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and similarly,

6
(6) lg] = 2 Aol +10 A1) + 2] +90 D 4.
' ' 3

The required inequality clearly follows from inequalities (4)-(6).
Suppose now that there exist B > A and by, bye B such that a,d, +
Fagby =1, [b]l; [Bol < 1. Then

10 = [lgoll = |lgo+ (g0 + @1D1 +2Ds) (81 by + @25 — 1)}
< b1(gs — 2002)]| + 102(g2 — Lo @)l -+
F [[D1 Do { s 02 A G2 @)l + 1B g1 0]l - 1105 a |
<B+1+14+14+1 =9,

and this contradietion proves that {4, a,, ¢} has property (ii). Thus the
proof of the theorem is complete. -
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HP-spaces of conjugate systems on local fields

by
JIA-ARNG CHAO (Austin, Tex.)

Abstract. Propertios of regular functions and subregular functions, analogous
to harmonic functions and gubharmonie functions, are studied. The loeal field variant
of the Fatou~Calderén—Stein theorem on harmonie function and its Lusin area function
is proved. Conjugate systems of regular functions are defined. The theory of HP-spaces
of conjugate systems in the sense of Stein-Weiss is presented. The F. and M. Riesz
theorem is also treated.

INTRODUCTION

Stein and Weiss [10] have developed a theory of HP-gpaces for
M. Riesz systems (2, 4) = (Fol@, 9)s fo(@, 9), ..., fulwy 9)) of conjugate
harmonic functions on cuclidean half-spaces RY™ satisfying

[ 1F(@,y)Pan <4 < oo for all y> 0.

Rnv
Coifman and Weiss [2] extended the theory to Generalized Cauchy—
Riemann systems. The bagic result needed, common to all these systems,
is the existence of a positive p, <1 such that |F|™ is subharmonic. It
is our main objective in this paper to construct conjugate systems on
local fields such that the analogue of the above basic result is valid which
enable us to develop a theory of HP-gpaces on local fields.

Let K be a local field. That ig, K is & locally compact, non-discrete,
complete, totally disconneeted field. Such a fiold is a p-adic field, a finite
algebraie extension of a p-adie field, or o ficld of formal Laurent series
over o finite fiecld. See [8] for details, Various aspecets of harmonie analysis
on K and K*, the n-dimensional vector spaces over K, have heen studied
in [4], [8], [12], [181, [14], [6], [7], and [b]. In particular, from [14],
[6], and [7] we have the notion of singular integral operators and multi-
pliers; from [13] woe have the notion of regular functions on K™ X Z which
play the role of harmonic functions on R7M.

In Part A, we study the theory of regular functions, including sub-
regular functions and the Lusin arca function. Conjugate systems of
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regular functions are introduced in Part B, so that we have the theory
of HP-gpaces. The F. and M. Riesz theorem is also treated.

Most of the corresponding results in euclidean spaces we are
generalizing can be found in [11] and [9]. The local field variants of
the work of Fefferman and Stein [3] will be studied in a sequel to this
paper.

This paper consists, in part, of the awthor’s Th. D. dissertation
divected by Professor Mitehell H. Taibleson at Washington University.
T wish to express my gratitude to Professor Taibleson for his guidance.
I am also grateful to Professor Ronald R. Coifman and Professor Guido
L. Weiss for many helpful suggestions.

Notation and preliminaries. Tn general we follow the notation of
[12]. The materials in [8]; §2 and [12]; §1 serve well ag our prelimi-
naries. However, we shall repeat them briefly as follows.

Let K be a fixed local field and let dz be a Haar measure on K7
(the additive group of K). There is a natural non-archimedian norm on K
such that d{ez) = |alde, |l2-+yl < |2lvy| (= max[lz], lyl]) and |2y
= |&|v 9] if |z| # ly|. The set 0 = {we K: |#| < 1} is the ring of integoers
in K. Haar measure is normalized such that the measure of ¢ is 1, ie.,
|6] = fdz = 1. The sel & = {reL: |z| <1} is the (unigue) maximal

4 ) .

principal ideal in 0. 0/# =~ GF(g) where g is some prime power. Let p
be a generator of #. Then |p| = ¢~ and for all s I(, either x| = 0 (when
2 =10) or || = ¢"° for some keZ. The set #* = {me K: |2 << ¢ has
measure ¢~*. The collection {#¥}2_, is a neighborhood. basis for the identity
in K*. Cosets of #° are called spheres. Z% = @2 is the sphere with
center z and radins ¢, Every point in a sphere is its center. For any
two spheres either they are digjoint or one containg the other. We note
the existence of a nonftrivial additive character y such that y is trivial
on @, but is not trivial on #~* The Fourier transform for fe L'(K) is
defined as f(u) = j Fle) x (um) de.

Let K™ be the n-Limensional vector space over .
K™ == {0 = (g, oy oony @)t g J,d =1, 2, .00, m).

The norm on K" de‘fiﬂcd by |2 = max ||, xe K™ iy such that |(@--y|
15ign .

< lzlviyl and |e+yl = |ziviyl when |z| s ly| for o,y K* A Haar

measure is given by dz = dw,dw, ... dx, where dz; is the (additive) Haar

meagure on K as the ith coordinate space of K™ d(aw) = |a|"dx for ae K.

We also denote

b= foe K™ ol < g ke Z. (0] =12 =1 and [P =g
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For z, ye K", let @y = o, Yat@ayst —i~ - The I‘mulor transform
for fe LK™ is defined by f(u) = ff (2 r)dv
: B

Let & be the space of test functions on K™, i.e., those are constant
on the cosets of some #* and supported on some #% &, the topological
dual of &, is called the space of distributions. For every fe &/, the Fourier
fransform of f is in &’ and is defined by (j, o> = {f, @D, for all gpe L.

Let &y be the characteristic function of 2% in I, Then for @ == (@, @y, ...
ey ) e KTy D)D) ... Dy, is the characteristic function of &
in K" We also denote it by &,.

The following notation are wsed. For o setr 4, A’ denotes the comple-
ment of 4. ANB == ANB., We write BS A if [ANB| =0; 4 = B
if 4 S Band B A, In the latter case wo say that the two sebs A and B
are cquivalent. We denote Z* for the non-negative integers and Z~,
the non-positive ones. For a sequence of real numbers {a;}7.,, we write
ap 0 88 koo if gy < oy for k<< and a—>a as k->co.

A. THE THEORY OF REGULAR FUNCTIONS

In § 1, we define regular functions and subregular functions on
a domain in K" x Z and show that they behave very mueh like harmonic
and subbarmonic funcetions on cuclidean spaces. Wo also prove the theorem
on. regular majorants of subregular functions. In § 2, we show that, for
a regular function, the nontangential eonvergence is equivalent to the
radial convergence and also, locally, equivalent to the radial boundedness
and fo the existence of the Lusin area function.

§ 1. Wewrite (7%, 1) = {(y, 1) e K" X Z: y « 7%} where #5° = o4 7%
Ast @< K"<XZ is ¢ 1.]10(1 w domain in K*x Z if

(1) (@, k)e @ implies (Z5% k) < D;

(i) (@, k)e @ and (v, k—1)e @ imply (#;% k—1) = 9.
A domain @ in K® % Z is hounded if there exists a kye Z such that & 2 &,
for all (i, k)e 2. For o domain @ in K" X Z,1et 0D = {(x, k) e D: (@, k—1) 4D}
and let m (@) o sup{l; (e, B)e @}, (me) = oo if (@, k)¢ @ for all ke Z)
and m (%) mfm(.p) A domain in K* 2 Z is said to be sémple provided

thadi (a, /u)e().j fmplies (@, 1)¢ @ for all 1<k and that m (D) > —co.

DrprNrrron. A fanetion f(x, k) defined on a domain @ < K"X Z is
sald to bo reguler on @ if, for wll (x, ke DN\02, f(x, k) is constant on
(5%, ) and

(1) e [, k—)ay.

o
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A function f(a, k) is subregular (superregular, respectively) on & if it is
real-valued and ! “ =" in (L1) is replaced by “<” (“=”, respectively).
Note that the defining property (1.1) of a regulfu function is the
analogue of the mean-value property of a larmonie function. For
@ = K" x Z, this is the same as the definition of regularity in [13].
PROPOSITION 1.2 (MAXIMUM AND MiINiMum PrIincrerzm). (a) If f(w, k)
is subregular on a bounded domain @ < K" X Z, then

sup f(z, k) = sup f(z, k).
(@, l)e D (x, k)yed 2

by If flz, k) is superregular on @ bounded domain & = K" x Z, then
inf f(x, k) = inf f(z, k).
(w,k)e 2 (w,k)e0 2

Proof. Since domain 9 is a union of the sets (75 %, k) and & is bounded,
it suffices to consider the special case that 2 = (ﬂ“" U (P k—1)
with 09 = (#;% k—1). But in this case, the conclusions follow immedi-
ately from the subregularity or the superregularity of f.

CoroLLARY 1.3 (Uniqueness of boundary values of regular funectio-
n8). If fand g arerveqular functions on a bounded domain 9 = K" X Z and
agree on 0D, then f(x, k) = g(x, &) for all (z,T)e 2.

Proof. Apply Proposition 1.2 to the real and the imaginary parts
of the regular function f—g.

The following are also obvious extensions of results about subharmonic
functions.

PRrOPOSITION L.4. (a) The linear combination of regular functions on P
is reqular on @. If f and g are subregular on @ and a, b= 0, then af +bg
and fvg are subregular on 9.

(L) If f 48 subregular on D and @ is o non-decreasing convexr function
defined on an interval containing the range of f. Then the composition pof
is subregular on 2.

Proot. (2) Immediate.

(b) Fox (=, k)e 2\ 09,

1 .
R = ?Lf(y, )

L
<oz [ eodu -1y
z k

T

as follows from Jensen’s inequality. Therefore gof is subregular on 2.

Remark. A useful consequencc of Proposition 1.4 (b) is that if
flw, k) is regular on @ and p > 1, then |f(z, k)|? i3 subregular on 2. This
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is no longer true if p < 1. In fact; if f(x, &) = 0 is regular on P and p <1
then |f(#, k)|? is superregular on 2 as follows from the inequality

m m
1L\ ol
[2 Y ef >0 X s o<pan,

t=1 =l

a;=20,1=1,2,...,m

The following being defined in [13] generalizes the notion of Poission
kernel and Poission integral:

DRFINIIION. R(2, ) = By(@) = ¢~™®_, (o) 15 called the regulaw
zation Ternel. For fe &, the gpace of dlstrlbuhons let f(m, k) = Ry*f(x)
and is said to be the regularization (integral) of f.

Note that B(x, k)e & for all k and R, xf(x) is well-defined for fe &7,
Also, R(w, k) and I, *f(2), with fe &', are regular on K" x Z. Moreover,
regulax functions on K" x Z stand in one-to-one ecorrespondence with
digtributions on K" ([13], Lemma 1).

ProrosmroN 1.5, (a) If f(x, k) is regular on K" x Z, then

Ryxf (-, Wim) = fle, kv ).
Yy If fa, %) is subregular on K™ X Z, then

Rp*f (-, (@) = fle, kv 1).
Proof.

1
Tirf (o) = o f 7, Dy

If Sla, Ty is 1oguh1~ this is just f(s, kvl

] Fl@, 1)
|g¢;h| g’[kf(y! ) Y \ >f(m, k)

Thus, By *f(:, 1) (@)= f(z, kv ).

The following two results can be found in [13]:

PROPOKIION 1.6. . Let fe L2 (K™ with 1 <5 p << 00 and f(#, k) = By f(w).

(a) fa, By () a6 a8 I—>--o0

(D) NFCy Bl NF Ny @8 T 00, LS p = 00,

(©) IfCs by=—f()p=+0 as ‘Ia»««:»——oo, Lp < oo and f(o, k)—=f(m) in
the w*topology as T-»—oc if p == oo

IL If w is a finite Borel measure with total variavion [ull, then
sy )|y Hﬂ” as o> — oo, and p(@, k)->u(x) in the w*-topology as l—>— oo
where w(w, k) = flﬂ,r (2 —4) A ().

If f(z, k) iy subregular, then
it el
if k>1.

l’R()P(Hl'l‘IoN 1 . Suppose f(x, k)is regular on K"x Z and sup If (- E)®
LA < oo where 1< p < oo
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(a) If 1 <p < oo, f(m, k) is the vegularization of a function in IP(K™).

M) If p =1, fla, k) 4s the regularization of a finite Borel measure
on K"

The following is an immediate consequence (compare with Lemma 11
in [13]).

COROLLARY 1.8. If f(a, k) is regqular on (" x 4, lim f(z, k) = 0 a.c.,

Tty 00

and f(z, k) is bounded, then f must be identically zero.

- Note that Corollary 1.8 can be regarded as a result on the unigqueness
of regular functions on the unbounded domain K" x Z. The result is not
true unless a restriction, such as boundedness, is imposed on f. R(w, k)
is such an example. »

If a regular function m (x, k) majorizes the function f(z, k) on a domain
in K"x Z, we say that m is a regular majorant of f. If m < b whenever &
is another regular majorant of f, m is called the least regular majorant of f.

TrEorREM 1.9. If f(%, k) is & non-negative subregular function on K™ x Z
and skug IfCy B)llp <A < oo where 1< p < co. Then f(u, k) has the least
regular majorant m(z, k). Moreover,

(a) if L < p < oo, m(wm, k) is the vegularization of & function in L¥ (K");

(b) if p =1, m(x, k) is the reqularization of a finite Borel measure on K".

Proof. For fixed ke Z, let my(z, k) = Ry*xf(+, 1)(z). Since f(x, 1) is
subregular, my(z, k) < Ry *f(-, 1—1) = my_,(z, k) for 1< k. Thus
my (2, k) 7 m(x, k), say (as {——oo). By Proposition 1.5, for I < k, we have
flz, &) < my(w, k) < m(w, k). Moreover, applying the monotone conver-
gence theorem, we have

m(x, k) = lim my(z, k) = lim ——7-
) k) Jlim 1, K) Jm

f my(x, k—1)dz

—~k
gﬂ'}

1

= W f m(w, k—1)dr.

2k
‘?a:

That is, m(#, k) is regular on K" x Z.
Now, from Proposition 1.6, we know that [my(-, k)|, << [ f(-, Dll, =< A.
If 1 <p < oo, by the monotone convergence theorem,

f m? (z, k)dr = lim f mi (¢, k) de < 47,
rn l+—c0 &N

that is, iu%)\lm(-, k), < A. For the case p = oo, |m(-, k)|, < 4 for all

ke Z, is obvious. Therefore, by Proposition 1.7,

HP-gpaces of conjugale systems on local fields 273

(a) it 1 <p< co, m(z, k) is the regularization of a function in
IP (L™

(b) it p =1, m(a, k) is the regularization of a finite Borel measure
on K™ .

Tt remains to show that the majorant m is in fact the least one.
Suppose h(w, k) is a regular majorant of f(», k), then for 1<k,

my(, ) = Byxf(+, 1)(2)
w Rpxh(+, 1) ()

w= (e, kv 1) = hiz, k).

Letting L—f—-fm, we thus have m(@, k)< h(z, k). This completes the
proof.

§2. Wo identify K" with K*x {—co}. For le Z* and ze K%, let
@) = {(@, b)e K" X Z: |w—2| < ¢, It f(z, k) is defined on K" X Z,
we say that it has a nontangential limit L &b ze K" it, for each le Z%,
limf(w, &) ==L as (z, k) tends to (2, —o0) within I5(2). We write, simply,
n.b.limf(x, k) = L.

(x'k)?ﬁhe nontangential convergence is obviously stronger than the “radial’’

convergence, i.e., lim f(2, %) == L. We shall show that for regular functions
Je—pemc0

they are cquivalent. Let us first consider the case for regularizations:

PROPOSIIION 2.1. (a) If f s locally integrable on K", then f(x, k)—>f(x)
as l——oo for a.e. xe K"

(b) If f is locally integrable on K", then f(z, ky—>f(2) as (x, k)-»& non-
tangentially for a.e. ze I

Proof. (a) See [13] for a proof.

(b) It follows from (a) that

(2.2) ?;:—,gf f [F(8) —f (@) @0 as k—>—oo for a.c. e K™
v I
Py

W claim, morveover, that

13"1”? j [f(#) —f(@)|dt->0  as k—>—oco for a.c. we K™

-l
E

(2.3)

The degived rosult follows from the above elaim. In fact, for (2, k) e I'y(2),
wo have ot « P+ — g7 E4), Let z¢ K™ be o point such that (2.3)

is valid. Then, for (m, k)e Ji(2),
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(@, B (e = f L7 () —F ()1t

73]

f\ft) ~f(@)ds

e
IJ’ | S

nl

q

< Gow [ O —f@a=0 s k> —oo

e
7] (1)

Thus f(z, k)—f(z) as (2, k)2 nontangentially.
It remains to show (2.3). Note that [f() —e| is locally integrable
for any rational (complex) number p. Hence, by (2.2),

(2.4) W’“kl f[[f(t Y— ol —1f(@) —ol1dt—0  a.e. as k> —oo.

7n

Let 7, be the exceptional set for (2.4). F = U r, ‘has measure 0. If z¢ 7,
for any &> 0; let ¢ be such that |f(x)— el < £/2. Then

o [ ifo—fena<

—x
7y

) — ol + If(z)—o|1dt < &

for —% large enough as follows from (2.4). This completes the proof of
(2.3) and (b).

Before proceeding the theorem on equwa.lencc, we introduce the
following:

DEFINITION. Let 9 be a simple domain in K"x Z and m = m (D)
(= infsup{k: (@, k)e D} < —oo. See §l1.). For f(x, k) regular on 2, we

x
define f(z, k) on K™x Z as follows:

- x, k if k)e D
(2.5) P, #) = fle, k) 1 (z,k)e D, o
fle, ) i (@, 1)e 02 and k<1,
for other values of (v, %) f (@, k) =0 if k<m and, finally, f(=, k)
= Rpxf(-,m){z) i k=m. f(m, k) which is obviously well-defined and

regular on K" x Z is called the ewtension of f(», &) on "X Z
Forle Z* and he Z let I} (z) denote the truncated cone IT(z
eK"%XZ: FLE<h = U (Z7% k).

k=—o0

truncation is not essential. For a regular function f(, k)

= {('T ") 7“
The helght h of the
on K" x Z, let

@ —2l <
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& f(w) = f(x, k) —f(@, b-+1). The Lusin area function of f with respect
to the fixed cone IT(2) is given by

89(£)() = () 1duf @)12)}

where the summation runsg over distinct (.4"’*" k) =

the cone It (2) and 8(f)(2) = 8O (f)
Littlewood~Paley function.

‘Wo are now going to prove the following version of the Fatou-Calderén—~
Stein theorem:

TuworeMm 2.6, If fle,
are equivalent:

TI(z). We single out
~~( 2 |def (2)12)} is just a truncated

k) is regular on K" x Z, then the following sets

= {we K™: hm fla, I) exists};

.
B == {ge K": n.t.limf(x, k) exists};

(, k)2

= {we K™: sup|f(x, k)| < oo};

keZi—
D = {xe E™: 8(f)(x) < oo};
L = {ge K" 89 (f)() < co}.

We need the following lemmas:
Luva 2.7 Let  {(a, b)¥jo, < (), le 2,
—(2, —o0) a8 j~~co. If # ’LS a point of density of I, then (
for all § large enough.
- Proof. We first note that if £, is the characteristic funection of
a (mewsura.ble) set I < K" then 2 is a point of density of £ if

be suah that (wyy Kz)
U Io(y)

[ Wl f En(@)do—>1 ag m—oco. Observe that Proposition 2.1 (a) implies
ym
that w]most overy point in F is a point of density of F.

Now, for (@, ky¢ U I'y(y), we have #;%nF = @. If, moreover, (@, k)

ye
e Ii(2), then we @770 and #;% < g7, Lot B = @7 EINgTE Then
W;‘""‘ LNV i B NP
(Icll) f Enly)dy = T T TR
17 l e 2P q
LI e

= q‘n(kﬁ-l).

Suppose the conclusion is not true, then there cxists a subse-
quence {(ay, &)} @ {(ay, )} such that (a4, lg)->(s, —o0) as t-»co and

8 — Studia Mathematica XLIX.3
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(my k)¢ U To(y). But then
yeF
~—-——'—l —nl
lim e |75 1)) f §F_(y)d7/ <1l—g ™ <.

)
z

This contradicts the fact that = is a point of density of ¥. The proof of
TLemma 2.7 is therefore completed.
LemMa 2.8. (a) Sfu,ppose F, &) is regular on K* x Z such that f (», Te)>0

as T—oo for each  and ( ' Jdpf ()]2)F e LP(IC") for some 1<p <oo. Then

c~—

flw, &) is the regularization of o function Fel?(K™.

b) If fe IP(K™) with 1 <p < oo, then ( 2 e f ()12} emists for a.e.
Te K“ omd 48 in LP(K™). o= o

¢) If fe I*(K™) and 8O(f) is the Lusin area function of f with respect
to F{”, then 8O () (2) ewists for a.e. ze K™ and 8O (f)i=q" [ Z | f ()2 de
< co. . e o= —o0
Proof. (a) and (b) are known. See [13] for a proof.
(c) For fixed ke Z,

/

K%

V!

_

@ (@) Pde = " [ 1d,f(2)]2d2
Kn

N

1
-

where @; are such that #;° being distinet cosets in &7 (4D, Thus (c) fol-
lows from (b) by taking the summation with respect to k.

Proof of Theorem 2.6. The fact that Bc A< ¢ and L D is
trivial. We start by showing that ¢ < B and C ¢ L.

For Me Z*, let Ty = {we K™: %up}f (, k)| < M}yn0. We observe

that it suffices to consider X, instea,d oJi C. For me Z~, lot Hip = {ge Hy:
It (e < U Ty(y)} where I (2) = {(@, k) e 'y, (2): & < m}. From Lemma

7, we sce th'm, for almost all ze By, there exists an j(z)e Z such thab
I @ e U Te(y). Thus, lim B o= By Hence it is sufficient for us
yelipr Merrmm 00

to consider 1he set B .
" Now notice that @ = | {IT%,(2): e B} is a simple domain in K™ X V4
with 09 = D\ {IP*(2): 2< B, Also that |f(2, k)| < M for all (v, k)e 2

sinee 2 =« U L)
yek .

GOnblde].J% (#, k)-as a regular function defined on @, let f(w, k) be its

extension on K™ x Z. Thus |f(z, k)| < M on K" x Z. Hence, by Ploposmon
1.7, f(#, &) is the regularization of a function F'e L*(K"). And Proposition
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2.1 (b) says that n.t. lim f(z, k)=

(&, k)—=
exigts for a.e. ze L’ﬂ That is, C = B.

Moreover, from the construction of f(w, k), we see that F () is supported
on 0. Henee Fe L*(K™). By Lemma 2.8 (¢), 'we have §P(f)(2) = SP(/)(2)
< oo for a.e. ze Hyy. Therefore ¢ ¢ L.

To complete the proof of the theorem, it suffices to show D < A.

As before without loss of generality, we may consider the set Hig
= {we Hy: IT(@) = U Lo(y)} where Hy = {ze 0: S(f)(x)< M} Let

yelipr
= U{IT(®): we LM} (‘onﬂdm fle, k) as a regular function on the
simple domain 9, let f(w, k) be its extension on K" x Z. Henece f(=, k)
is regular on K" X Z and §(F)(») < M. We have also that f(z, k)—0 as
T—oo since f(», m) has finite support. An casy computation shows that

there exists a constant N, depending only on M and ¢*, such that the
function { 3 |4f(2)|2)} < N and moreover that it is in L*{(K™). Hence,

by Lemma;— 2.8 (2) and Proposition 2.1 (a),
xe By, Thus D c A.
The proof of Theorem 2.6 is completed.

Remark. The “extension’” argument in the proof above, namely
(2.5), served ag the role of the conformal mapping used to prove the
corresponding result on the (complex) unit dise, for instance, in [15],
Chapter XIV, (and the upper half-plane R?) that is not available in the
study of R, n > 1.

I (z) for a.e. ze K" Therefore, n.t.limf(»,%)

(z, k)2

lim f(z, k) exists for a.c.

]

B. CONJUGATE SYSTEMS OF REGULAR FUNCTIONS

In § 3 we apply the results in Part A to show the main theorem of
HP-gpaces. In § 4, woe define the conjugate systems which generalize the
notion of Hilbert transform in order to have the basic subregularity we

need for the study of HP-spaces. The F. and M. Riesz theorem is treated
in§b

§ 3.

Trmorim. 3.1 Let (e, k) = (fy(w, k) fl(r, By - ovy im0, ) Be a vector

valued function with each component [, § = 0,1, .. ,m being regular on
K™ x Z. Suppose there mmsts @ Pyy 0 <Py <1, such that |F(z, k)P0 48 sub-

regulay where |1 (x, k)| ( Zl Fi(ay T) 2%, Suppose, further, for some B > Py,

(3.2) j [ (@, k)Pde < A < oo
}(71
Then the limits

Sfor all ke Z.

file) = lim f;(x, k)

Fowme00
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exist for a.e. we K" and

lim [ |F (o, k) —F@)Pdw =0

k->—o0 &N

where T (@) = (fo(2), fo(a); -, fum(®@)).  Moreover, fj (@) = sup|fy(a, k)|
e LP(K"™), j = 0,1,..., m. e

Proof. Let p, = 5711 > 1. We have, for all ke Z,
0 .

[ 1B (@, B)7o?dn = [ |F (@, k)Pde < A < oo.
e "

By Theorem 1.9, since |F(z, k)P0 is subregular, |F (z, k)| has the least

regular majorant m (z, k) which is the regularization of a function m ¢ LP1(E™).

This implies m*(z) = sup|m(z, k)| < o almost everywhere and m*
keZ

e« LP1(K™) since the operator m—m* is of type (p;, ;) with p, > 1. Now,
for a.e. ze K% j =0,1,...,m,
. RS n

fi (@) = sup|fy(z, k)| < sup |F(, k)| < &up[m(% k)1%0 = [m*(2)] % .

keZ keZ
Hence, f7 (4) < co almost everywhere and ffe L?(K™), § = 0,1, ..., m. By
Theorem 2.6, the limits fi(#) = lim f;(s, k) exist almost everywhere.
Jo—r 000

That is, lim F(x, k) = F(») for a.e. < K". Note that

k——
1B (2, k) —F(x)|? < 27 (|F (2, &)® + |F (9)|7) < 27+ [m* (@) 1P « IM
Therefore, by the Lebesgue dominated convergence theorem,

im [ Pz, k) —F (2)/?do = 0.
J~r—o0

K"

This completes the proof.

From Theorem 3.1, we know that it iy desirable to define “con-
jugate systems” of regular functions, F(z, k) = (folz, k), fu(z, B), ...
ooy fm(, ), such that |F(x, k)P0 is subregular for somo positive p, < 1.
This will be our main tagk in § 4.

§ 4. We restrict our attention to (the one dimensional case) K and
exclude the case with even g.
Let ¢* = 0\Zbe the group of units in K and 0/ = {0, s, &2, ..., &}

A\
=1} (=2 GF(g)). Let mwe K* be a (multiplicative) unitary character in K*.
Denote 4y = 0%, 4y =1+P, 4, =1+ h> 1. Tt = is trivial on 4,,

HP-spaces of conjugate systems on local fields 279

we say that z is unramified. If « is trivial on A4,, but not on 4, _,(h = 1),
we say that = is ramified of degree h. See [8] for details.

We congider thoge me IZ\* such that = is ramified of degree 1 and ig
homogeneous of degree 0 (ie., m(p'e) = 7z( e), for all se Z). It follows
that s is constant on the cosets of & in ¢* and, since = is a nontrivial
character on the compact group ¢, 17hata [ ®w(@)dz = 0. Thus = takes

o

values on U,_,, the cyclotomic group of order g—1 (the group of all
(g —1)th roots of unity). The set II of all such a's forms a cyclic group
of order ¢ —1. Any a, such that m(e) = { with ¢ a primitiveroot, is a gener-
ator, IT = {a) = {m, &%, ..., a?"! = 1}. Note that #'(s!) = {¥ and w(—x)
= —g(a) for all chK", Le, @ is odd. : .

Lot OF at(m) . 1 o

et QF () == c:l—-l— r; l=1,2,..., ¢—2 where —(; = ['(#') = p.v.
[ i@y ah(@) le| " de. (See [8] for details about T-function.) Denote @ (x)
i

= (rr, k). Tt iy easy to see that QL(z) = Q' (@)[1—®_,(x)].
Define, for a “nice” function f on I, T,f ap Toyf by

Tyf () = lim QLxf(x);

Je—trm 0O

(T0)" () = @™ (w)f (w).

Ty is @ singular integral transform and 77 is a multiplier tmnsform,
by the results in [7] and [14], §4 respectively, we know that they are
of type (p, p), L <p < oo and of weak-type (1, 1).

Moreover, they are actually the same operator as fOHOWb from the
following lomma. of Sally-Taibleson [8]:

i () )" . o -

LEMMA. (W) (u) = I(zw)mn~(u), for all me K*.

Indeed, (Q7)" (u) = QL(u)f () = @ (w) Pr(u)f (w) = o= (u) Dy(w)f (u)
and for fe L2 by Planchercl’s theorem, 14f :7 lim Qi+ f(w) has Fourier

)
trangforin &=, Thus, 7,f = L,f almost everywhere.

Notoe that (R, *1,f)" = Gpa~'f. Hence, wo have (1) (e, &) = QLxf(x)
----- s= 4y f (e, ).

Setting &, = p~®0 for me Z, wo have @ [g™ {0, g,
ey ey 6071 Lot us compute Thf (@, k):

(1)

@
12

(4.1) If (w0, ) = Qhwf(@) = ¢ j’ flw—1)
1t ~g®

S S: gt f 1 flo—t)ya'(t)dt

Ml {8 smg ™1


GUEST


280 Jia-Arng Chao
“012 !Z_(m“) v f Jlw—1t)d
m=k e _{y_m
o g—1
=g 2 Z at '”"‘"m: m).
m=k {=1
Denote  df (%) = f( w, k) —f(®, k+4-1). Heneo 24d,f(x) = T'f(x, k) —

—T4f(@, k+1) = @T;f(x). And from (4.1), we have
(4.2) Ty f (w) = dp Tof (@) = 19~ QS Hef)f (@~ oy 1)
— 'A=-1
= g™ )2 el duf (o el
Tor a fixed coset y-+2-®D write &) = 0, let
(4.3) a =y, k+1), af = df(§+eh);

a = Tyf(y, b+1), of = Tydf(y+ i),

fori=0,1,...,¢g—-1;1=1,2,..
a change of variable (4.2) becomeq

, ¢ —2. Then, for zey 4 e+, after

q-1
(4.4) o =g Y al(ch—eh) dif (v + &)
=0
q—-1
= c,g“lz (e — &)

i=0

with the convention z(0) = 0. Let || = (Zlazl) = 0,1, ..., 2.

Wlth this notation, we ha.ve

PROPOSITION 4.5. (a) Zal =0,1=0,1,...,¢—2;

1=0
b) Hedl = llall, T =1,2,...,4~2;
q—.l . ;
¢) {Z’a}a} = 0 whenever j+1 is odd, j, 1 =0, 1,...,¢—2.
=0

Proof. (a) Follows immediately from the regularity.
(b} Let g(w) be the restriction of d.f(z) on ¥+ 2%, We goe from

(4.2) that .T,g(aa)lis also supported on y-+2~ %Y, By the Plancherel’s
theorem, since |#’| =1 for all I, we have

Hszllz = \ogl = I3l = 4lls = lgll.-

(Note that §(0) =0.) That is, [logf = lal| for all L.
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(e) Since T;1% = Ty, We may assume that j =0 and 1 is odd.
Thus « is odd. From (4.4) we then have

—:% g1 q—1
Sdiof = g Y o ) @l ")
) a0 t=1 Je==0
= o D) at(e —&) djay
il
=1 N ol 0 4 Lk -
ag Y e — )+ (eF — e ]afa = 0.
ik

Remark. The introduction of the function ¢(#) in the above proof,
in particular g(@) = d_,f(@)Py(x), can be used to study “Tourier analysis”

/\
on GF(q). GF(g) = GF(g). (b) is, as we have seen, just Plancherel’s
theorem and (e) follows from the Parseval formula.
Consider now a ¢ (m--1) matrix (af) with complex entries. Leb

a1
@ = (), aby ooy @f Ve € with oyl m(zlaﬂz)}, j=0,1,..., m;
be=0)
"1)1, *
) A , _— " A g . .
o = (dh, a, o, ab)e o with || ::"(_4\_/ [a}|ﬁ) , 4=0,1, o g—1
=0

AR @ = (figy Ghyy «ovy Gy) e O™ Suppose {0, 1, ..., m} = DUE, “where
D and H are non—cmlﬂ.y dirjoint.
TrmorEM 4.6, If

qa—-1

(4.7) Ea;Er:O, §o=10,1,...,m;
=0
(4.8) Nogll = llexalls” Jo=1,2,..m;
a=1
(4.9) E dial, = 0, whenever je.D and ke,
=0

then there ewists « Py, O <Py <L, such that
1 -1
A hl .
4,10 oo \ A
(1.10) HHe] [17=: g e o1l
Fwal)
for all p 3= py, where py is ndependent of o and (o).

This thoeorom generalizes Theorem 2 of [1] where the case m == 1
was treated. Before procecding to the proof, we shall study the gtatement
further. Notice that (4.10) is the local subregularity we need. Thus it
guffices to define a “conjugato .sy,siom” satistying (4.7), (4.8) and (4.9).
Namely:
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DEFINITION. Suppose fo, fi, -1 fm arve regular functions defined on

a domain @ c K xZ. For any fixed (y,k-+1)e 2\02 (thus, (,/’—(7c l-l)
k+1)u (@0 k) < @), denote

a; =fj(y7 E+1); aj = dkf]'(y—l_yl:c)i J=0,1,...,m; i=0,1,..., q—1,

where & = p~@¢l and &} = 0. If (4.7), (4.8) and (4.9) are satisfied,

then F(w, k) = (fo(, k), fu(@ &) ooy fin (2, B )) is called a conjugate system

on 9.

Thus once Theorem 4.6 is established we have immediately the
following:

THROREM 4.11. If F' = (fo, f1, -y fu) 98 @ conjugale system of vegular
functions on @ domain @ < K x Z, then there exisls @ po, 0 <py <1, p,
independent of F, such that | (z, k)|? is subregular on @ for all p = p,

We provide some examples of conjugate systems:

(i) Suppose {#)7, is a subset of IT = (w) which contains at least
one even I; and at least one odd l;. Then for a regular function f, ¥

(Tyfy oy Th,f) is & conjugate system as follows from Proposition 4.5
by letting the sets D and B in (4.9) be the odd and the even integers,

respectively. In particular, (f, 7.f) and (f, Iyf, ..., T,_f) are conjugate
systems.
—1 )
(i) F = (f, Tf), with odd 1, is a conjugate system. If 1 3 happens

q—1 .
to be odd, then x%, with | = -(“]—9—, takes only --1 as its values. With »'

substituting the sgn function, T; is the “exact’ analogue of the Hilbert:
transform. The case ¢ = 3 hag been studied in [1]. Note that, in this

case (g =3), if we take (&) = ¢ @ where for @ = (%)5__1s
-1

Zpe{0,1, 2}, o) = 2] 3™g,, on the 3-adic field; o (@) =3"'x_, on the
Me=—1c

3-series field as used by Phillips in [6], then by an easy computation
we have
w(®) | 4
) = fx(w)————*dm = =,
£ || V3
Hence (4.4) takes the following simple form
This simplest case often plays a suggestive role.

‘We now give a proof of Theorem 4.6. The proof follows very closely
that of Theorem 2 in [1]. We need the following lemma:
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TmmMA 4.12. Let ¢ and (af) be as in the theorem; that is, (4.7), (4.8)
o . m—1
and (4.9) are valid. Given py, p, > T there exists a constani Ay >0
such that (4.10) holds for all p z p, provided |jay|| < Ay Mlalll-
Proof. We may assume that |[|lal]] 4 0 and 0 <p, < p < 1.

(1_11 -1 - m
[ 3 741
(4.13) __\_ e+ @il _\J I3 iy +a;2l
{Toat) fel)  frl)
_]l
. Z‘{ \l |ty - 01»(52@,0@1 B |aj\ }d
1 i J
| ffme\‘a.a‘é P4
. ¥ 11297
= el ® \ { I M |Hu‘“2}3
L Hial I} Hialll
By using (4.9) we have the following estimate:
(4.14) 31(1{,0 by ujaj) E = @l - \ (zju
J B ,’!Elh
E)lz \"aa‘ -4+2Reo :ad,cZa,ak
i ] 1‘ jeln‘ erE'
< 2( o)+ N7 ( 3 oyl el
T JeD < jc.I)
- \1 2 N 3
<30S ) 3 ) + 38 )31
i JeD) Jedd 1 Jelt Je&
<mlalt( Y lasl?) +mlad( 3 o)
jeb) jely

s el a2

In  particular, Hiu‘;‘@aj} WﬁllanH-Hlalllz. Thus, assuming
BYm)=(|la]]], we have

2 R0 el
[1*

e |

| = o - el

ek all

P | m-+1 8 <1
3 am 9

Hence with the binomial expansion of ewh summand. in (4.13), we
haive ‘
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pRe)) Gaf P
- > p e
(4.15) § 1o+ ol11? = lllal] Z{ + i g

i=0

8 |lla]ll*

~ROD) 1y (me Naad )+ alliafl (Ro Y @) +1alF] + B
7 J

where R,; ave the third Taylor remainders.
Observe that

S,p‘ReZ@a}i
— i =0, by (&7
4 llall ’ ’
p laflle _ (m+1)p  Jlaol?
. . by (4.8)
alll PR
2(2—p) X\ 1-)2 pE—p)m [l ‘
P T 41 R L - b 4.14
8l 2 | S STy e MY
and that the remaining terms in (4.15) are bounded by B illll(z)lllll o wit

positive B independent of p. Therefore, with these estimaites, (4.15) gives us

Dl

=z qlllal|® +

ol [(m+1>p _mp2—p) e ]me

il L2 2 liall
L L nol) ]
L . — — 0~ »
> qlllalP + ot | T (2= a1l = allali
. m—1 1l . s (mpy —m +1)
provided p2g,> == and T < Ay, :"mm[ 1B ]

This completes the proof of Lemma 4.12.

Proof of Theorem 4.6. We may (mumo that, for any fixed p,,

m—1

>
P P

1 ; ' .
(4.16) E; Mo+l =1 and  Jall > Ay, lllalll,
by the homogeneity of the first expression and Lonum 4.12.
The collection & of all vectors f. = {a+ o'} satistying (4.7), (4.8),
(4.9) and (4.16) forms a compact set (in CU™+D),
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We claim that there exists a 6, 0 < 6 <1, such that

(4.17) Nalll < q%mwam for all Be .

If this is the case, then (4.10) holds for all fe %, p>p, =
-1
( o} [log( )/lowg]) - Thus (4.10) is valid for all p = p, = max(p;, Ps).

It I'(!TIL'LiILEi to show the claim. Suppose there does not exist a 8,
0 < 6 1 such thut (4.17) is valid, then by the compactness of 4, there
is a {a~| te # such that

1
lalll == 2 > lla-t 1

i
Henee there exist real ;5 ¢ == 0,1, ..., ¢—1 such that

a..|~aim],ia,, /Z,:r:(),l,...,qml-

That is, af = (4 ~1)a, 4 = 0,1, ..., q—1; j =0,1,..., m. From (4.9)
we have, for je) and ke H,

o 3k = [ 3 020

Thus, A; =1, ¢ == 0,1,...,¢—1 or @ == 0 or a; = 0. Bub each of these
three cases fmplics [lag| == 0, a contradiction.
The proof of Theorem 4.6 is completed.

§ 5. Theorem. 3.1 provides information about the convergence in
IPqorm. for some p = 1. The most interesting case p = 1 is included.
The following, comlhmy to Theorem 3.1 for p = 1, is a version ot the
. and M. Riegz theorem.

THBOREM. DL Suppose o, iy o« y W are bounded Borel measures on
K. If ¥(w, k) = (,un(m, k), pay (2, )y +oey phaa (@0, o)) forms a comjugate sysiem
(where g (w, &) 48 the regulavization of w). Then ecach uyy § == 0,1, ..., My
a8 absolwtely continuous.

Proot. Tt |yl Do the total vaviation of w, § = 0,1,...,m.

Jwtw, i Hi (@ 1) ‘2)

m e

J Ny (2, W) dw = Z Hetg (=5 T}
W ﬁ Je0

kK

= 2 el - for all ke Z.

Jral)
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Hence, by Theorem 3.1 and the definition of conjugate system,

there exists F(w) = (fo(#), fy(®), ..., fu(®)) with each component fyeIt
such that F(z, k)—>F (x) as k——oco almost everywhere and in ZL'-norm.
Therefore dy; = f;do, that i3, u; is absolutely continuous, j = 0, 1, ..., m.

Now let = be a generator of I7, the group of (unitary) multiplicative
character which are ramified of degree 1 and homogeneous of degree 0.
T, is the operator such that (1f)" = n”f as in § 4. We shall give another
version of the F. and M. Riesz theorem in terms of the Fourier transtorm.

TimoreM 5.2. Suppose u is a finite Borel wmeasure on I. If there
ewist a set A < K and an 0dd 1, 1 <1< g —1, such that o is constant on A
and p is supported on A, then u is absolutely continuous.

for ted and Tyu(d) = 0 for t¢4. Thus Tyu = (7 is also a finite Borel

measure. By Theovem 5.1, since F(z, k) = (u(z, k), Tyu (2, %)), with 1 odd,

forms a conjugate system, we have that p is absolutely continuous.
The following two corollaries are immediate consequences of Theorem

-5.2: :

CorOLLARY 5.3. Suppose u is a finite Borel measure on K such that f

0
is supported on A where A is o “‘cone”, i.e., A = | p 7" (' +P) for some
fom—00

&+ Pe0|P. Then u is absolutely continuous.

—1
L2 — Ui 0dd ($hus ad(t) = 1), let W == fte K:

a'(t) =1}, Hence K* = —WUW. We thus have:

In the case when

x -1 Lo -
COROLLARY 5.4. If —Q——z— 18 odd and w is o finite Borel measure on K

whose Fourier transform is supported on W, then. u is absolutely continuous.
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