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convex topology on F*. This means that if (7, ) is an infinite dimensional
Banach space, then (¥, 4,) cannot be a dual. Ou the other hand, in [4]
we exhibit non-trivial examples of spaces of continuous functlons ‘which,
when endowed with the “weak topology of simple convergence, are duals.
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A multiplier counter-example
for mixed-norm spaces

by

CHARLES A. McCARTHTY* (Goteborg, Sweden)

Abstract. If ¢ = I'H is a semi-direct product of an amenable locally compact
group H with an arbitrary locally compact group I', and if T' is an operator on L?(G)
= LP(I'; L? (H)) (left-invariant Haar measure) of norm ||T]|p,, which commutes with
all right translations, then Herz and Riviére have proved the theorem that for ¢
between 2 and p, T is bounded on LP(I'; L4(H)) with norm ||T||5 ¢ < |T[p,p- In this
note, we show by example that in the simple case G = R? = R x R* this theorem
fails if ¢ is not between 2 and p. One consequence is that certain spaces of multipliers
do not interpolate by the method of Riesz.

1. Introduction. Suppose that the function m(£) is known to be
a multiplier of Fourier transforms of L? (R*) functions; that is, the trans-
formation 7', defined by
(Zhnf)" (£) = m(§)F(&)
is a continuous mapping of LP(R') into itself. We shall be concerned
here with the extension of T, to the spaces L?(L?) consisting of those
measurable functions f(x, ) defined on R? for which the norm

| f ( f f(@ qudy)qdm]

ig finite. The extension of 7', from an operator on L? to the operator i’m
on LP(L% is that it should operate on the first variable:

(Tnf)" (&, ) = m(E)F(E, m);
ov, if T, is given by convolution with the function M (x):

(Tn f)(@) = [ M(z—t)f(t)dt,

then the extension _’Z'm is given by

oo

(Tuf)(@,y) = [ M(@—0)f(t,y)ds.

—0c
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For 1< p, g < oo, the spaces LP(L?) are Banach spaces. It is imme-
diate that they interpolate in the expected way with Riesz (or complex)
interpolation: (LFo(L%), L2 (L4)), = LP(L%), where (p;", g;t) = (1— 0) x

XL )+ 0T @Y, 0<<0<1. A simple application of Fubini’s
theorem ghows that any bounded operator 7' on LF, whether given by
a multiplier or not, gives rise to an operator T of the same norm on L? (L7
‘when

(Tf) (2, ) = {Tf(-, ) ().

A less immediate, but well- known, theorem states that for a bounded

operator T on L?, the operator 7' is bounded on LP(L2)([3], Corollary 2;
[6], Théoréme 1). It then follows by interpolation that if 7' is bounded
on L?, T is bounded on I? (L) for g between 2 and p. For multipliers,
this is also a special case of the theorem of Herz and Riviére [4], who
have proved the interesting result that an L?(LF) = LP(R%) multiplier
m (& n) is necessarily an L?(L?) multiplier, even in a more general context
of semidirect products of groups.

The purpose of this note is to show, by example, that at least in
the case of a direct product of R with itself, T need not be bounded on
LP(L% it g does not lie between 2 and p, even if 7 is given by an L? multi-
plier. In particular, this shows that in general the range of ¢ for which
the Herz-Riviére theorem holds is at most from 2 to p. It remains,
however, an open problem to characterize the values of ¢ for which ex-
tensions are possible for various other products of groups. We understand
from Riviére (private communication) that in the case of a direct product

of Z, with itself, an LP(LP) multiplier is necessarily an IL?(L?) multi-

pler also, where 9’ is the conjugate index to p. Our example should also
be compared with the work of Benedek, Calderén, and Panzone [1] which
gives sufficient conditions for certain operators to be bounded on spaces
with mixed norms.

We wish to thank Professor N. M. Riviére who called our attention
to the problem of determining the best range of g, and to whom the remark
of Section 3 that (¢, M,), Ma_gyrop—1—1 is due.

2. The I? multiplier example. Our example will demonstrate the
following

TeEOREM. Let 2 < p < oo. Suppose q is such that any LP(RY) multi-
plier is also an IP(L%) multiplier. Then q> 2.

The strategy of the proof of this theorem will be to construct a function
m(§) and obtain an upper bound for the norm of T, on IP, Then we will
consider certain explicit functions % (2, ¥) and obtain lower bounds for
|]1 Wy,a3 thesc lower bounds will then show that 1T%l, o/ 4]l can be
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bounded uniformly in % only if 2 < ¢. The fact that we must have ¢ < p
can be seen fairly easily either from general considerations, or by an
example even simpler than that presented here. Consideration of adjoints
leads to the analogous theorem when 1 < p < 2: we must have p < ¢ << 2.

We define the Fourier transform on R! by f(£) = f e () dap

the inversion formula then becomes f(z) = [ ™ F(8) dE.

—o0
The multiplier m(£) which we shall use to prove our theorem is
given by ‘
r ‘une‘.'m}.nf, if IE—2n+*l <1l(n=1,2,..)
m =M =
© (€) 0, otherwise.

The weights # and frequencies 42 will be chosen later.

First, we obtain an upper bound for the norm of 7, on L? (R?) (p > 2).

LeMMA. For 2 <p < oo, there emwists a constant B, depending only
upon p, and in particular independent of the w's and s, such that the norm
of m as an LP(RY) multiplier is bounded by B, (>|u,/ ?E-2)@-dkr —
Bp“/"”m:/(p-z)' "

Proof. Take f(x)e L?(R'). Define

Ta(@) by fn(E) f(E [2"<|5‘<vn+1], n=0, +1, 4+2,.
gl@) by g8 = m(f)f(f),
gn(w) by gn( = m(f fn

Tn() by ha(8) =fn(5)'xn¢_zn+&,<m n=1,2,..
(7.4 denotes the characteristic function of the set 4). Thus
Mnhn(w_'_ln)’ kG =1527
gn(m) =
0, n =0, —1, —2,...

The theorem of Littlewood and Paley ([2], p. 1177) tells us that there
is a constant 4, such that for any fe L?(R') we have

frf(x)|”dw§ A3 f( Z AGI )Zdw

00 =00

Thus »
1Zafl2y = [ @iras< 4z [ (3 igalo))? d
[o+] lj—-
=4y [ (Y 1l (ot 217 4o
<A f(z P22 N (04 2,) 7)o

2 — Studia Mathematica XLIX.3
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(by the use of Holder’s inequality with exponents p/(p —2) and p/2)

= Ay lipi—sy () [ V() 1? do)

< Ay lelhip—n (D M5 [ 1fa(0)da)

(here M, is the norm on IL* of the multiplier yrueryay, Which is indepen-
dent of the particular interval in R' chosen)

SIS

< AUl [ (D ful@)?)® o

< A My |illapiip-2y AplIf -

We may thus take B, = A5 M,. With a little more care, one can show
that B, = 0(p) as p—>oo, but we shall not need this fact.

Now we shall construct our functions u(z,y). We take A so that
Ao+1 <2y, (later, we shall choose A,~co much more rapidly), and
define

3 .
0P (2" i)
u(@,y) 21 in the rectangle [l —1,| <.0L]x [|[y —nl< 4], n =1,2,...,

0 otherwise.

. _L L
Direct calculation shows that [[ull, , = (50)” (3 |a,|”)7, independently of g.
n

For the sake of definiteness, it is probably best at this point to take
explicitly

1
)

1
Wy, =" ? [log(n+3)]7%  s0 fjully, < oo;
and
1
ty =0~ OB [og(n 1-8)]7E, 5o that by the lemma,
m iy an I multiplier.

In general, an appropriate choico of the s depends slightly upon the
particular u’s used.

Our aim is to insure, by choosing the A's appropriately, that the
function

Q) = [ Ma—bult, )

—00

1
has I”(L”) norm exceeding o >’ |u, a,|%)%, for some fixed positive constant c.
n
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(We may take ¢ =.005.) Once this is done, a mnecessary condition
on g that our ILP multiplier m be also an LP(L?) multiplier is simply
that

1 .
00 > ¢ M2ul,, > 3 (007 [log (n+3) )

= 3w Hlog(n +3)17%

that is, we must have ¢ > 2.
To estimate (M *u)(z, y), we have

W) — S 4 exn2ni oty S02T(@ A 4y
M () g; Un€XD [274 (2 + Ay) 1 @t )

For fixed y > } let m be that integer for which m —§ <y <m-+%. Then
(M *u)(z,y) =0 for y < 3}, and otherwise

Appt.01
Mrwe,y) = [ Ma-tu,yi
Zyp—-.01
A 01
=am..4-1 f tin €XP [26 (% — T+ 2) -2 FH] %
n Ay—.01
Sn2n@—tdh) o
ﬂ(ﬂ&‘—t'f‘;‘n)
(%) ( I Singm (@ — 1t A)
— , e .om+i —-—.——-—m—dt
L l,umexp[ T4 (%4 ) ] f w(z—t+2,) *

gy 01

+ E Jin€XD [2704 (@ 4 &) - 27HH]

NFEM
A t01 .
. . sin2wn (2 —1-+4,)
X exp [ —2mit- 2" ] dt}.
Ay 01 Pl J (@ =1+ )
We show that for || < .01, the leading term of (*) dominates.
Ikl §in O (w —1 = 4 u?
For o] <01, [ SR2E@I ) 4o 039, (Use (sim)fu>1——;

A0 (e —t4 4,)
the worst case is when |@] = .01.) Thus the leading term of (*) hag absolute
value at least .039 |a,u,| for |z| < .0L.
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Now choose 4, = 100" (n =1,2,...).
For |z] < .01 and n % m, we have

Iy t-01

sin2n(x —t —24,)
exp[ —2mit-2n A dt}
| el Ly
A —-01
_ Ayp .01 ' 1 "
Ippem-01 W(W”t-l‘l,z)
.02 1 ‘
< < 107100~
" x [100" —100™] —.02 0 0 !

since [100™ —100™] > .99 - 100™%=0%%) > §9.100/™™ > .98-100'™~™ 4 .02. To
show that the leading term of (¥) dominates, we compare the relative
size of .039u, with 107* 3 u,-10071"~". Consider

nAM

WZ fin- 10011 100*’“2' fin 100"qL V En 100-n+m,
MT‘L

nFEIN n<m

Since our choice of x is a decreasing sequence, the second sum above
is dominated by > 1007 = .01(1L—.01)"'<.02. In the first sum

n>nm
above, n << m —1, so that

o (m o 10gm—|—3 §< &é‘% l”_%< m L 4™
oy n Togn+3] “\n nl “\n]” !
hence

100"

//\

opm
Lo 100 <257 325" — g5-n 2071
fim 25 —1
n<m

1
-Z-"Oﬁ.

n<m

. . . 1
Combining these estimates gives ——
Mo, n#m

lz| < .01, the absolute value of (%) is at least

> i 100""” ™ < .07; therefore for

[ {.039 Uy — 107 2 lun.l()o—\m—nl} >

nEM

Oy 1, [ 039 ~107.07] 2 038 iy -

A lower bound for the L?(L?) norm of Mxu may now be obmmed. For
fixed z, |#| < .01, we have
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oo 1 o m+E
([ warsw@ praf= (3 | 1038umam\“dy)

—00 m=1 m—%

=.038( ) wmamIQ)%

y

— (50) 7 038 (3 1t )7 =

m

and so
01

HM* ’M“p,q > ( ) [038 (Z | O | )

—.01 mn

1§

=

.005 (; ltim u,nW)lﬁ.

3. The interpolation of spaces of multipliers. Denote by I, the
Banach space of multipliers of L?(R%), given their operator norm, and
by M, , the multipliers on L?(L%). It is well known that 3, corresponds
to convolution with measures of finite total variation; thus me M, if

and only if m(&) = f e =AM (x) for some function M (z) of finite

total variation and ( .l‘mf (z) f flz i (¢). From this it can be seen

immediately that Il~’me M, for ‘LH g, 1 < g < oo, and indeed that ]li'me,q

= Tl = [ 12M].

Now suppose that for some 7, L <7 <2, and some s, r<s$< 2,
we had M, = (M, M,) with 7! = (L—0)+ 6s™.. Then given me M, of
norm 1, we would be able to find a function m (&, 2) on R* % [0 < Rez < 1],
analytic in' 2, with the properties ||m(-, #¥)llm, <1, Im(, 1+ y)lm, <1
uniformly in y. Thiswould yield ||m (-, y) ]i‘ﬁl w < Land|m (-, 143y)lm, 2 S1
uniformly in y. Using that fact, and that the spaces L? (Lq mterpola,te
in the expected way, we would then have Hml]m t< 1 with ¢! = 6/2.
Since the dual of L?(I#) is L¥ (L), we would also have Imllsm,, , <1 for
every me M, = M, of norm 1. But 7' > 2 and ¢’ < 2; our example shows
thati [Imlly,, ,, << mll; . cannot be true. Thus we see that M, cannot be
(My, M)y Further, since no estimate of the form e, ;. < Ol
can hold, we see that M, properly contains (M, Wy-

‘Whether the spaces 9, interpolate in the range 1 < p < 2 seems to
be an open problem.
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Weak type estimates
for the Hardy-Littlewood maximal functions
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Abstract. In this paper we give sharp estimates for the weak type constants
for the Maximal Operator of Differentiation. This is done in the case of one parameter
m-dimensional parallelopipeds as a differentiation basis. The dependence on the
parameter is asked to be more general than the usual monotonic one. '

Introduction. The purpose of this paper is to improve and to extend
results which have been obtained by Cotlar in [3] and [4]. These results
are going to be used in [1].

1. Statement of results.

1.1. R(z,t) will denote an m-dimensional rectangle having edges
parallel to the coordinate axes, centered at the point # and edges given
by ki), § = 1,2, ..., m. Here k;(#) will denote the edge length correspond-
ing to the #; axis. The functions h;(¢) are assumed to be continuous
and non-negative and sytisfying the following conditions:

(1.11)
here k; depends only on j and %; >0, j =1,2,...,m,

(1.1.2) Ty() >0, t> 05 y(0) =0, j =1,2,...,m,
(1.1.3)

1.2. By f*(#) we denote the maximal function
Y

Gty = Ry hy(t) = (), § = 1,2, ..., m,

Iy (t)—>o00, as t—o00 for j =1,2,...,m.

(1.2.1) sup
>0

w
= | fiu
/‘(R(w’ t)) RGA
where R(z,t) aie rectangles under the conditions of (1,1), x is a non-
negative c-additive measure defined on the Borel subsets of R™ and f
is any p-measurable and w-locally integrable function. In the same way
we define »*(@) for any c-additive measure defined on the Borel subsets
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