) hm fu(m, Y3o) 9 () My (i) ff

for ge Lq(mw(dm )y @ =p/(p—1). Now choose g(x) =P(z—2, Sw(z)™},
where P is the Poisson kernel and (2, 6) is a fixed point of R%*". Indeed,
since w satisfies A, it is easy to check that w'~? = w™"®~D gatisfies A,,
and therefore, as in (2.3) of [7], geLq(mw(dm)). ‘With. this choice of g,
the right side of (1.8) is the Poisson integral f(z, ) of f, while the left
side is u(z, ¥+ 0). Since hmu(z, Y+ 0) = u(z, ), the claim follows.

that is, so that

%) My ()

The second part of the corollary follows immediately from Theorem 1
().

We shall now give a short discussion of weighted H® spaces. For
the most part, the arguments are just weighted versions of those of [3],

2 -— Studia Mathematica XLIX.2
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Section 8, together with those of Corollary 1 above, so we shall be very
brief. For a function «(w, ¥) harmonic in R and a weight w satisfying
A, we write we H.ﬁ, 0<p< oo, if

- (Jwrw

nn

(1.9) Il (@) Pm, (dm))? .

Here we choose N (u) = Ny(u) for definiteness, but by Lemma 1

) (@) my(de)” < ol

ol < ( f [Na(u

for any « > 0, where ¢ depends only on a, # and w.

‘We shall discuss the relation of this definition to a weighted version
of the Stein—Weiss definition of H?, as described in [3], Section 8. The
basic ingredient of this definition is a vector

»
1,

F(z,y) = (’“’0(507 Y)y (@, Y)y ey Um (2, f’/))

whose length m depends on p and another constant r, 0 <7 < p < oo.
The components u;(#, ) are harmonic in R%Y* and the function

= f (@, y))"™

is subharmonic in RY':. (The details concerning m and its relation to p-

and r are given in [3], Section 8.) We say that the vector F is in Stein—
Weiss HE if

WPl = sup( [ 17,

¥>0 ‘pn

Y)Pmy(dw))"” < co.

Given p and r, 0 <r < p < oo, w in A, and ¢ harmonic function u
with ]|u|[Hp < oo, then there is a vector F with w, = w such that
w

0 < ] -

In fact, the other components u;, i =1, ..., m satisfy

HuiliHi < ollull

Conversely, given 0 <r < p < oo, a vector F and a weight function w in
A

oiry W€ have
( [ (RN Pma(d2))" < ol -
RN

Moreover, if weAy,, the principle of harmonic majorization holds—that
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18, there is o non-negative function h(x), with
[ h(@rm,,(da) < e | PIE ,
Rr™

whose Poisson integral h(z, yf satisfies h(wz,y) = |F(z, y)I".

In summary, if w is in A,,, then the Stein—Weiss definition of HF,
is equivalent to the nontangential definition.

To establish these facts, let us suppose first that we are given p
and 7, w in A, and %< HE,. The proof that there exists an F with all
the properties listed then follows from the same arguments as those in
the second part of the proof of Theorem 9 of [3], using the equivalence
in Theorem 1 above with @ (t) = t?, once we verify that a ue HY, satisfies

‘ o o

5y L0 Y| < AyThe

< Ay

for ¥ > 1 for some 6 > 0, where the constant 4 depends on #, 4, k and a.
To see this, it is enough by standard homogeneity arguments (see [12],
p. 275) to show that

sup ju(z+z, ) < Ay~°

{= |zl<2}
for y>1 for some 6> 0, 4 = A(x, ). To prove this, let # = 0 and
[fa]] = 1 for simplicity. By a lemma due to Hardy and Littlewood (see

Lemma, 2, Section 9 of [3] ‘we know that given ¢, 0 << ¢ < 1, there is a cons-
tant ¢ so that

iz, PIF <oy [[ (&, pITdsdy.
B_y_(z,w)
2

Here By (2, y) denotes the ball with center (z,y) and radius —Z— Hence
. 2

3yf2

(e, I <ey™ [ dn [ (u(E, n)Po(E) w(@) e
vf2 |é—zl<y/2
i ‘ & - 1—g
<o [ an( [ wEmPma@e)( [ wE 0 )
vz |§—zl<yl2 tE—2l<y/2

by Holder's inequality. Since HMHHD =1, we have
w

swp u(z )P <oy™( [ w(f)“ﬁds)“

{#: lel<v} ¢ <2y

Since w satisties A, there is an §, 1 < § < oo, such that w satisfies A,.

Choose ¢ = 7%, so that 1—8—— =

T Then w~Y¥~) satisfies A ; and,
—&  s— ey

8—1
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by Lemma 5 of [8], satisfies A; for some ¢ < ——ET Hence as in (2.3)
of [7],

1 ®

w(g) =T

- _——(1+]5[)M dé < oo.
R”’

In particular,
L .
w(E)” =T 1

1
> Tl
o (\1+2mmm<fww(s) a

|E|<‘7U

Therefore, if ¥y > 1,
§~—1

ey " [B(L+29)] ° <Ay~

_1)
> 0.

Conversely, suppose we are given p, », F and w in A,,. Then s(z, y)
= |F'(z, y)|" is subharmonie, continnous and satisfies

sup (u(z, 9)I* <

{z: [2] <y}

6 = n—m(s

sup [ [s(@, )1 m,, (dw) =

¥>0 g

|IF”£,w'

Since weA, ,,,, 1t follows essentially from known arguments (see [12] and
the proof of Corollary 1 above) that there js a non-negative h(x),

[ h(@yrm,(do) < |75,
R"

whose Poisson infegral h(z, y) satisfies s(=, y

- N(IF) (@) < [V () (2

)< h(x, ). Thus,
]1/1 < G[h* ]llr

where 1* is the Hardy—Littlewood maximal function of 7. Therefore, by
Theorem 9 of [8],

I (F)@)Pm,(de) < e [ B(@)Pm,(d)

R R®

< O B3 00-
2. Walsh—Paley series. Let ry(2) = sgnsin2nwz, and 7, (x) = r,(2"2).
The Walsh—Paley functions are defined as follows:
vo(2) =1;
'DUN(m) = Tﬂl(w) tee
N =2" 4. 2%, 0> 0> .. > w.

Tn,ﬂ(m%
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The colleetion {py(x), N =0,1,...} forms a complete orthonormal
system for L? over the unit interval 0 <o << 1. -

‘We summarize the relevant facts concerning Walsh~Paley series
(see [1] for more details). Let a;, & = 1, 2, ..., be a sequence of real num-
bers; we define

PSS
Juga (@) = o (®);
k=0
‘Zo(m) == o}
dn—l—l fn+1 99) fn(w) w
The sequence f = (fy, fs, ...) I8 a martmga,le, and we may associate several

growth-measuring functions with the sequence f. The two most prominent
funections are

@) = sup £, (0)

and

- (Saa).
=0 _
If we define |fl, = sup][fnup then a classical inequality of Paley [10]

asserts
ep IS8 (F)llp < Ifllp < CplI8 (Nl

for 1 < p < oo. A parallel result, due essentially to Hardy and Littlewood
[4] states that

eIl < NI llp < Ol

for 1< p < co. If these two inequalities are combined, it is shown in
[1] that the range 1 < p < oo can be extended to the entire interval
0 < p < oo. Thus

RIS (F)llp << I ls < G HS(f l]p

holds for 0 < p < oo, and, more generally,
(2.1) [8(8(f)ds = [O(f*)dx *

for functions @ satisfying the growth condition mentioned above.

We now turn to the question of extending these inequalities when
Lebesgue measure on the unit interval is replaced by another measure
m,,(dz). The appropriate definitions of A, (dyadic) and A, (dyadic) are
obvious: We require that the A, (or A,) condition hold, not with respect
to all intervals, but only on all dyadie intervals (intervals I of the form
( E k1

ra T) for some k,n). With these classes of weight functions,
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Muckenhoupt’s maximal funection inequality holds:

(2.2) [ @) Pwie)de < C, [ 1f(@)Fw

if and only if w(-) satisties A, (dyadic). The proof of this fact is virtually
the same 2§ the one given by Muckenhoupt.

Tf we combine Muckenhoupt’s result (2.2) with Theorem 2 of this
paper, we obtain the inequality

0 [18(f) @) P dn < [If@)Pw@)de <0, [[S(f

if L<p< oo®and w(-) satisfies condition A, (dyadic). This includes
and extends the result of Hirschman [6], who treated the special case
w(z) = —l<a<p-—1.

Theorem 2 itself may be proved in exactly the same way as Theorem
1, by appealing to the following distribution function inequalities for f*
and S(f).

THEOREM 5. Let f = (f1,fa, -..) be the sequence of 2%k partial sums
of a Walsh—Paley series, and mw(dw) = w () do where w () satisfies condition
A, (dyadic). Given any o> 1, B> 1, there ewists a constant y such that

amy,(f* > B2, 8(f) <

Y (@) 1P (o) dew

yA) < my(f* > 1)
and
atg, (8(F) > A, F* < ya) < my{S(f) > 2)

for all 2> 0.

The proof of this inequality follows the pattern of proof for Theorems
3 and 4. First, local jnequalities are proved for Lebesgue measure by
sharpening the estimates leading to Theorem 5.1 in [1]. The transition
to other measures m,(dx) is made by appealing to condition A, (dyadic)
and the result for Lebesgue measure.

3. The radial maximal function. If w(x, ) is harmonic in R}, its
radial maximal function N,(u)(z) is defined by

No(u) (@) = sup lu(z, ).
y>0

Clearly

No('“')( z) < No(u)(2), a>0.

It is shown: in [3] that for 0<p< oo and >0,

f[zv () Pdr = [ [N, (u)Pde.

1

We remamk here that this equivalence is true for any measure satisfying
condition A
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THEOREM 6. If % is harmowic on RET' and m,(dx) satisfies condition
A, then

[N () Pmy(dz) < € [ [¥o(w)Pmy,(de)

for 0 < p < oo, with C independent of u.
The proof of Theorem 6 is like that of Corollary 2 in Section 8, Chapter
IV of [3]. We need the following lemma, which is proved in Section 9,
Chapter IV of [3]. )
Levma (Hardy—Littlewood [5]). Let B be a ball in R with center
(@, y). If u is harmowic in R, then for any r > 0

ifr
lu(z, ¥)] < O, (m(B fflu (z tl’dzdt) .

To prove Theorem 6, we may suppose by Remark (b) of Section 1
that m,(dx) satisfies condition A; for some s> 1. Fix z,¢ R" and let
(@, y)e I'(z,; ). Assuming for simplicity that ¢ = 1, we see that the ball
B(x, y) with radius ¥ and cénter (»,y) lies.in R%™ and hag a projection
onto R™ contained in {z: [z—x,| < 2y}. By the lemma, we have

oyt [f lue, 01 deds
Blz,y)

<oy™ [ No(uy(e)de

|z—=zg| <2¥

< 6. [No ()T (@),

where * denotes the Hardy-Littlewood maximal operator. Since (,y)
was an arbitrary point of I'(z,), we obtain

N1 () (@) < 0 [N o (w) T (a00) "

Integrating with respeet to z,, we have

[T () (@) PP (o) < 6, [ Vo ()T (300)71" iy (o)
RN R

(e, )" <

Given p, 0 < p < oo, we now choose r > 0 so that p/r = s. Since m,,(dx)
satisfies condition A, Theorem 7 now follows immediately from [8].
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A note on multipliers on a Segal algebra

by
K. R. UNNI (Madras, India)

Abstract. It is the purpose of this paper to show that if (&) is a Segal algebra
on the locally compact abelian group G and T is a multiplier on S(&) then there exists
a unique pseudomeasure ¢ such that Tf = oxf for each feS(G).

Various properties of §(@) are given in Reiter [5]. We denote by @
the character group of G. Let dz and dy denote the Haar measures on &
and G respectively where dy is so chosen that the Fourier inversion theorem
holds. Let & (C;‘) denote the space of continuous functions on é with
compact support and let

B(@) = {fe I}@): fex (@)}

Then B(@) is dense in S(@).

A multiplier on S(¢) is a bounded linear operator on S(G) which
commutes with translations. The problem of characterizing multipliers
on various special cases of Segal algebras has been studied by Lai [3],
Larsen [4], Keshava Murthy and Unni [1], [2], and Unni [7]. In another
paper [6] we introduced the space of parameasures which contains the
space of pseudomeasures as & subclass and showed that it T is a multiplier
on S(@) then there exists a unique parameasures § such that Tf = g*f
for each fe B(&).

Recently Keshava Murthy has brought to my attention a paper
by Yap [8] who proves that every Segal algebra on a locally compact
abelian group is a semisimple Banach algebra. Though parameasures
are of independent interest, the semisimplicity of the Segal algebra makes
it possible to prove the following

TuarEoREM. Let G be a locally compact abelian group and S(@) a Segal
algebra. If T is a multiplier on S(G) then there ewists a unique pseudomeasure o
such that

Tf = oxf  for each fe S(G).
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