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When the topology of an infinite~-dimensional Banach space
coincides with a Hilbert space topology

by
M. J. MACZYNSKI (Warszawa)

Abstract. The topology of an infinite-dimensional Banach space 'V coincides
with a Hilbert space topology if and. only if the partially ordered set of all closed
subspaces of 7 admits a full set of probability measures.

Let V be an infinite-dimensional Banach space over D, where D
ig one of three division rings R (real numbers), C (complex numbers)
and @ (quaternions). Wa say that the topology of V coincides with a Jil-
bert space topology if there exists a D-valued inner product (+,-) on Vx V
such that ¥ becomes, under (-,-), a Hilbert space over D, and the topo-
logy of V induced by the norm associated with (-,-) coincides with its
original Banach space topology. It is elear that if the topology of a Banach
space V' coincides with a Hilbert space topology, then the partially
ordered set of closed subspaces of ¥ (which iy in fact a lattice) admits
an orthocomplementation namely, the orthocomplementation induced by
the inner product. The converse implication is the content of a deep
theorem proved by 8. Kakutani and G. W. Mackey.

TesorEM 1 (Kakutani-Mackey [1]). Let V be an infinite-dimensional
Banach space over D, and let L(V) be the set of all closed subspaces of V.
The natural partial order in L(V) (induced by set inclusion) will be denoted
by <. dssume that 4 — A% is an orthocomplementation on (L"), <).
Then there ewists o D-valued inmer product (-,-) on VXV such that

(1) V becomes, under (-,-), a Hilbert space over D;

(ii) the topology of V, induced by the norm associated with (-,-), coin-
cides with its original topology;

(iil) the map A — AL coincides with the orthocomplementation induced
by (*s).

A proof of this theorem can also be found in [4] (Theorem 7.1).

We seo that, owing to Kakutani and Mackey’s theorem, the question
of deciding when the topology of an infinite-dimensional Banach space V
coincides with a Hilbert space topology is reduced to that of deciding
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when the partially ordered set L(V) of all closed subspaces of V admits
an orthocomplementation. In this paper we will give an equivalent con-
dition for this expressed in terms of some measure-theoretical properties
of L(V).

Let us recall that by an orthocomplementation on a partially ordered
set (L, <) we mean a map @ — et of I into L with the following prop-
erties:

(i) ettt = a;
(i) &< b implies b+ < at
(iti) if @y, @y, ... is & sequence in L such that a; < ¢ for 4 s j, then
the least upper bound a, U @, U ... exists in (L, <);
(iv) av at =bu bt for all a,be L (auat is denoted by 1);
(v) a< b implies b = aU (aU bL)L,

If | is an orthocomplementation on (L, <), then (I, <,t) is called
an oo‘thooomplememed partially ordered set (see Mackey [2]).

Let (L, <,*) be an orthocomplemented partially ordered set. A map
m: L—[0,1] is smd to be a probability measure on (L, <,*) if

(i) m(1) =

(ii) m(ahu% 2] m(a;) whenever a; << aft for ¢ = j.

A family M of proba,blllty meagsures on (L, <,t) is said to be full
if m(a) << m(b) for all me M implies a < b.

If (L, <) is a partially ordered set, say with the least element 0 and
the greatest element 1, and without a priori any additional structure,
then it is not clear how to give a sensible definition of a probability me-
asure on (L, <). We might say that a measure is a map m: L —[0,1]
such that m(0) = 0, m(1) =1 and a << b implies m(a) < m(b), but then
we would have nothing more than a monotonic map on (L, <). Such
a definition would not justify calling m a measure, since with the notion
of measure we always agsociate some kind of o-additivity, and no such
property is postulated here. It iy interesting that we can give a global
definition of a set of mappings from a partially ordered set I into [0, 1]
in such a way that an additional structure will be induced on (L, <),
and under this structure every niember of our set of mappings will tun
out to be a probability measure in the usually accepted sense. In other
words, we will globally define a set of probability measures on a partially
ordered set without defining an individual measure itself. Accordingly,
we accept the following definition.

DeriNrTION. Leb (I, <) be a partlally ordered set, and let I be
a set of mappings from L into [0, 1]. We say that M is a full set of proba-
bility measures on (L, <) if the following conditions hold:
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(i) @< b if and only if m(a) < m(b) for all me M;

(i) for any sequence ay, @, ... in L (finite or countable), where
i # 4§ implies m(a;)--m(a;) < 1 for all me M, there is be L such that

m (D) +m () +m(a)+... =1 for all me M.

Of course, not every partially ordered set admits a full get of probabi-
lity measures. A neeessary (but by no means sufficient) condition is that L
admit an orthocomplementation. Namely, we have the following lemma.

Luvma. Assume that o partially ovdered set (L, <) admits o full set
of probebility measures M. For a, beL, let ot == b if and only if m(a)+
+m(b) =1 for all me M. Then o — a* is a well-defined map of L into L
which s an 09’/7106()mplcmmzMtwn on (L, <). Moreover, every member of M
is a probability measure on (L, <,*), and the family of measures M is full
on (L, gyi')-

Proof. For each ae L, let @ be a map of M into [0, 1] defined by
a(m) =m(a) for all me M. Let M = {&: acL}. We have M < [0,1]%
and M js naturally ovdered by pointwise order of real functions (@< b
it and only if @(») < b(2) for all wel). In view of (i) above, (M, <) is
isomorphic to (L, <): e < b if and only if @ < b. Since for each ae I the
one-element sequence {a} satisfies the condition of (ii), there is be L such
that m(a) - m(b) =1 for all me M; that is, for each @e M theve is be M
such that &0 = 1. (;fm.wquuntly, the map ¢ — et is well defined, since
b =a* it and only if b = 1—a, and for each @elM, 1 —&cM. Now for
any aell, the sequence a, a* satisfies the condition of (ii), and conse-

" quently there is be L such that m(a)+m(a')+m(b) =1 for all meL,

ie. @+at+b =1. This implies b == 0, i.e. the zero function belongs
to M. Moreover, it follows from (ii) that for any sequence @, @y, ... in M
satisfying @+ @; << 1 for ¢ #j we have Gy +@y-+... = 1—beM. Hence
is a seb of fmlctlons from M into [0, 1] satisfying fho following (,ondltmns

1° The zero function belongs to .

2° For every Gel, 1 —aell.

3° For every sequence Ayy Ty, .o
ioA g, we have Gy -Gy, e M,

We may now appeal to Theorem 1 of [8] stating that it M is o seb
of functions satislying conditions 1°-3° then M is an ovthocomplemented
partially ordered set with vespect to the natural (pointwise) order of real
funetions with ortheecomplementation @ = 1 — a. Consequently, (L, <,%)
is also an orthocomplemented partially ordered set. Since ¢ < bt is equiv-
alent to wm(a)--m(b) =71 for all meM, it i evident that each meld
is & probability measure on (L, «5,+), and the family M iy full. This ends
the proof of the lemma.

We can now state the main theorem of this paper.

in M satistying @4+ = 1 for
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THEEOREM 2. Let V. be an infinite-dimensional Banach space, and let
L(V) be the set of all closed subspaces of V partially ordered by set inclusion.
Then (L(V), <) admits an orthocomplementation if and only if (L(V), <)
admits a full set of probability measures.

Proof. Assume that (L(V), <) admits a full set of probability me-
agures. Then from the lemma it follows that (L(V), <) admits an ortho-
complementation. Conversely, assume that (L(V),g) admits an ortho-
complementation 4 — A+ where A e L(V). From Kakutani and Mackey’s
theorem (Theorem 1) it follows that there exists an inner product (-,-)
on ¥V x V such that V is a Hilbert space with respect to (-,-) (we denote
this space by H), and the orthocomplemented partially ordered set (L(V),
<, concides with the orthocomplemented partially ordered seb of closed
subspaces of H. For each A¢L(V), let P, be the orthogonal projection
onto 4. For every vector « in the unit sphere S8* of H, let m, be a function
from L(V) into [0,1] defined by m,(4) = (P %, w) for all AdeL(V).
We claim that M = {m,: we 8} iz a full set of probability measures on
{L(V), <) in the sense of the definition given above. In fact, we clearly
have 4; = 4, if and only if (P, u, u) < (Py,u, u) for all we 8%, le. if
and only if m(4,) < m(4,) for all me M. Let A4,, 4,,... be a sequence
of members of L(V) satisfying m(4,)-+m(4;) <1 for ¢ 5 j and all melL.
This means that 4,, 4,, ... is an orthogonal sequence of closed subspaces
of H Let A = A,®A,®... and let B = A, the orthogonal complement
of A. We have BPA,®A,®... = H, which implies m(B)-+m(4,)+
+m(4,)+... =1 for all me M. Hence both condition (i) and (ii) of the
definition hold and 2 is a full set of probability measures on the partially
ordered set (L(V), <) of closed subspaces of V. This concludes the proof
of the theorem. ‘

From the theorem of Kakutani and Mackey and from Theorem 2
we obtain the following corollary.

COROLLARY. The topology of an infinite-dimensional Banach space V
coincides with a Hilbert space topology if and only if the partially ordered
set-of closed subspaces of V admits a full set of probability measures.
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Relativ vollstetige Storungen von gewoshnlichen
Differentialoperatoren hoherer Ordnung

von

E. MULLER-PFEIFFER (Erfurt, DDR)

Zusammenf{assung. Fiir gewshnliche Differentialoperatoren geradzahliger Ord-
nung, die halbbeschriinkt nach unten sind und deren wesentliches Spektrum bekannt
ist, werden mit Hilfe eines Satzes von Birman aus der Stérungstheorie quadratischer
Formen Stérungen der Koeffizienten der Operatoren beschrieben, die das wesentliche
Spektrum nicht verdndern.

Im folgenden werden selbstadjungierte Differentialoperatoren be-
trachtet, die von dem Differentialausdruck

Ld n—vy dn—-v

)= D=1 s 4, (0) 2

r=0

=0,

erzeugt werden. Dabei sei jeder Koeffizient a,(2), 2= 0,» =1,2,...,n,
eine reelle Funktion, die bis zur Ordnung n—»—1 stetig differenzierbar
ist und deren Ableitung der Ordnung n—w»~1 eine auf [0, co) absolut
stetige Funktion ist, deren Ableitung auf jedem endlichen Teilintervall

von [0, co) im Lebesgueschen Sinne quadratisch integrierbar ist. Dieser
Sachverhalt kann kiirzer durch -

(I) a’v(m)snggc[o; oc), 14 :1727"'1'”7

beschrieben werden, wenn man den Begriff des Sobolevschen Raumes
verwendet [8]. ay(x) sei gleich ciner Konstanten aq > 0. Gehort die (kom-
plexwertige) Funktion y(») zu (0, o) (*), so liegh I[y] nack den iiber
die Xoeffizienten a,(#) getroffencn Voraussetzangen im Hilbertraum
L,(0, o). Durch die Fostlegung

Ay =1lyl, yeD(4) = G5(0, ),

wird dann ein symmetrischer Operator 4 mit dem Definitionsbereich
D(4) definiert. Im folgenden soll ein Satz iiber die Lokalisierung des

(*) 05°(0, o) ist dic Menge der auf der positiven w-Achge beliebig oft differenzier-
baren Funktionen mit kompalktom Triger.
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