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Linear operators on L'*(0, co) and Lorentz spaces:
The Krasnosel’skii~Zabrieko characteristic sets

by
S. D. RIEMENSCHNEIDER* (Edmonton, Alberta, Canada)

Abstract. The concept of the L-characteristic set for a linear operator as intro-
duced by M. A. Krasnosel’skii and P. P. Zabrieko it discussed in the context of the
Lebesgue and Lorentz spaces of functions on (0, o). Necessary and sufficient conditions
for a set to be a L-characteristic is given for the case L1/2(0, oo). A necessary condition
for a “characteristic” sef is given in a general setting, and sufficient conditions for
the set are given in the case of Lorentz spaces.

Introduction. In the book [5], Krasnoselskii, Zabrieko and others
used the concept of L-characteristies to describe the actions of linear
and non-linear operators on spaces of summable functions. Let Z'* (M),
0<<{a< oo, be the 1/a-summable Lebesgue measurable functions on
the hDounded measurable set M in Bueclidean space. The L-characteristic
of an operator T'is simply the set of points (e, ), 0< a< 1, 0 < B < + oo,
for which the operator maps L'V*(M,) continuously into L**(IM,). On
page 42 of [5], the problem of characterizing the I-characteristic sets
was posed, and a partial solution was given. In [7], the author solved
the problem for the spaces ILY*[0,1]. In this paper, the problem is con-
sidered for functions defined on (0, co) in the context of the L'*(0, co)
spaces and the Lorentz spaces L(1/a, 7).

§ 1. A necessary condition. Let (X,, ||'l.), ¢ I, = [y, 0], be a family
of Banach spaces continuously imbedded in some topological vector
space Z'. Suppose that  there is a set X' = X, which is dense in each X,,
oy < a < ay. Further, assume that g,(a) = |Jz|, is & continuous function
of o for each fixed xze 2. .

Let (Y, 08), Belg where Iy = [Bo, f1] or I = [By, o), be a family
of complete linear metric spaces continuously imbedded in a topological
vector space #. Let 6 represent the origin in @. Suppose that v, (8) = gx(¥, 0)
is @ lower semi-continuous function of g for each fixed y. Further, suppose
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that gp(ty, 0) = g(i, B) 0s(y, 0) Where ¢ is a positive scalar, and g(Z, f) is
continuous as a function of ¢ and f.

Let T be a linear operator defined on X with values in #. The (X,, ¥,)-
characteristic of T is the set of all points (a, B)e I, X I for which T' can
be extended to a continuous linear operator from X, to Y,. We have
the following theorem about (X,, ¥,)-characteristics.

TusoreM 1. If X,, ael,, Y;, fels, and T are as described above,
then the (X,, ¥ ,)-chavacteristic of T is an F.-set of the region I, % Ig.

Proof. The proof can be carried out as the proof in §2 of [7] with
little change.

We note that the theorem applies when X, and Y, are the usual
Lebesgue spaces LV¢(M,, m,) and LY*(1M,, m,) for totally o-finite non-
atomic measure spaces (M;,m;) ¢ =1,2 and 0<a<<l, 0K B < +oo.
The Lorentz spaces as will be considered in Section 3 also satisfy the
requirements of the theorem. Other more general examples could be
found by taking the spaces X, and ¥, to be composed of (1) continuous
regular normal scales of Banach spaces in the sense of Krein and Petunin
[6]; (2) interpolation spaces constructed by the complex method of Cal-
derén [2]; and (3) interpolation spaces constructed by the K-method of
Lions—Peetre (see [1], pp. 165-191).

§ 2. The LY%(0, co) spaces. Let 7' be a linear operator mapping the
simple functions into the space of Lebesgue measurable functions on
(0, o). The L-characteristic of 7', L(T'), is the set of all (a, f), 0 < a< 1,
0 << B < + oo, such that 7 can be extended to a linear operator from I,
to Ly. Two important properties of the L-characteristic are that (i) L(T)
iz convex (Riesz convexity theorem), and (ii) if 7, and 7', are positive
linear operators, then L(T)+1T,) = L(T,rnL(T,). A characterization of
L(T) is given by the following theorem.

THEOREM 2. Let Q2 be a point set in the strip 0 < a <1, 0 < o0,
Then L2 is the L-characteristic of some linear operator T if and only if
is convex and F,.

The necessity of the condition has already been established.

The proof of sufficiency is based on the proof of Theorem 1 in [7].
The proof in [7] was connected to the particular spaces in question through
the use of Lemma 4 of that paper. The lemma was sufficient for the pur-
poses needed there since the L-characteristics considered had the mono-
tone property, which implied that the non-vertical boundary of the set
in question was a non-decreasing convex curve. However, in our present
case, the non-vertical boundary of the convex set will consist of two
pieces; a convex curve, and a concave curve. Thus, we need a more general
lemma.

%,
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Let I'y and I'; be two distinet parallel non-vertical lines of non-zero
slope in the strip 0 < a <1, 0 < f < 4 oco. Suppose that I} is above T,.
Let 4 be the region in the strip on and above I, and B be the region
on and below I';. With this notation, we give the following lemma.

LevMA 1. Let M > 0 be given. There are bounded positive kernels
(s, t) and E,(s,t) with supports of finite measure in (0, 00) X (0, co)
such that the resulting inlegral operators K, and K, satisfy:

(0 Kl <1 for (a, fed, |[Eilop=> M for (o, f)e B,

(i) (Kollop <1 for (a,B)e B, |Kallup= M for (a,f)cd
where

Kx
sup 15l g gy,
e>0  |1#lla

K x]if
sup “ 'L'T“ﬁ
PN

, 1< < +oo.

Proof. There are actually four cases to De considered; namely,
whether the lines have positive or negative slope for each of (i) and (ii).
Since the estimates are similar to those obtained in Lemma 3 of [7];
we shall give the kernels for each of the cases and a brief word about
the proof.

The basic kernel needed for all cases is given by

K(s, 1) = [1*1(1+ [logt])** s (L + [logs])® 4% (1 + [logt[)**2]*

where f§ = (@, —a,) a+ a, represents one of the lines under consideration.
For lines with positive slope, we take the equation to describe I'y and
multiply K (s, t) by the characteristie functions X( N 1) (s) x( 1 (%) for case (i),
% \
or take the equation to deseribe I, and multiply b;;v 2, (8) 2a,m (B)
for case (ii). In the case of negative slope, we take the equation to describe
I'y and multiply K (s, 1) by xu,3(8) % 1 (t) for (i), or take the equation
'

to describe [, and multiply by y,, 1) (8) 2,2 (t) for (ii). The choice of N
o

will depend on the given bound 2.

We Dbriefly sketch the proofs. For points of the form (0, ) or (1, 8)
in the region where |||, <1 is desired, one majorizes the kernel by
omitting one of the terms in the denominator. Then | [ (s, t)a(s)ds|

]

is majorized by the norm of # multiplied by a function of ¢ whose norm
is one.

For 0 <a <1 in the region where ||, ,<<1 is desired, we apply
the Kantorovitch criterion; if the function ¢(f) = |[K (-, t)l,_. Ly, then
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the integral operator is bounded from I, to 1},? with }!Kw.”ﬂ:\: Jlllg el -
An estimaite for ¢ (1) is obtained by breaking up the 1nte’gra13.10n mﬂ |]1K (A- y Dlhee
over the intervals [0, S] and [8, co) where 8 = 8(1) 1sr determined so
that the summands in the denominator of.the kernel Ix(.?, t) are e.quq:,]‘
at s = 8(t). This results in @(¢) being majorized _by a fupctlon of 1 whoge
norm is uniformly bounded for (a, f) in the desired region. .
To show that the norm ean be uniformly large in the other ffgm“’
we estimate the action of the operators on the funetions @, ,(s) = g (8),

(or = n“( W) 0<a<l (n=23,...). For lixed a and all n, j@, olle = 1.
205

However, we can obtain a lower bound thab Willl blow up unifo/ljmly ‘011
any region that is a fixed distance from the region v.fhcre I llo,s < 1. The
" choice of the N for the kernels is made at this point. N ‘
Lemma 3 of [7] provides the prototype forv the abovg discussion.
The proof of Theorem 2 now proceeds as in [7]. In so doing, the con-
caive part of the boundary and the convex part of the boundary are treated
separately.

§3. The Lorentz spaces L(1/x, 7). In this section, we give sufficient
conditions for a “characteristic” set in the case When_ the spaces are Lorentz
spaces. Let x(s) be a Lebesgue measurable function on (O.7 o). We let
#*(s) denote the non-increasing rearrangement .of l(s); 1.:3. the ILOI'1~
increaging function which is equimeagurable with ]a?(s)]. The Lorenf,z
space L(l/a,7), 0 <a <1, L<r< + o0, is the collecm(in qf zn'll ‘Lebesgue
measurable funetions @(s) for which the quantity |-|s, is finite where

{_Fsa"”lw*(s)"cls}”’, 1<r < + 0,
8.1 ol =4 °

: sup s"z*(s), ¥ = oco.
0<s<o0

The quantity [|*|[;, does not define a norm on L(1/e, 7). However, if we
replace’ @*(s) by the function z**(s) = 3 f o* (1) dt in equation (3.1), then
0

we do obtain a norm which we will denote by ||zl - -

The quantity ||-|; . is easier to work with in our computations, _b‘nt
I lo,» is needed to define the norms of our operators. These two quantitics
are related by the inequalities:
(3-2) @] < @M (L— @) 2, < (L — @) 7 2]l -
This relation can be found in A. P. Calderén’s paper [3]. A complete
discussion of the Lorentz spaces and their properties can be found in the
work of R. A. Hunt [4].

Let X,, 0 <a<1, be L(l/a,7), and Y, 0<f <1, be L(1/8,q),
where 1< 7, g< +oo. Further, set X, = ¥y =L, = L*(0, o) and
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X, =Y, =L, = I*(0, o). Let T be a linear operator mapping the
simple  funections into Lebesgue measurable funetions on (0, o). The
L, -characteristic of T, L, (1), is the set {(a, f): T: X,—¥, continuously}.
We shall employ the notation 1o, r5,4 to indicate the norm of the op-
erator T' a8 a mapping from L(1/a, r) to L(1/8, ¢). This norm is defined
in the usual way.

For the I, ,-characteristics, we have the following theorem.

THEOREM 3. If 2 is an arbitrary convex, F-set of the square 0 < a,
B <1, then Q-is the L, -characteristic for some linear operator 1.

As in the case of ZY*(0, co), we need only prove a lemma like Lemma 1.
However, in this case, our norm estimates degenerate near the boundary
of the square. We first give the needed integral operators to more effectively
point out the bounds on the norm estimates, and then give the geometrical

-lemma relating the norms of these operators to the square.

Again, we shall consider parallel lines I’ and T, with strictly positive
or negative slope and passing through the square 0 < a, f# < 1. The basic
kernel for the Lorentz space argument will be
(3.3) I (s, 1) = (14 logt])~2(b -+ Jlogs|) "2~ [s+1%2n]2,
where f = (@, —a;)a-+ay will be the equation of one of the lines above.

In order to illustrate the argument, we shall state one of the cases
as a lemma and sketeh its proof. There are two major differences from
the procedure in the last section. Firstly, the norms require the use of
the decreasing rearrangement, and secondly, the bounds on the norms
will degenerate for (a, f) close to the boundary.

LemMa 2. The integral operator given by the Ternel (3.8) multiplied
by 10,0 (8) %o, (B with b =4, a, > ay, a,> 0, a; <1 has the L, -character-
istic {(a, f): 0<a, BT, B> (@2 —a;)a+ay}.

Proof. Suppose that 1< r< 400, 0 <« <1, and 7' iy such that

1

-;j-l-;,— =1 (with the usual convention when » = oo or 1). Let fi(s)

—3

= (4 -} Iog%) N[s 127777, Observe that f(s) is decreasing for ¢ > §

where § is defined by 26"™~% = §(2 +1log1/8). Let gy(s) be fi(s) on (8, 1)
and be equal to f;(8) on (0, 8). For any z(s) > 0, by replacing f,(s) by
91(s) in the integral defining Ku(t), majorizing the resulting integral by
the integral obtained by replacing z(s) by z*(s), introducing §'~*s5*"! in
the integrand, and applying Holder’s inequality, we obtain

—2

: ’ L d 1r
Ka(l) < (1 + logi—) %0, () leli’,r{ f (s g (s)) ?S} (1<r<oo).
’ 0
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Estimating the last integral over (0, §) and (S, ]), and using the rela-
tion between S and f, one can obtain

. 1\ ~? et
(8.4 Ko@t)<0@—a™ Hwni‘,r(wlog;) 17 g ()

where O(r) is independent of 1 fx,nd a. Similarly, Ku(t) mn be estimated
so that (3.4) holds for r = oo, "= 1. For r =1, 7 = oo, the term
O(r) (1 —a)~¥" can be omitted.

If 1> B> (6,—a;)a+tay, f> 0, we have by (3.4) and (3.2)

(3.8) 1Kl < C(ry @)(L—F) a7 (1 —a)™ [l

I f=1, 0<a<l, then 1—(ay —a;)a—a, = 0, and we obtain

1
(3-6) 1Kzl < C(ry o "(1—a) @l

We shall only state the available bounds for the other cases. For
a =0,
8.7 [ Kallq < Clg) (L —B)H [I»vllo
holds for B> ay, and if a, = 0, then |Kz|,< [jzf, holds. If « = 0 and
g =1, then [Kall, < [|o-

I f=0and 0<a< —a/(a—ay),
(3-8) Bz, < O(r) ™" (1 —a)”

If « =1, then
(3.9) 1K, < C(g) (1 —B) 7 Jolly
for 1> B = @y, and || Ko, < |l2|;.
not hold.)

The above estimates show that the desired regiom is in the I .-
characteristic. To show that no other points belong, we estimate the

operator. on &, ,(8) = n° xym(s)- For 0 <a <1, 0 <f <1, we estimate
the value of Ku,,(f) by integrating over (1 /un, 1/n) to obtain,

then we can obtain

el

(Note that, in general, @, <1 need

(ag—ap)a-tay
Kmn,u(t)z On w~a
P S S
for m U LIL 20 2% where ¢ is independent of a,
implies )

(3.10)

[1 -+ 10g~a—] (4 +log2n)™?
. :

t and n. This

(ag~a)e-tay—~p

g PR N e W 1 -2
K arpq > C(L—B(L —a)"s ea=er [1 +— o8 ’; ] (4-+log2n)~
1

where € is independent of «, a, and p.
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Similarly, for g =1 and (a, —a;)a+a; > 1, we obtain

) (ag—ay)atay—1 logn T2
1) Wl > 00— 5 14| gt togan)
1

For a =1,
ag—p

(312)  [Kllpg> O(1—f)itniser [1+ logn

2 -2
“1] (4 +log2n)

In the event that there are points (0, #) not in our set (which is the
case when a, > 0), we estimate the action of K on z(s) = 1 to obtain

1 1\2
K(1,t) > ;(1+10g7) 17" ¥, (t). Thus, K (1, %) does not belong to Ly,

for any f < a,.
The lemma is proven.

Remark 1. Inequaliby (3.5) shows that we may obtain a uniform
bound for the norm on that portion of L, ,(K) contained in the interior
of the square provided that we stay away from the boundary of the square
by a fixed distance. Inequalities (3.6), (3.7), (3.8) and (3.9) show that
‘we may obtain a uniform bound for the norm on the boundary provided
we stay away from the corners. Finally, the norm at those corners which
lie in I, ,(K) is bounded by 1.

Remark 2. If we truncate the kernel in Lemma 2 by multiplying
by g ( 1)(3);5( 1 1)(t), then it is easy to see that the L, ,-characteristic is
N ¥l

all of the square and that the estimates (3.10), (3.11), and (3.12) still

1
hold for this truncation (n < min, N%~%). These inequalities allow us
to obtain a uniformly large lower bound for the norm of the truncation
provided that f < (a4, —a;)a+a, —e (¢ > 0), and that we stay away from
the lines f = 1, o = 1. On these lines, we can obtain a uniformly large
lower bound if we stay away from (1, 1); yvet, at (1, 1) itself (if it is not
in L, ,(I)), we can obtain a large lower bound.

‘We are now able to present the lemma analogous to Lemma 1. Let Iy
and I be two parallel lines in the square of positive (> 0) or negative
(< 0) slope. Suppose that Iy is above I', and let A be the region of the
square above both lines and B be the region below both lines. Let & > 0
be a small number. Let E; be the subset of the square containing (a)
the four corner points, (b) the boundary of the square except that portion
within 6 of the corners, and (c¢) the interior of the square except that
portion within d of the boundary. With this notation, we have the following
lemma.
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LemmA 3. Let M and 6 be given positive numbers. There are bounded
positive kernels Ki(s,t) and K,(s, 1) with supporis of finite measure in
(0, 00) X (0, co) such that the resulting integral operators XK, and K, satisfy:

(1) HCilla e < 1 for (a, B)e A N By [Eillopsp,q = M for

(@, B)e B N Ly;
(ll) ”I‘rzua,r—»ﬁ,q \<\ 1 f‘W (a7 ﬁ)s B n'EM “Icﬁlla,r--»ﬂ,q > A fOT

(&, f)ed N Ey.

Proof. Lemma 2 provides the operator in the case when the lines
have positive slope and (i) is desired, if f == (@, — ay) o -+ a, represents I
and f = (@, —a;)a+a, —e represents I, By the first remark following
Lemma 2, we can divide by a constant so that the first condition in (i)
is satisfied, and by the second remark, we can truncate the kernel in
such a way that the second condition in (i) is satisfied.

The remaining cases can be obtained from the basic kernel (3.3)
in a similar way. For example, the case of negative slope and (i) is obtained
by letting I be f = (@ —a;)a-ay, b =1, and multiplying (3.3) by the
characteristic functions yq () 2w,y (1): The proecedure for establishing
this is essentially the same as in Lemma 2, and the resulting inequalities
will lead to the same type of remarks ag those after Lemma 2.

The proof of Theorem 3 now proceeds as in [7] with the additional

consideration of a concave upper boundary. The construction is also

complicated by the additional condition in Lemma 3; namely, that the
estimates only hold on ;. However, the construction utilizes only count-
ably many operators, so that one may associate a &, (8,~0) with cach
operator. Then for any fixed (e, ) in the square, the desired estimates
will hold for all bub a finite number of the operators. We remark that
the rotating parallel lines method in the proof of Proposition 1 of [7]
can be used for the vertical and horizontal portions of the boundary in
the general case.

§4. Remarks. Thelinear operators of Lemma 1 are compact whenever
they are continuous. Therefore, Theorem 2 may be stated for the “com-
pact characteristic”, L, (T) ={(o, 8): T: L,~Ly compactly}.

In [7], the theorem required a monotonicity property on the set Q.
This property was equivalent to the fact that I, < Lp it a<< o I we
were to consider mappings from I, (M) to Lg(N) where M and N were
chosen from [0, 1], (0, co), then, depending on the choice, & monotonicity
property on £ would be required. For example, if M = (0, o0) and
N = [0, 1], then the set 2 would necessarily have the property: (aq, Bo) e 2
implies (a,, f)e£2 for g > f,.

In the case of L, ,-characteristics, we do not necessarily know that £
must be convex. However, by a theorem of Hunt [4], we can make the

icm
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following statement. If < gq, then the I, ,-characterisbics is convex,
except perhaps on horizontal and vertical segments (ﬁhe exceptional
cases in Hunt’s Theorem).
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