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An inequality for the Hardy-Littlewood maximal operator
with respect to a product of differentiation bases

by
MIGUEL pr GUZMAN (Madrid)

Summary. This paper considers the maximal operator with respect to intervals
in R? and ghows how to obtain a weak type inequality for it by using the weak type
inequality for the maximal operator with respect to intervals in R*. This is then applied
to present an eagy proof of the Jessen—Marcinkiewicz—Zygmund theorem on differen-
tiation, and also of some other theorems of Zygmund.

1. INTRODUCTION

In R™ we shall call a differentiation basis # a family of open bounded
sets such that for every »« R® there exists at least one sequence {R,} = #
such that R, “contracts’® to # (notation: R, — @) in the following sense:
i) we By for all k, and ii) given any neighborhood U of o, there is a subindex
ko such that, if &= k,, then B, <= U.

Given a differentiation basis # in R™ we define the (Hardy-Litilewood)
maximal operator M with respect to £ in the following way: for fe L., (R")
(i-e. f real valued, measurable and for every compact set K = R [ |f] < o)
we write ‘ x

Mf(z) = sup {(llmn(lﬁ)) IR meRe.%}
B

where m, (R) means the n-dimensional Lebesgue measure of RB. If is in-
mediate to show that Mf is a measurable function, sinee the set
{w: Mf(w) > A} is open for every A:> 0. Henco the maximal operator M
is & (sublinear) operator that mapy Ly, (R™) into JM(R") (real valued
measurable functions on R™).

Let now #,, #, be two given differentiation basey in R™ = X,
R™ = X, and asgume that the corresponding Hardy—-Littlewood maximal
operators My, M, satisfy the following weak type inequalities for cvery 4,
0 <2< oo (we write my = My, My == My,):

F i [
my{{wte Xyo Mfi(a?) > 2}) < f R (lfi(;’_”—) dmy(ah), 4 =1,2

for each f;e Ljo,(X?), where ¢, and ¢, are strictly increasing continuous
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funetions from [0, co] to [0, co] with ¢,(0) =0, @4(0) = 0. We shall
then say that M, M, satisfy inequalities of type ¢, p. respectively.

We can consider the space B™ x R™ which we identify with R™+"2 —
" = X and the differentiation basis R product of %, and %,, that is

= {R'X R*: R'e &, R*e¢A,}.

We also consider the corresponding maximal operator M. .

In this paper we obtain a similar inequality for the operator M,
more specifically, for 0 < A < oo, fe L o(R") we have, setting m, == m

m({(ah, @) e X: Mf(a', 5 > 2A})

§

Ik

<¢2(1)‘J"¢1(2'1f')dm+xf[f ” (4f|)d%(v)]dm-

T Wealk type inequalities of this kind are useful for several purposes.
We shall apply them to the differentiation theory of integrals with regpect
-to intervals in order to show how the theorem of Jessen-Marcinkicwicz—~
Zygmund [3] and also the more recent results of Zygmund [5] follow
easily from this general theorem.

The idea of the proof is based on some elements of a paper of Burkill
[1]. The results we present among the applications of Section 3 follow
from a general theorem in the thesis of Rubio [4], which was obtained
using the above-quoted theorems of Jessen—Marcinkiewicz—Zygmund and
of Zygmund.

The present context could be easily generalized. Instead of Euclidean
spaces a Lebesgue measure one could deal with more abstract measure
spaces, one could consider the product of more spaces, etc. We confine
ourselves in our presentation to a rather simple context where the fea-
tures of the method can be made more intuitive.

2., THE INEQUALITY

In this section we prove the following theorem.

THBOREM. Let &#;, © =1, 2 be two differentiation bases in R™ == X,
whose mazimal operators are M;. Assume M, satisfics an inequality of type ;-
Consider in R" = X, n = ny+n,, the product differentiation basis % of %,
and #y. Then the mavimal operator M of & satisfies

m({we X: Mf(z)> 1}) AV

<qag(1)quu( L) ame +f[f .(“’“'f(

Jor each fe Ly, (R™) and each %, 0 < A < oo.

)d%(d)] ()
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Proof. In order to emphasize the main ideas of the proof we shall
tirst disregard measurability problems. Let f > 0, fe Ly, (R"). For ale X,
ye X, we define

1of(@ty y) = sap {(Ljmy (7)) [ fle, y)dm, (2): e e at).
J

Consider, for 4> 0 the set

A
4= {w W) if(at ) > 5
—-/
and define again, for ate A7y, n2e X,,

Tof (@, %) = sup {(1/my () f ne.

We first prove

2) I f(wty 2)dm,y(2): 22e He %2}.

A
40

If (@', @?) is such that Mf (a2, %) > A, there are J and H, o'e J ¢ &y, 22 H ¢ &,
such that, if I = J x H‘,

B = {(at, #%): Mf(a' 4% > 1} < {(ml, z?): Tof (2, 2?) >

——e %) dm (2t 32
m(JxH anf %) (lm(m z2) > A,

We partition I = J X H into two sets €y, €, which are obtained by slicing
J X H in the following way. Let J X {#?} with 5%e H be such a slice. Then

A
J x{n* < 0, if for every (y%, n®)ed x {n%} we have T, f(y% %) > 7"

If there is at least one (y, 9% ed x {n% such that T,f(g%, 72 <

bo| s

then J X {n*} = 0,. We get, from the definition of 0,

— By
ff-‘é Em(og) < ()

Uy

A
< [f> dm(I), we obtain [f > Y m(I). Now we have:
b @

and sinee [f- [f =
gy Gy
Tuf (@, %) 2= (Lpma () [ gty )L (0, 2) o)
bis

> (Lma(@) [ ratet, o)[(Lma(n) [ 1y, )i (5)]ame)
14 J

A
> (Ljm(I ff«/,~dm./,> > 2.
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Hence B = O as we wished to prove. We now establish the desired in-
equality for the measure of the set €. We can assume the second member
finite, since otherwise there is nothing to prove. For almost every fixed «*

we have
‘{ P (M,{ILL) dm2 (z) .

Tof (z%, ©%) > 1/2}) < < 2

my({(2%, #?):
So we have, integrating with respect to ' and interchanging the order
of integration,
Tof(at, %) > A/2})

[ [ (;_u(wl VIuf (@, 2)

Xy X

= f[{ ml_({w : wz(wl__;%f_(flﬂ) > a}) dc] dm(2)

% Lo
 #a(l) )

+ [}

X, 0 wo(1)

m({(a?, 22):

A

)dml(wl ) dma(2)

I

Now we have:
2\ T 1
ff my ({wlz %(M%/—z—l'—f-@ﬁ) > a})dadmg(z)

< J mtwm (o 2ison 2> g amato

f wa) [ ou (L5222 am oty 02,

X1

we have:

) > o}) do dmg(z)
o [ [ 2araT @
J A2 ’

flat, @%)
@ a?) =
| o

Also, with the change ¢ = fpz(z‘ }s

I m({w | MRl

Xy #y(1)

a}) Ay (T) diny(2).
‘We can set

A
it flat, a?) > —f,

. T
it (o 2% <
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and f = f*4fi. It is then elear that T'f < Thf*+Tyfr and Tyfi < —241

So we obtain

f‘f my ({ P ’l’zf(/v; t})d(pz(r)dmz(z)

f fo ml({ml: Ty (aty 2) > %T-})d%(r)dmz(z)

X i

S ff f{pl(L-(‘:M—-)dml(wl)d%(r)dma(z)
Xy )

47

. of
= | #l) win)] amam.
XXXy 1
Adding up we get the statement of theorem.

In order to treat with more ease the measurability problems that
arise in the foregoing argument we first try to show that everything we
Ny
kZ’lakxAk(wly #?)
with a, > 0, 4, being the product of two open bounded intervals A},
A} of X, X, regpectively. We can disregard the closed set N of m-meagure
zero of all points on the affine subspaces bordering the sets 4,,. It is then
easy to see that for every a> 0 the set

have done works out well for a function of the type f(w?, #?) =

{(@h y) e X —N: Tyf(at, y) > o}
is open in X and so Tyf: X — R* is measurable. For convenience we
A
define 4 = {(ml, ) e X — Nz T f(at, y) > 2—} and remark that A4 is open

in X. Moreovoer, it we call my, m, the projections of X onto X;, X, wehave
that for every ale X, -—-m, (N) the function T f(xt, -): Xy - R* is also
measurable since the sed

{wre Xg: T'yf (2, a®) > a}

is open in X, for every o > 0. Therefore, for such an ' and for every «?
we can define 7'y f(i#*, 2*) a8 wo have done. We now prove that Tef: X - R*
is measurable by showing that also the seb

{(wYy &%) e X -- N Tof (2, 2*%) > a}

is open for every a > 0. In faet, if T',f(2Y, @2) > ¢, then there is He R,
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such that x2¢ H and
1
—_— f‘ZA L 2) Iy f (e, &) dmg(2) > a+1
mo(H) i

for some 5> 0. Take any compact subset K of H —my(N) containing
2 neighborhood of #* in X, and such that
1 s 7
—— xaa (@t ) Ty f (w0t 2)dmg (2) < —.
(1) ”JK a S @) =5
For every (%, #) with ze K there is in X an s-dimensional open interval
U(x', z) centered at (2%, 2) so that for every (%%, ¥ e U(2*, 2) we have

1 .
2al@ R Taf (@ &) = o= S a0 Y T o)
In fact, if (2%, 2)e4, then the inequality is trivial. Assume (2%, 2)e¢ 4.
Obberve first that, sinee 4 is open, we have a neighborhood V(#%, 2) of
(#', 2) in X contained in A. Observe further that if we form the number

Kaloh, ) Taf (@t 2) = 5

——— ‘we¢ then have Je Ry, #*eJ such that
g (H )

—”;b%(_:ﬁjf Flu, 2)dmy (u) > 34 (w2, 2) Ty f (2, )ﬁ

Notice also that, in virtue of the simple form of f we can tranglate
a little the set J X {z} in & so that we obtain J x {v} with |v—z| <e,
e> 0, in such a form that we still hawve

ff (w, dml(u > ya (@2, ) Ty f (2t 2) — o 1

My (J 2my (F)

The intersection of the two neighborhoods of (2% 2) just considered con-
taing an interval U(a*, 2) as indicated.

Hence, by the Heine-Borel theorem, we have a mneighborhood of
{#*} X K in X such that for all its points of the form with * fixed we have
in particular

7 i
xalat, 2)Tof (2, z)_%’«;@ﬁ < 2ayh ) Tuf(yh 2
Hence
Ty $ AT B> J ratr msw, amaie
7, (K)

> iy | 10 T 9 amate)— T
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1 gl o)
- ,, f K@, &) If s, ) ding(2)

! f ’ 7y ()

Ealamanaeel s (@, ) T f (Y &) ding (8) — o 22

,”&2(][> ey /ﬂ.:(( H ) 1}( ? ) 1,‘( ) 2”“2(}1)
S R N,

2
So we have that T,f: X -» R is measurable.
The measurability of the set (u i proved in the same way. If (%, 72)
. yl
ed X {n*}— N is such that T)f(yt, ?) = - then there is an &> 0 such

that if (y*, #*) is such that #* is inthe X,-ball of center %2 and radius s
we havoe

Tufly?, ) = Taf (o, n%) <<

and 8o the projection m,(C,) is open and ¢y is measurable.
‘We shall now indicate how the restriction imposed on f can be removed.
(@) Aswume first that A is & nonnegative linear combination of cha-

‘racterigtic functions of disjoint. open bounded scts. We can take a

sequence of functions {f,} of the type of the one which has already been
treated such that fr 7 h a.e. For f, the inequality is valid and we have

{a: Mh(z) > A} < U{m Mfp(x) > 2}

since, if Mh(x) > A, we have o k such that Mf,> A. The sequence of
sety {w: Mfi(w) > A} is increasing and so we have

m{{w: Mh(z) > 1})« ’hmm({ Mfi() > A3)

Jeorod

f;b) ( )
“lim o /)
" (z p

where @ (}/») denotios the second membaer of the inequality in. the statement

of the thoeorem.

(b) TIf ¢ is a nonnegative linear combination of characteristic functions
of digjoint compact sets we can take a yequence {,} of functions as in (a)
such that hyNg a.e. For these funetions we have

g,
m{{as Mhy(e) = 2}) = @(»«%’) < oo,
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We also have
m({z: Mg(a ) > 4})

for each % and making %k — oo we obtain

m({w: My(w) > 1)) < ai(%).

(¢) If 7 is an LY function (i.e. essentially bounded and with compact
support) we proceed as in (a) taking now functions {g;} as in (b) such
that ¢, 71 a.e.

(a) I Je Loy J>

) > 1) < m(fw: My (o

0, we consider for k = 1,2, ...
. jw) i |l <k, @) <,
Jel®) =

0 elsewhere.

Then j,,7j a.e. and j,e LY. Proceeding as in (a) we obtain the ine-
quality for j.

3. APPLICATION TO DIFFERENTIATION THEORY

3.1. Some particular cases of the preceding inequality. Consider in:
the preceding theorem 7, = n, =1, %, = %, being the bagis of open
bounded intervals. Then £ is the basis of two-dimensional open bounded
intervals. We know, according to the classical inequality for the one-
dimensional Hardy-Littlewood maximal operator that we can take
(%) = pa(u) = 4w and so we easily get for fe Lj,,(R?), 1> 0

m({w: Mf(@)> A}) < ¢ f ik (1 + Ig* lf')
Rz

where ¢ does not depend on f, 1
An easy computation of the same type shows that, if ¢ (u) =
ey u(l+1gtu)® and g, (w) = c,u, then we get from the general theorem

m({w: Mf(@) > 2}) < f \7] (14 Ig* '? )s-l-ldm.
Hence for the basis of open bounded intervals in R™ we get
m({: Mf(w)>/1})<f il (1+1 +—|J)Li|—)n—1dm.
If we consider in the general theorem in R™ the basis of all open

cubic intervals and in R" the basis of all open bounded intervals, then
we know by an easy covering property of the cubic intervals that (%)
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= ¢;u and by the preceding reasoning p,(u) = cyu(1+lg*u)*~2, Hence
@ (u) = ew(1+1g* u)" and so for the basis £ in R™, n = n, +n,, of intervals
whose n, ‘“first edges” (ordering the edges corresponding to one vertex
according to the coordinate axes) are of the same length and the others n,
are of arbitrary length we get

m({w: Mf(w) > A}) < f (s-l‘;}f:l (1 - 1g ffl)

It is inmediate to see that if we consider in R the basis of intervals
such that n, arbitrary edges are of the same length we obtain the same
inequality with another different constant e.

3.2. Differentiation. Givew. a basis # in R" and  function fe Ly, (R")
we can define the upper derivative of [f with respect to % at x

(IR

where the sup is taken over oll sequences {I} c & with R, - z. In the
same way we define the lower derivative

= suplim sup ———
Ieroa (R, )

D (f[, ) = infliming—

Jero0

m| If,ﬂ) J

When the upper and lower derivative coincide at « we call this number
the derivative of [f with respect to X at w.

3.3. The theorem of Jessen—Marcinkiewicz—Zygmund and the theorem
of Zygmund. The inequalitics we have proved lead to an immediate
proof of the following theorem. '

TeROREM (Zygmund, 1967. For n, = 1, ny = n—1, Jessen~Marein-
kiewicz-Zygmund, 1935). Oonsider in B, n = ny--n,, the basis # of
open bounded intervals such that, fiwing one vertex and considering the edges
corresponding to that vertex, n, of such edges are of the same length and the
others are of arbitrary lengths. Lot f be a function in L(lg™ L) (R™), i.e
such that [|f)(lg™ | f1)™ < co. Then the derivative of [f with respect to 2
18 [ almost everywhere.

Proof. Without any loss of generaliby we can reduce us to prove
the theorem for f= 0 and fe L(L-l-lg* Ty The basis of intervals (no
matter how many edges are of the same length) is sueh that it ge L then
the derivative of [g with respect to & is g almost everywhere. (This fact
can bo derived from a general eriterion of Busemann and Feller [2] and
from the inequalitics we have obtained.) We can take a sequence of simple
functions {g,} such that g, rf at every point. For g, we have the differen-
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tiability property of the theorem. Let %, = f—g,. We can write for every
a>0

G = {w: lﬁ(ff, w) -—f(w)‘ > a}- = {m ’l_)(fh,c‘, as) ——h,b.(w)’ > a}.

194 M. de Guzméan

= {a;: ‘ﬁ(fhk, w)’ > %}U{W [P ()| > %} == AU By,

2h,
x ) whore
a

For A; we have 4; < {w: My (2) > —g} and 8o m(4,) << (I>,,,2(

P, ({-) denotes the second member of the last inequality in 3.1, For B,

1 2h .
we have m(B;) < — Q"nz(———k—). Hence the exterior measure of ¢ must be
6 a

zero since m(4;) +m(By) — 0 as k — co. This proves D([f, z) = f(z) a.e.
In the same way D([f, #) = f(a) a.e. and so the theorem is proved.
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