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Duality theory for the strict topology
by

DENNY GULICK (College Park, Md.)

Abstract. Let Op(X) denote the bounded continuous functions on an arbitrary
completely regular Hausdorff space X, and let #; denote the strict topology on Op (X).
Tirgt we give a new proof of Conway’s theorem that i is a Mackey topology if X is
paracompact and locally compact. Secondly we describe the Mackey topology for fg
for an entirely different clags of X’s: Finally, we show that 0y (X) with the fg topology
is a dual if and only if X is compact.

1. Iotroduction. The present paper grew out of our recent analysis
of locally convex topologies related to the strict topology originally
defined by Buck. In our previous paper we ecmphasized the inter-
relationships between those various topologies. In this paper we emphasize
the strict topology, and study the Mackey topology for the strict topo-
logy, and we analyze when the space on which the strict topology is
defined is a dual of some locally convex space.

To be more precise, let C,(X) be the space of all complex-valued
bounded continuous functions on the arbitrary completely regular space X.
In [1], Buck asked when the strict topology on 0y (X) is a Mackey topology.
After some years, Conway succeeded in giving a beautiful —but intricate —
proof that whenever X is locally compact and paracompact, the strict
topology is. a Mackey topology. In Section 2 we give an entirely new
proof of this fact, which in outline at least appears more elementary
than Conway’s proof. We then go to an entirely different varviety of X
and deseribe the Mackey topology for the strict topology whenever X
in o locally compact, non-compact space which has the property that all
g-compact subsets are relatively compact. This description can be used
to generalize Conway’s example showing that the strict topology is not
always the Mackey topology.

Section 3 answers the following gquestion: Under what conditions
iy €, (X) with the striet topology the dual of some locally convex space?
Our angwer is that it is a dual if and only if X is compact. Finally we
show that only under very special conditions a locally convex space
with the weak topology is the dual of any locally convex space.
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Before turning to the results of the paper, we conc(»m;m‘pe on terminol-
ogy and notations. In the first place, whenever X.appem's it is complet(?-
ly regular and Hausdorff (though we may gpecify 1;1'1&@ X have &dl(ll-
fional properties). It A and B are subsets of X, then A\ Bis the colle'ctlon
of elements in A but not in B. A function ¢ on X vanishes at co if for
each &> 0 there exists a compact subset K, of X such that |p(@)| <e
for each ze X\ XK,. The Stone-Oech compactification of X is written fX,
and it is the largest compactification of X. By (&) we mean the col-
lection of complex-valued, bounded, continuous funetions on X, as a veetor
gpace. On O, (X) there is a natural norm topology given by the supremum
norm |+, where

Ifll = sup{lf(z)]: weX}.

The strict topology t, on 0,(X) is described by saying that a nebt (fi)..
in Cy(X) converges in ¢, to fe C,(X) if and only if for each function ¢
on X which is bounded and which vanishes at oo, fyp—f ¢ uniformly on X.
We let the characteristic function of A = X be writben y,.

T E is any locally convex linear topological space, we let E* be the
collection of contimuous linear functionals on B, and call E* the dual
of B. It we identify fe C,(X) with the unique continuous extension f’
on AX, then the Riesz—Kakutani Theorem says in essence that (0, (X), ||-])*
= M(BX), where M (BX) consists of all countably additive regular bounded
measures on fX. On the other hand, Theorem 2.6 of [3] tells us that
(Cp(X), t)* = M(X), the collection of all countably additive regular
bounded measures on X. If pe M (X), then |u| denotes the total variation
of u. If 4 = X, then ||ul, and |jul4) are by definition |u[(4), while by
lluf we mean |ullx. If B = M(X), then suppB means Hgsupp,u, where

suppu denotes the support of u. If ¥ is any locally convex space and if
A = E, then

Ad = fwre B*: |o* ()] <1, for all zed},
and A% ig called the polar of 4. The equicontinuous subsets of B* are by

definition just those subsets contained in the polars of neighborhoods
of 0 in . On the other hand, if B < F*, then we define B? by the equation

BY = {zeB: [o*(®)| <1, for all z%¢ B},
and also call BY the polar of B. Furthermore, A°% means (42%)°, ete.
2. The Mackey topology for the strict topology. The Mackey topol-

ogy for a given locally convex topology on a given space is the strongest
locally convex topology on the space which yields the same dual. The

icm
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given topology is the Mackey topology if and only if every convex weak*
compact subset of the dual is equicontinuous ([5], p. 206). It is this
characterization of Mackey topologies that we use in proving that if X
is locally compact and paracompact; then #, iy the Mackey topology
for (Cy(X), t,). But first we need some information on eak* compact
subsets, furnished by the following theorem.

TemoreM 2.1. If X ds paracompact and locally compact, and if B is
a wniformly bounded subset of M (X) but suppB is not relatively o-compact,
then B cannot be relatively weak* compact in (Cp(X), AR

Proof. Since X is paracompact and locally compact, we may assume

that X = (J X,, where each X is o-compact, closed and open in X, for the

Aed

appropriate index set .. Since B is assumed to be uniformly bounded,
we may as well assume that if ue B, then |ull<1. Since bounded
regular countably additive measures on X must have o-compact supports,
if suppB is not relatively o-compact, then there exists an uncountable
subset A° in 4 such that if A€ A°, then thereis a u, e B such that laa] (X;) > 0.
Next, well-order 4° Sinee countable unions of countable sets are countable,
we can furthermore say that if suppB is not relatively o-compact, then
there exists a ¢e(0,1) and an uncountable subset A, < 4 such that for
each 4, there is a p, ¢ B for which not only |u;] (X;) > ¢, but also Ju,| (Xy) -
= 0 for all A’ > 2 with A’ A,. Henceforth we will without loss of generality
assume that 4, is identified with the ordinals less than the first un-
countable, since A, iy at any rate uncountable and a suitable subset
of 4, can be so identified.

Let 1, be the first element of A, for which there exists an associated
cofinal net N; = 4, such that le N 5 and 4> 1, together imply that
lmal (X3,) < /2. Such a 4, exists. (In fact, if » is an integer > 2/¢ and if
Ay ovey Aped, and if each ; lacks the just-named property, then for any
Aedy such that 1>2;, 4=1,2,...,n, we have lwal(X3,) > ¢f2, for
i =1,2,...,n Consequently,

n
I,ull (E_JIXAT:) > 17
contradicting the assumption that the elements of B have norm at most 1.)
Define 4, to be in A,, and call N, an associated net corresponding to A,.

Now inductively assume that A'es;, and let N, be an associated
cofinal net for . We will find the next element of 4, and an associated
cofinal net. Let 2" be the smallest element of N, such that 1/ > 1. We
define A" to be in A, iff there exists a cofinal N,. < N, such that

(a) lwll U X >e/2,  all ve Ny with »> 2",
Ap<a<a”

S Redy
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We call N, an associated net to A'. If there is no such cofinal net, then
begin all over again in the construction of 4,, with 4, replaced by
{le Np: 2> 2"} and with 1, replaced by the first element of this latter
set. Such a new beginning to the process of ereating A, can oceur no more
than 2/¢ times st most. (Otherwise, let # > 2/e. Then there exist 17, ..., 4,
in 4, with 4 <...<A;, and corresponding nets Ny 2...2...2 N A0y
such that for emch i, 4 =1,2,...,n, there is a v« N, for which

lll'v]( U Xﬂ) = 0/27

A<Aa<ay
Aedy

for all e Ny with » =,

where we denote 4, by 4. But then for any »e Ny such that » > sup {v;:

¢=1,2,...,n} we have
n
lwl (U X = Y wl( U X)>(e/2)(2fe) = 1.
A<ty i=1 A<y
AeAﬂ Aedy

But this contradicts the unit boundedness of all elements of B.) Moreover,
because the process can start at most a finite number of times, the method
yields the inductive step, and we obtain A,. If we proceed transfinitely
and use the total order of 4,, then the largest possible 4, is cofinal in 4,.
" From now on we denote the first element of A, by Ay, and note that ine-
quality (a) says in particular that for any A”ed,,

(b) s Ul1 X,) <ef2.

z:Al

Next we show that 0 is not a weak* cluster point of (u;). 4, Detine
fe Cp(X) by making
Ifllo < Lfe and lpa(xx,f)l = 3/4, for all ded,,
f») =0, for all #eX;, for.all AedN\ 4.
Since AeA; implies that |u,](X;) > ¢, and since the X,’s are open and
closed in X, the Rmsz—Kakuﬁm Theorem asgures us of -the existence

of a funotion f so defined. Then the definition of u;~ and of f, along with
inequality (b), imply that for any A”eA;, we have

(P 2 e (P = D) T Gy V= ) it (st )]
Aledy Aedy
Arca” AT A

=3/4—(c[2)(L]e) =1/4.

Thus (#z)scq, does not have 0 as a weak* cluster point. To complete the
proof we note that if there existed a p in M (X) which was a weak* cluster
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suppp € U X;, .
A<

where 1’ corresponds to some countable ordinal in A,. Now if
X = U —XA)
2edy

A

then 0 would be a weak* cluster point of (#]x-)c4, for the space (Ob (X", ts)*.
AxA
But that cannot be, by the preceding argument applied to X’. Conse-
quently not every net in B has a weak* cluster point in M(X), which
means precisely that B is not relatively weak* compact. m )
Now we are remdy for the promised theorem, due originally to Conway.

THEEOREM 2.2. [2]. Let X be locally compact and paracompact. Then is
s o Mackey topologj for Co(X). (M

Proof. Let B be a weak* compact subset of (Cy(X), ts)*. ‘We wish
to show that B is equicontinuous. In the first place, since B is weak*
compact, B must be weak* bounded. Next, the local compactness of X
implies that (C,(X), t,) is complete ([1], Theorem 1), so that the bounded
sets and the weak* bounded sets of (Cy(X), t,)* = M(X) coincide ([3],
p. 210). Thus B is bounded in (Cy(X), t,)*, which means that it is bounded
in norm, by Theorem 1 of [1]. We may as well assume that |jul <1, for
all pe B. As a result, the previous theorem says that suppB must be
relatively o-compact, and thus the proof reduces to the case in which X
is o-compact and locally compact, which means that X is indeed hemi-
compact. In other words, there is a sequence (K,)p-; of compa.cﬁ subsets

of X such that K, € K,,,, for all n, such that X = UK,,, and such

that if X is compaet in X, then there is an # such that K < Kn. To complete
the proof we will assume that B is not equicontinuous in order to'derive
a contradiction.

The non-equicontinuity of B means that there exists an &> 0 with
& < 1, such that for any compact K < X, there exists a ue B such that
[ (XNK) > ¢ ([2], Theorem 2.2). At this time we define a sequence
(#ay Dy Ko, Ui)i,.l, inductively as follows. Let K, =D, =K, and let
Ui B be mlbltmry Since X is locally compact, Lhere exigts an open and
relatively compact Uy S X such that U, 2 D, = K, . For the induction
we assume that we already have selected (u;, D;, K , Ui, with D;

(!) Added in proof: R. F. Wheeler has recently generalized this result.
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compact, U, open and relatively compact, and such that
D;c XNU,;_y, .
U;c' Ui WDUE,, (s0o Dy UNT,))

and also )

(a) w3l (D;) > e and  |u| (ANK,) <e/8,  for iz 2.

By asswmption on B, theve exists a p;, ;e B such that fu.,,[(X\ ﬁj) > ¢
and hence there exists a compact D;y, = X\T; such that |uy,|(Dyyy) > e.
By the hemicompactness of X and the boundedness of uy.,, there exists
an Ny, with Mjyq > Ny, SuCh thatb |uy,| (AN K, " ) < ¢/8, 50 we now have
(#5415 Dypry Ky y0 Uirr), confirming the ezastence of the sequence. Now
let us select open sets V; and W, in X such that

(b) D,V s Vz- s W;c UNT,,,

where we take U, to be empty by definition. Note for future use that
the W,'s are pairwise disjoint.

Next we create a suitable subsequence of (/41)1 %1 ploceedmg along
the same lines ag in the proof of Theorem 2.1. Let X; = U,\ U,_,, for
each 4, so the X,’s are pairwise disjoint, and agsume without loss of gener-
ality that. each X; is non-empty. Let N constitute the integers > 2.
Let m, denote the smallest element of N such that there exists a sub-
sequence N, of N of integers larger than m,, such that

ol (Xm,) < /16, e N, .

.Such. an m; exists. (Otherwise, for each ¢, there is an n; such that » > n;
implies that |p,|(X;) = ¢/16. Now if & > 16 /¢ and # > sup (ny, ..., n;), then

w(u xX) = 2 lten (X3) > (¢/16) (16 /e) = 1,
=1
80 [WH > 1, a contradiction.) We say N, is associated with Yy - Assume
that (Homy )%, has been defined, and let W, be a subgequence of Nmk 1
assomaﬂ;ed with Ymy,- Liet p be the smallest number in .le with p > my.

We let p = my,, provided that there exists a subsequence Nmk . of Ny,
of numbers larger than p, such that )
g (mg@ X)<e16, all jeN,, . .

ieN
If there is no such subsequence N, 410 Bhen begin all over again in search

for (up,)izy, with ¥ replaced by N, Such a new beginning cannot occur
nore than 16 /¢ times. (Otherwise, let k > 16/s. Then there exist ny, ..., 1y
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with %, < ... <y, and there exists also an 7, such that if r > r,, then
wl( U X)=e16, j=1,...,k

Ngn 1<'L<7|7
Bvidently || > 1 for all such r, since the X,’s are pairwise disjoint.
This is a contradiction.) Thus after at most a finite number of false starts,
we can apply the induction hypothesis henceforth, and in this way we
obtain distinguished subsequences N, = (my)fe; = N and (,umj)]f’:,1 of
(ps)i2; for which

il U X)<e/16, all je N, with j=p.

my<I<p
1€ 0
In particular,
(c) el U X) <216, all je N,
my<i<my

ieNy

Recall that the inequalities of (a) hold for all 4 > 2 and hence for all ele-
ments of N,. In what follows the notation will be markedly simpler if
we perform all operations with respect to N, instead of all with respect
to Ny. So assume from now on that N, = N. Then the sequence (Mm,)a=1
becomes (u;);>, and satisfies the following sets of relations:

(@) |ﬂi|(_L<J_ X;)<e[16, all ic N (from (c)), so l”‘I(H Vi) <ef16, ie N,
FAS <

(e) I (Dy) > &, 4e N (from (a)),
) ul(XNE,) < /8 (from (a), 5o lul(U V;) <e/8, ic .
i>1
Now we must manufacture an appropriate function f. Since the
W,’s are pairwise disjoint, and by relation (e), the Riesz—Kakutani Theorem

0
ensures the existence of a function f continuous on {_J D; such that
=2

(g) (o)l >1—e/8,  with [[f|| <1—e.

o
Utilizing relation (b) we can extend f to a continuous function on J Wy,

=2
with the stipulations that [f| <1/e, f(z) = 0 for all ze (U WINU V),
and also =2 =2
(h) Wi(%vi\ D{f)l < 8/8 .
If we extend f to the remainder of X by letting f(#) = 0, then fis con-
tinuous. The only question is when z<X\{J W,, since the W/s are

=2

all open. But note that in this case z« U; for some minimal ¢, and if
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i
U=UNUT;, then U is a neighborhood of #, and f =0 on U.
j=2

By eompu%altion we obtain, for { > 2,

e

IGIE DY m(mf)(

> lualar )l —| 3w )| =] 3w,
i<t B

> st N =l VI~ [l 7101

> [(1—2/8) —&/8]—(2/8) (1/e) — (&/8) (L/e)

-1
-~ %y

]
ta

by virtue of inequalities (d)~(h). Since B was assumed to be weak* compact,
the sequence (4;)i2, has weak* cluster points in M (X). Take such a He
Then there must exist a positive integer p such that |u|(XN Vp) < &f16.
On. the one hand, (u; x\rplie Has the weak® cluster point uly, ¥,y and
llmx\ypﬂ < ¢/16. On the other hand, if ¢> p, then

sl (e, )] < leelw NIFI < (2/8)(L/e) =1/8,
since ]M(ju V,) <&/8, by relation (d), where we note that Ux;=207;.
<4 <t i<t

Therefore

T <IN < wilxar, (v, )+ |l (DI < il (xxw, )| +1/8.
Hence
|ulx 7, (4xr,f)| = limint 1/“@".}1\?‘1,(%22\ foﬂ >1/8,

which means that IIMIX\UJ? ¢/8, a contradiction. Thus (u;)2, has no
weak* cluster point in M (X), so evidently B cannot be weak* compact
in (0(X), %)* = M(X). Thus the proof is complete. m

What we have actually shown in the proof of Theorem 2.2 is that
if X is locally compact and paracompact, then (Cy(X), t,) is a strong
Mackey space, which by Conway’s definition means that any weak*
compact subset of the dual—and not just the convex ones —is equi-
continuous. It is this stronger statement which Conway proved in [2].

If we let ¢, denote the topology on C,(X) of uniform convergence
on o-compact subsebs of X, then we conjecture that one can adapt the
proof of Theorem 2.1 to prove that if X is locally compact and para-
~compact, then ?, is a Mackey topology for C,(X). In order to use the
criterion for Mackey topologies mentioned at the outset of this section,
we need first to know what the equicontinuous subsets of the dual of
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(OL,(X }s t,,) look like. We show presently that they have a simple form.

THEOREM 2.3. Any equicontinuous set in (Cb(X ) tﬂ)* is contained in
a set of the form

Nyn = {ue M(BX): p concentrated on APX,|ul| < n},

where A is a o-compact subset of X and n is some positive integer independent
of u. Moreover, all such N, are equicontimuous.

Proof. We will first show that N, is equicontinuous. Let

U = {fe Co(X): NIflla < Lin},

a veritable neighborhood of 0 for the topology f, in Cp(X). If f' is the
continuous extension of f to fX, then ue ¥4, and fe U, , together imply
that

I | f'd#[ <lpllfn <1,
aBxX

‘which means that N, is equicontinuous. For the other half of the proof,
we let U, ,, be given. We will first prove that if u is in the polar of U,
then u is concentrated on APX., Assuming the contrary, we take such
a u in the polar of U,, and find a compact D < fX\AX such that
|ulD > 0. Without loss of generality we may assume that u(D) = a> 0.
By an application of the Riesz—Kakutani Theorem we can obtain an
fe 0y(X) and an open set U with D = U © X\ A%< such that the contin-
uous extension f' of fon X is 0 on BEXNTU and [fllex = (®) = 2/a,
for all z¢ D, and such that |u{(U\D) < a/2. Then fe U,, and

NIz | fap — Ifldlpl > (2/a)a—
D U\D

80 that u is not in the polar of Uy ,. In other words, we have just proved
that the polar of U, , is & subset of M (A*¥). Using the Riesz—Kakutani
Theorem once again, we can easily prove that the polar of Uy , iz precisely
N 4, Then since the collection of all possible U, forms a basis for the
neighborhood system of 0 in ¢,, the proof is complete. m

Because of Theorem 2.3, it seems that in order to prove that i, is
o Mackey topology, one would only need to emulate the proof of Theorem
2.1, and require that X be locally compact and paracompact but not
o-compact. However, this is a tall order, for it appears that in order to
obtain the 4, defined within the proof of Theorem 2.1, it i3 necessary
to have a very sensitive analysis of the relationships between the closures

0

in X of the various c-compact subsets JX;,.

=1
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On the other side of the ledger, it is known [2] that if X is the space -

of ordinals less than the first uncountable £,, then ¢, = ¢, is not a Mackey
topology for 0y (X). What we describe next is a Mackey topology for
on 0, (X) when X is a rather special type of space (having certain qualities
of the ordinals less than £,). Such X are very non-paracompact. We
wish to thank Professor Robert F. Wheeler for pointing out an error
in an earlier version of the mnext theorem.

To set the stage we let, as usual, f* denote the continnous extension.
50 BX of fe 0 (X). We then consider sets F < ¢/, (X) which have the prop-
erty that for each compact K = X, there exists an #yx < F such that
[f(#)| < 1 for all we K and fe Fy, and such that if uwe M(FX\ X) and if
there exists an n such that ju(yex. xf')l < for all fe Fg, then p = 0.
The set of all such F' = 0, (X) we denote by §. If B is the norm-bounded
unit ball of C(X) under the supremum norm, and if Up denotes the
convex balanced hull of BUF, then let ¢ denote the topology generated
by ¢;and Up, and let t denote the topology generated by i, and {Uzp: Fe §F}.
Moreover, let ?,, be the Mackey topology for ¢, on C,(X). Finally, for
any compact K < X, let

Ve = {fe Cy(X): [f(#)| <1, for all zeK}.

Then Vg is a generic neighborhood for the compact-open topology.
Now we can state and prove the proposed theorem.

THEOREM 2.4. Let X be locally compact and non-compact, and assume
that each o-compact subset of X is relatively compact. Then t is the Mackey
topology t, for (Cy(X), t,):

Proof. Let Fe§. We will first show that (0,(X), t5)* € M(X).
Since 5 is weaker than the norm topology, surely (Cy(X), tF) * o M(BX),
80 that we can take an arbitrary element of (0, (X), ZF) *to be pe M(BX).
In addition, the local compactness of X allows us to assume that x4 = g+ fhgs
where u, is concentrated on X and u, is concentrated on AX\ X. Since
e (Cy(X), t7)*, and since by Proposition 2.2 of [3], ¢, is the compact-
open topology, there is a neighborhood Vg, of 0 in the compact-open
topology, and there is an M < oo, such that |u(f)| < M for all fe Vi, " Up.
Now if u, is concentrated on K, then by hypothesis on X we may assumo
that K, is compact, since it has to be relatively o-compact. Next wo let

K = K,UE,, so K is evidently & compact subset of X. Since Vg Vi,

this means that |u(f)| < M, for all feVenUyp. However, the Riesz—
Kakutani Theorem tells us that sup |, ()] < gl < co, for all fe Ven Up,
and by hypotheses on F and Fy, we know that

SUp s ()] 2 sup lue(f)] = oo
fel JeFg

unless up, = 0. Thus w, must be 0, so that x = t1, which proves that
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{Cy(X), tp)* € M(X). Using this result, and the fact that the Mackey
topology (like any topology) is closed under finite intersections, we infer
that ¢ < 7,,, where 1, is the Mackey topology for i,. In order to gain the
reverse inclusion £, < ¢, we let U< t,,, and assume without loss of generality
that U is convex and balanced and contains the norm wunit ball B of
0y(X). Since (Cy(X), t)* = (C4(X), t,)* = M(X), we find that if Uet,,
then [u(U)| is unbounded for all non-zero pe M(BX\ X). Next, for any
compact K < X, we observe that VgnUet,, so that |u(VenT)| is
unbounded for all non-zero xe M (BX\ X), by the statement just preceding.
TFor each compact K < X, let Fe = VenU, and let FF = |J Fg.
X compact:

Then by its very definition, Fe §. In addition, Up < U, so that Uet.
‘Consequently ?, < t, which completes the proof that ¢t =%,,. =

For a certain class of X’s, Theorem 2.4 characterizes the Mackey
topology of (C,(X),t,) intrinsieally, without wutilizing the dual or the
‘weak* topology on the dual. Of course, it does not tell us when i, is or
is not a Mackey topology. Nevertheless, with Theorem 2.4, and without
much trouble, we can show that if X is the ordinals £ less than the first
uncountable £,, then (C,(X), %) does not have the Mackey topology.
To show it we will presently create a Uget,, such that Up¢t,.

First of all, let L denote the collection of limit ordinals in X, and let

Gpen = 2NY(pron,0y, Tor all zeL and n =1,2,3,...

I Ly ={z+2n: sel,n=1,23..} then we let F = {g,: ye Ly}
After a moment’s reflection, it is obvious that Fe§, so that Ugpet,.
To show that Up¢t,, we note that

gy(z) = gv(z+ 1) ;
‘Consequently for each fe Up,
fle)—fle+1)< 2,

You cannot say this of any neighborhood of 0 in %,. Therefore ¥, # t,.

The preceding argument works if X is any locally compact, non-
compact space for which the o-compact subsets are relatively compact,
provided that some element of fX\ X has a totally ordered neighborhood
basis. In such a case, once again #, # t,.

Regarding i,, we have the following curious theorem, which shows
that if X == 0, then convergence in 1, is not given by the order structure
of X.

TrEoREM 2.5. Let X be the ordinals less than the first uncountable.
If (frex S (Co(X), 1) and ;=0 in 1,; then f,—0 in the uniform norm.

Proof. If (f;);.x does not converge to 0 uniformly, we may as well
assume that |[fyf] = 1, for all AeX. Since f;—0 in ¢, of course f;—0 in the

for all ¥, ze L.

for all ze I,.
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compact-open topology, so that for each zeX, there is a 1, such that
whenever 1> A;, we have |fi(y)| < 1/2, for all ye X with ¥ < @. But each f,
has the property that |f,| > 1, so that for each xeX, there is a y, > »
such that |fy (y5)] > 1/2, and we may assume that if » <2, then y, < ’lJz
Let

&, = 2:1;1}; o, () —Fa, (y + 1)1

By the preceding assertion, d,‘ > 0, for all zeX. Thus there exists an
¢> 0 such that d, > for a co[ma.l subnet (fy)se Ay Let y,, be such that
15,85, —Fo, (¥, +1)]> d;,; and without loss of generality (or by Lakmg
a uutablo cofmol subnet of ( Jahe 4y)y assume thab g, +1 <y, , i v <s’
in A;. We let ¥ = {fe O(X |f(yz) —f(y,+11 <2, for all ve./ll} Then
Fe®, and Ugm, which is the convex balanced hull of (BUT), has the
property that if ge(e/4) Up, then lg(y;)—g(ys,+1) <e/2 <d, , for all
ved;. Thus
(fi.v)ﬂszll {'\(3/4;) UF = @7

contradicting the hypothesis that f;~»0 in ¢,. =

Of course this does not mean that convergence in i, is uniform,
which it is not since the dual of ¢,(X) with the uniform norm is M (8X),
while the dual of C,(X) with %, is merely M (X), and if X = Q, then
X £ X,

3. A locally convex space as a dual. By saying that a given locally
convex space (H, ¢) is a dual we mean that there exists a locally convex
space (Hg,t,) and an identification of F with the vector space of all
continuous linear functionals on E,, and furthermore, the topology ¢ on E
is-precisely the dual topology of uniform convergence on the collection
of all bounded subsets of E,.

I E iy given, with dual BE¥, we designate by %, the weak topology
on H, by %, the weak* topology on B, and by ¢, the dual topology on E*.

LeMMA. 8.1, Let B be an arbitrary barreled space under the topology t.
Then (E*, t,)* = (B, 1), so that (B, 1) is' a dual.

Proof. By Grothendieck’s Theorem ([5], p. 250), the set (B, t,)*
can be identified as a point-set with E. By an equivalent to the notion
of barreledness, the equicon‘r;inuouo subsets of E are precisely the t,.
bounded subsets of B*, which Just means thm‘r. the original topology t
on ¥ is the dual topology for (B, t,)*.

We observe that' cvery Banach space, and even some incomplete
normed spaces, are barreled. As a consequence, every Banach space is
a dual (though not necessarily the dual of some Banach space). We will
return to this topic later, after Theorem 3.3.
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LeMMA 3.2. If (B, 1) is locally convex and is a dual, and if (E* t,)
is normed, then (H,1) is normed as well.

Proof. Assume that (B, t)* = (B, 1), and let » denote the canon-
ical injection of ¥, into E*. If B is bounded in (H,,t,), then = (B) is
bounded in (E*,t,) since = (B) = B%4, On the other hand, if & (B) is bounded
in (B*, t,), then since t, restricted to = (H,) is finer than ¢,, we find that B
is bounded in %,. Consequently the ¢-bounded sets in z=(Z,) correspond
to the f,-bounded sets in (B, ). But (E¥, ) is by hypothesis normed.
Thys if § is the unit ball in (B, ), then 8 Na(H,) corresponds to a generic
bounded set in (F,, t,), which means that (E, t) has a generic neighborhood
which generates the neighborhood system of 0, so ? is normed.

THEOREM 3.8. (Cy(X), 1) is & dual if and only if X is compact.

Proof. If X is compact, then ¢, equals the supremum norm, so that
(C4(X), t,) is obviously complete, and thus is ‘a Banach space. Therefore
Lemma 3.1 applies to show that {C,(X), t,) is & dual. On the other hand,
irrespective of the compactness of X, the bounded sets of (Ob(X) ) are
precisely the uniformly bounded sets ([3], p. 5), so that the dual ( Oy (X), ¢, )*
is always normed, regardless of the X. Thus Lemma 3.2 tells us that
(0,(X), t;) can only be a dual when it is normed, and we know that this
can only happen when X is compact, by Theorem 2.8 of [3]. m

Dr. John V. Byff asked under what conditions (Cy(X),1,) would
be a dual. Noting that the f,-bounded sets in C,(X) are precisely the
uniformly bounded sets ([3], p. 170), and noting also that ¢, is normed
if and only if it is the supremum norm topology ([3], Proposition 4.6),
we see immediately from the proof of Theorem 3.3 above that (C,(X), 1)
is a dual if and only if ¢, is normed (which by Proposition 4.2 of [3] means
that there exists a o-compact subset 4 in X whose closure is X).

Now let us focus on some biproducts of Lemmas 3.1 and 3.2. First
of all, each Banach space is a dual, by Lermma 3.1. Is each Banach space
automatically a bidual (dual of a dual)? In general, the answer is no.
For it is easy to deduce from Lemmas 3.1 and 3.2 together that a Banach
space is & bidual only if it is a dual of some normed —and hence some
Banach —space. Thus I, is a bidual, while ¢, is not a bidual, though it
is a dual. Characterizing those locally convex spaces which are biduals
would be very interesting. Even finding in terms solely of X those
(0p(X), ¢ ) which are biduals is surely no mean task.

Since not every Banach space is a bidual, and since (B, ty») has
a Dbona fide weak topology, we infer from Lemma 3.1 that there exist
locally convex spaces with weak topologies which are not duals. In fact,
we can say something far stronger: if I is any locally convex space, and
it (I, 1,) is a dual, then the strongest locally convex topology on F* with
the same bounded sets as has f,. is itself the strongest existent locally
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convex topology on F*. This means that if (7, ) is an infinite dimensional
Banach space, then (¥, 4,) cannot be a dual. Ou the other hand, in [4]
we exhibit non-trivial examples of spaces of continuous functlons ‘which,
when endowed with the “weak topology of simple convergence, are duals.
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A multiplier counter-example
for mixed-norm spaces

by

CHARLES A. McCARTHTY* (Goteborg, Sweden)

Abstract. If ¢ = I'H is a semi-direct product of an amenable locally compact
group H with an arbitrary locally compact group I', and if T' is an operator on L?(G)
= LP(I'; L? (H)) (left-invariant Haar measure) of norm ||T]|p,, which commutes with
all right translations, then Herz and Riviére have proved the theorem that for ¢
between 2 and p, T is bounded on LP(I'; L4(H)) with norm ||T||5 ¢ < |T[p,p- In this
note, we show by example that in the simple case G = R? = R x R* this theorem
fails if ¢ is not between 2 and p. One consequence is that certain spaces of multipliers
do not interpolate by the method of Riesz.

1. Introduction. Suppose that the function m(£) is known to be
a multiplier of Fourier transforms of L? (R*) functions; that is, the trans-
formation 7', defined by
(Zhnf)" (£) = m(§)F(&)
is a continuous mapping of LP(R') into itself. We shall be concerned
here with the extension of T, to the spaces L?(L?) consisting of those
measurable functions f(x, ) defined on R? for which the norm

| f ( f f(@ qudy)qdm]

ig finite. The extension of 7', from an operator on L? to the operator i’m
on LP(L% is that it should operate on the first variable:

(Tnf)" (&, ) = m(E)F(E, m);
ov, if T, is given by convolution with the function M (x):

(Tn f)(@) = [ M(z—t)f(t)dt,

then the extension _’Z'm is given by

oo

(Tuf)(@,y) = [ M(@—0)f(t,y)ds.

—0c
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