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STUDIA MATHEMATICA, T. L. (1974)

The moduli of smoothness and convexity
and the Rademacher averages
of trace classes S, (1< p < oo)*

by
NICOLE TOMCZAK-JAEGERMANN (Warszawa)

Abstract. It is proved that the moduli of smoothness and convexity of the trace
classes 8, have the same order as the corresponding moduli of Ly (1 < p < o) a.rnd
the Rademacher averages of S, behave in the same manner as the (‘orrespond?ng
averages of Ip (1< p < o). As a corollary some results on p-absolutely summing
operators are obtained.

Let 1<p < co. By 8, we denote the Banach space of compuct’
cperators on & Hilbert space H such that

H‘A’I:p = (tr(-A*A)MZ)”p < 0.

‘In the present paper we investigate some geomfetric properties of thpse
spaces. Tt is shown that several properties are similar to the correspox‘ul.mg
properties of I, spaces, despite of the faet that for P # 2 and the }nf]lllte-
dimensional Hilbert space H, 8, is not isomorphic to any sub»pace'of
L, (cf. [16]). In particular the moduli oﬁ smoothn.ess and convexity
of 8, have the same order as the corresponding moduli of L, (.} < p < o0).
This fact in the ease of modulus of convexity and p > 2 was proved by
Dixmier [1]. )
TFurthemore the Rademacher averages of 8, behave in the same
manner as the corresponding averages of L,. Namely we pl.‘OVG t»h.e fgl—
lowing inequalities: There exixt econstants ), such that for arbitrary

Aoy ooy Ay I 8y (0 =0,1,...) we have (*)
L n
(0-1) ”Eﬁ:Ain(t)Hl‘dt <0p (ZH‘ jHi)”g for ¢ =2,
0 i=0 =0
0.2) J113 4y e 0, S1as) tor p<.
(0.2 o “ 37\, )éﬁ

* Thié is a part of the authors Ph.D. thesis written under the gupervision of
Professor A. Pelozynski at the Warsaw University.
(1) Further |- denotes (|* )
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That means that 8, for p > 2 is of the type 2 in the terminology of [6]
and for p < 2 is of the cotype 2 in the terminology of [14]. The inequality
(0.2) holds also in every predual.of a C*-algebra. )

It follows from (0.1) and (0.2) that every bounded operator from
an Z.-space in the sense of [13] into 8, is g-absolutely swumming for
¢>p>2 and is 2-absolutely summing for 1< p < 2.

Acknowledgment. The author express her gratitude to Professor
A. Pelezyfski and Professor 8. Kwapien for valuable discussions. The
author is indebted to Di. T. Figiel for permitting to include the proof
of Lemma 2.3 based on an unpublished argument from his Ph. D. thesis.

§ 1. Notation and preliminaries. We begin with some notation. By
Tm(*}(m =0,1,...) we denote the mth Rademacher function, i.e.

7m(f) = 8gn(sin2™+nt)  for 0 << 1.

By w,(:)(n =0,1,...) we denote the nth Walsh function, i.e.
wo( t)
Wn(1) =

1l

1,
iy for n =1,..., and 0Kt 1,

my () Vg ... ka(t)
where n == 2™142™ 4. 19"k ig a binary expansion of n.

Let X, ¥ be Banach spaces. We denote by L(X, ¥) the space of
all the operators from X into ¥ with the usual operator norm

4]l = sop [l 4a].
llzli<t

Let H be a Hilbert space. We write L(H) instead of L(H, H). By
K (H) we denote the space of all the compact operators from H into H
- with the operator norm |-|.

If A <L(H), then A* denotes the adjoint of A. We define the sequence

(s;(4))2; of s-numbers of the operator 4 by :

d) =14, j=1,2,...,

where 12> 4,2 ... is a decroasing sequence of non-zero eigenvalues of

the operator (A*4)", cach repeated a number of times equal to its

multiplieity. .
Let 1< p < co. We put

8, = {AJ{(H):

F

]
-

ls( )PP < oo}

J
It is well known (c¢f. [4]) that 8, is a Banach space under the norm
14l = (s A)P)? with the usual operstions of addition of operators

J=1
and multiplication by secalars. By 8, we mean K (H)..

icm
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Let AeS;. We define the trace of 4 by
trd = 3'A(4)
i=1

where (4;(4)) is a sequence of eigenvalues of 4, each repeated a number
of times equal to its multiplicity. It is well known (cf. [4]) that if AeS,
then the series on the right-hand side of (1.1) is absolutely convergent
and

(1.1)

lr Al < 4], = tr(4"4)".

The trace is linear functional on 8;. Furthermore AeS§, if and only if
(A* 42?28, and we have

“AHI; — (tl‘(A*.A)p/2)1/p
In the sequel we need the followihg

Lemnia 1.1 (general Horn inequality). Let A, e K(H) form =1, ..., N;
N =2,38,... Then

n N n
2u([[4n) < ¥
j=1 i=1

1<p <o)

2

(1.2) 8(Am)  (m=1,2,...).

m=1 m

Proof. For N =2 this is the classical Horn inequality (cf. [4]).
Assume that (1.2) holds for some N =7 >2 and for every » operators
in K(H). Consider any (r+1) operators in. K(H), say A1, ..., 4py Apps

and put & = 5;(4,p) and 4 = s HIAm) for j =1,2,.... Applying
m= r

the Horn inequality for the operators [] 4,, and 4,,; we geb
M=1

+1 n
(1.3) jsj(hAm)<Zsjzj m=1,2,..).
j=1 m=1 i=1

Now, applying the Abel transform to the right-hand side of (1.3),
we obtain ’

n 3 [ i—wl n n—1 1
\ Wl
Sty =itk S D= D) =8 D+ X (s:—800) 3 4.
= P S poe | =1 = =1 =
On. the other hand by the inductive hypothesis we have
i i r
D<), fori=1,2,..

J=1 =1 m=1
Hence, remembering that s> s, for j =1, 2, e we geb

n n 7 n-1 % 7
E'gjtj < 8712 ”Sj(Am)"i‘Z(si_Si-}-l)Z nsj(Am)

i=1 j=1m=1 =2 =1 m=1
» 7+l

=i‘sjns,.(AM) =3 Y4, (m=1,2,..).

J=1m=1

(1.4)
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Combining (1.3) with (1.4) we get

n r+1 n 71
s(”A) D ]sita L) (n=1,2,..).
M= 9 17)L~

Thig comple‘nes the induetion.

We shall apply several times the interpolation technique for {he
scale of §,-spates. We need for this the following eoncepts: if Dol iy
a subset of the complex plane, then the operator-funetion ¢: D1 (H)
i said to be w-continuous (vesp. w-analytic in the Interior of D) it for
arbitrary @, y eH the funetion (g, ¥): D~>C is continnous (resp. analytic
in the interior of D). We shall use the following well-known, fact:

PROPOSITION 1.2. Let N be a positive integer. Let 1< py << p, <5 oo,
Let & = {2eC: 0 <Ree<<1} andlet for w =0,...,2Y—1 ¢,: G—K (H)
be a w-continuous function w-analytic in the intevior of @. If

1 Ny

(1.5) f H D oulutiy)w, (1 )”f,;; < i
= (l

for —co <y <40 and pw=0,1, then
TG @) 7\ 1)
i W ")~ arRe(l-¢ U

(1.6) ([ X eulerwat) m)dr,) < PO QT gy e
0 n=0

where 7(2) = [Re({(1—2)p3 " +2p7)]~".

Ploo f. Define & new Hilbert space Hy as the Lyproduet of 2% copies
of H. Define ¥: 9K (Hy) by

oN_y
¥(2) = ®12--‘"M=) 2 eu(yw, (27 (2j 1))
J= n=0

where p(2) = (L —2)p;' +opr")™" and we employ the following notation:
. o
If A;eK(H) for 1<j<2”, then ® Ajel(Hy) is defined by
=1
®1Aj (11‘15 Loy eory :L‘ZN) = (Almh Azmm ey AZN‘%Z\‘)'

It is evident that ¥ is w-continuous in @ and w-anslytic in - the
interior of 2. Since the Walsh funetions (05 n =7 2“'——‘1_) wre constant

on the intervals (27¥(j—1), ‘)_N') for 1 ’J 295 we have
1 9N
Y @ wo V P 1oy (27 (2 1))
= 2 7l 2=l
a = - 0

It is easy to see that for every Ad;e K (H) (1<j<2%)

iy W

. , 3

I8 4, = ( D148 for 1<p< oo
j= i=1
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Hence
1 oN_y
(bfll {:{)‘ (pn(z)wn( ) z(,) dt)lh == ”1]/ ”7“

Now the desired conclusion is an immediate consequence of the
following

TEROREM ([4], §13). Let 1< py< py << co. Lot W: DK (H) be an
operator-function w-continuous in @ and w-analytic in the interior of @. If

1 (i), < M,
for —co <y < oo and p=0,1, then
1P () < MO~ UE=  for zem
where 7(2) = [Re((1—z)p;" +2p;)|

§ 2. Uniform smoothness and convexity of S, (1< p < oo). We
begin with the following lemma

Lmvma 2.1, If p is an even positive integer then for A, BeS,
(2.1) 4 +Blp+ 4 ~BJp < ) Llss (A) -+ 8;(B) P+ |s; (4) — 5, (B)[7].
Ge=1

Proof. Let p = 2k where & is a positive integer. By the definition
of the norm |-, we have

4 +BIE+ 4 —BJf = tr[(A* + B*) (4 +B)J* + tr[(4* — B*) (4 — B) .
Let us observe that
(A" +BY(A+B)) = 3,0
where 3 s extended over all the operators
2k
o=J[]e

such that o
{(+) -0, equaly either A or B* for odd +' and 0, equals cither 4 or B for

even »’s,

For ¢ [ ] ¢, denote by b(0) the number of the indices such that
0, equalg (111Jhm B or B* Then

[(4* —B*) (4 —B)] = (=19,

5 — Studia Mathematica L.2
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Thus, by the additivity of the trace

(2.2) A +BIS+ 4 =Bl =234y trC

where 3, .y is extended over all ¢ satisfying (+) and the condition

(++) b(C) is an even nwmber.

oo
Clearly, for every operator € we have [tr(] < 3's;(0). Now, using

Lemma 1.1 and the observation that the s-mumbers of the operator
and its adjoint arve equal we get

00

"s =D ( 55(0) = 3 Ls; (4)]7 1O [, (BY PO,

J=1 re=1 Jml’)‘:l =1

It follows from (2.2) that

Hence

22\(++) Q< < 9 ( . HZ [_S )] b(C !-(B)]bm)

¥ — 222 +4) [S ( ]zh-b((‘ [S’ ~l()(('
oo I
=237 3 (38 [y ()1 (B)
J=1 p=0
= D [lss(4) 5, (B) + (s;(A) — 5, (B

This completes the proof.
‘We recall that the modulus of convexity of a Banach space ¥, in
symbols dy, is a non-negative function defined for &> 0 by

Op(e) = inf{l - qu{

oy v <X, foll = ol =1, lo—y > .
The modulus of smoothness of ¥, in symbols gy, is defined for z>0 by

ep(7) = ssup{le+yl +llr—yll—2: 2,y ¥, |zl =1, yl| = 7}.

THEOREM 2.2. Let 1 <p <oco. Then there exist constants C, and C,,
such that
(2.3) Oy by, < 05, < by,
(2.4) a, < o5, < Oy,

Moduli of smoothness and converity and Rademacher averages of trace classes S p o 169

Proof. For the proof of this theorem we shall need the following
lemma. The iden of applying this lemma has its origin in Ph. D.
thesis of T. Tigiel [3].

LoymA 2.3. Let p 2= 2; then there ewvists o constant Jx“ sueh that for

arbitrary real sequences (a;), (f;) with 5’ loy]? = 1 and \’]/f 221 we have
A

(2.5) Dl -F B Doy — Bl —2 < i S
F=1 el R FE

Proof of Lemma 2.3. It is casy to show that if p 2= 2, then there
exixt constants I, and I, such that for arbitiary real Immbol y we have

(2.6) Lo+ L= y" =2 < Ky 2+ I, [y
The assumption 2 [oy]” = 1 and (2.6) imply that
=1
oy G+ B la— P
\ oy + ﬂ,|'+2|a/ At —2= |a,|p( o e A-*’iff —z)-
J Gl Tl | aj
] > I /91 11 I
< AL, Jayl + 10, [a l
Bif

+ y N

o0
3
,
=&, g
pEs '

It follows from the Hélder inequality. that
o (=<}
o 3 D=2 [ XV 5 \2 SV 2
(2.7) Z oyl =2 1y << Z g2 (31 = () )
Fual Jaal

Pinally, sinee ( )' [BAP) = L and p 5

D lay+ By + }j oy =Byt —2 < Ko ( BB 423 N 1g)

Jel Fel Jeal FEEE]
- /
> Rl 200
I, ( > 18:1°)
je=1

with K, = X+ K,. This complets the proof of Lemma 2.3.
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Now, let us observe that the inequalities 6,5.]) < 6,}1 and ¢, < eg, follow
from the fact that [, is a subspace of 8. 'We shall prove the remaining
inequalities. .

Case 1. Bstimation of the modulus of eonvexity for p > 2. The fact
that 6y > 4, is due to Dixmier [1]. We shall briefly indicate his argument.
First we establish the inequality

(14 + BB+ (L4 — B < 207 (4[5 + 1B

for A,Bef, and 2<p < oo, which is checked diveetly for p =2
(from the parallegram identity) and for p = co (from. the tringle in-
equality), and follows by interpolation for 2 <p < oco. Next we repeatb
the classical Clarkson’s argument (ef. [1]).

Case 2. Estimation of the modulus of smoothness for p > 2. The
proof is an easy consequence of the following fact: for every p 2= 2 there
exists a constant X, such that if 4, BeS, with 1B, < l4], = 1, then

(2.8) 4+ BB+ |4 — Bl < K, |BI, +2-

Indeed, combining (2.8) with

2.9)  IA+Bl,+]4—Bl,—2<p 7 (|4+BlZ+]4 —Bls—2)
we get .
(2:10) 4+ Bil, + 14 —Bll,— 2 < ™" I, | Bl -

(To prove (2.9) observe that p~*(a” —1) = a—1 for a > 0 and for p =1,
qubstitute in the above inequality a by |4 + B|| and ||4 — B|| respectively
and add the resulting inequalities together).

Tt follows from (2.10) and the definition of the modulus of smoothness
that

05, (7) < P KTt for 0 <71,

On the other ‘hand we have (ef. [5])

o, (7) > Kpet for 0 <r<1.

Hence

- 1 and ¢, =22
for 0< <1 and C, = Tp
To complete the proof of Case 2 we shall prove (2.8). If p = 2k
(k =1,2,...) then (2.8) follows from Lemma 2.1 and Lemma 2.3. If
p>2, p 2k, then (2.8) follows from the case of even numbers by in-
terpolation.
Fix 4, B in 8, with |B|l, <|4|, =1. Put &k = [p/2] and p, = 2k,
p, = 2k-+2. Define the strip 2 and the function r: @->(p,, p,> as in

. QS’_?,(T) g Op le (T)

icm°
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Proposition 1.2. Next define p: 2—C by
pE) =(1—2)py +2pr")"

and observe that (r(2))™" = Re (p(2))™"
Let (@), (@)y (b)), (b)) be the orthonormal systems in H such that

’ r
‘A-a’m = gy Gy Bb,, = Buby  for m =1, 2,...

where a, = 8,(4) and §,, = $,(B) (m =1,2,...).
Define the functions ¢q, g0 @K (H) by
Po(R) = aﬁ{,z)(z) 2H) "’:n ’
P1(2)by, = BPO2MPO B PEY, (m =1,2,...).

It is obvious that g, and ¢, are w-continuous in 2 and w-analytic in the
interior of 2. It is easy to check that forall —oo <y < +occandu =0,1

H‘Pn(/‘ +iy)“p,‘ = 21/”'“;
s (i), = 2*2#I1Bl,-
Since we already cstablish (2.8) for all even integers, in particular
for p, and p;, we have
27 oo+ 1Y) + @1 (a+ )5+ 27 Nl po (4 £ 29) — oa (e + )5

< M = (24, Bl

"
for all —co <y < 400 and p =90,1.
Hence by Proposition 1.2 we obtain for 0 = p,(p—po)/p(P1—20)

(4 + BB+ 14 — B2 = (27 g () + @a ()5 +27la(0) — 1 (O)F) ™
1
= ([ Ip0(0) w0 (2) -+ ()05 15 1) ™
1]
< MY OM (2410, BI)
wheve A, == max (I, , K, ). Thus
4 + Bll; + 14 — BIf < 24 X, |1 BI;

i.e. the inequality (2.8).

The estimations for 1 < p < 2 follow from the case of p = 2 by the
dnality beetwen the moduli of convexity and smoothness due to Lin-
denstrauss [12].
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§ 3. The Khinchin inequality for 8, (1 <{ p < o0). We say that a Banach
space X has a subquadratic Rademacher average (ef. [2] Remark 1 after
Corollary 4.9), if there exists a constant ¢ such that for all finite sequences
(z;) in X

1 Sl o "
(31) JI 3w < o 3 jae)”
0 j=1 Je=1
and X has a superquadratic Rademacher average if there exists o constant
¢ such that for all finite sequences (z;) in X

1 o [
. ’ 112
(3.2) J1X & a=co (3 i)™
(=t =1
Remark. It follows from the Kahane theorem [8] that X has

a subquadratic (vesp. superquadratic) Rademacher average if for every
1< g < oo there exists a constant ¢, (resp. O;) such that for all finite
sequences (w;) in X

(3.3) JHZ“‘W o)< (S’H zl)"”
(resp. ) )
(3.4) (IS o S,

THEOREM 3.1. (i )Ifl <p
average. )
(i) If p =2
Proof. (i) Let 1<p <
in §,. We

< 2 then S, has a superquadratic Rademacher

then 8, has o subquadratic Rademacher average.
2. Let A,, 4,,
shall prove that

euy Ay_q be arbitrary operators

1 N-— \7—— 1

([1.3 awrwtolfal”> @ (3

N =)

(3.5) 4al5)"

First let us observe that it is enough to prove that

Py-t Nl
(3.6) ([ 3 dwrlia)™ = 0/ (3 14.08)"
0 m=0 m=0

for arbitrary self-adjoint operators 4,, 4,

oy Ayoy I 8.
Indeed, if 4,, 4,,

ovy Ax_; are not self-adjoint then put

Ay, =TRed, and A, =TImd, form=0,...,N~L.

It follows from (3.6) and from the fact that |ReC(|, < |C||, and
Mm L, < 0], for every operator ¢ in S, that

Moduli of smoothness and conveaity and Rademacher averages of trave classes 8, 173

N--1
- 1/2
@Ve) ™ N 1.2)
M=
. mﬁl 1/2
<@V (Y (i, + 1450,)2)
m=(
. ¥l
< (m)-l(; 408" + (2 Ve ( nAmu,,)
IIL +() L ()
w1 1
e 1 P " 1
<2 _J Am'm!.m)' +2 H 3 fu) "
u m u ! M=l
- I
(f m. m d[)JJ)

0 e ()
and we obtain (3.5).
By the homogenity of (3.6) we can assume without loss of generality
N-1
that )2( 14,05 = 1.
M=l
Since the dual of 8, can be identified with §,. where p* = p/(p
(with L(H) for p = 1)(ef. [4]), there exist operators By, ..., By_; in AS o+
with

N---jl
(3.7) D Bl =1 .
)
and
N-~1 N1
(3'8) 2 m 7”, _ (Z ”AﬂlH_p) == ‘ .
M=) M==0

Moreover, since 4A,, ..
also to be selﬁ-adjoint

-y Ay_; ave self-adjoint, we can choose By, ..., By_;

Put
={1<ng2V—1: 0= 2™ 40" 4o . 2",
ky, is an odd namber}.
For every 0=t=C1 let us consider the operator @(t) in L(H)
defined by
(3.9) D(t) = 3 By By, ... B g, (1)

neA”

. i, . m,
where n == 2"142M 4 42 ™" with 0<
binary expansion of n.

Now our assertion is an easy consequence of the following inequality

([qu \]w) oxp[‘)*NZan”q] for 2 < g<

M=l

Sy <<y, NV ~1 s the

(3.10)
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Indeed, let us observe that

1
[tr[@ () 4,7, (H)]dE = tr B, 4,, for m =0,..., N—1.
0

Thus, by (3.8),

(3.11) l fl 171‘[ o) (N ,,L(z))](u, = ' 2 tr B,,LA,,III =1

On the other hand by (3.10) and (3.7) we have

f e[ ( < f I 0| ZA,,L )]t

M=

<( f o oy )™ f | ZA,u,n
]/6 f“z A"Ml 1)1

Combining the above inequahty with (3.11) we get

(f”Z‘Am P ( H d,)lm

’l‘hus we have only to prove (3.10).

Let us consider arbitrary self-adjoint operators C,, ..., Oy_, in K (H)
and for the number ne” with # =2™4-9"4 ... +-2"% denote
by D, the composition D, =Cy, - .O,n] The inequality (3.10)
follows by interpolation from the following two inequalities

A

1
- *4 m7 m )]

) p

b4 d t) 1n

(3.12) (j|| 2D 0 1) < exp(z Ngnomn)
e, m=0
(3.13) o | S Duu e, exp(z—g Cls)-

Indeed, put g, = 2, ¢, = oo. Let us define the strip @ as in Prop-
osition 1.2, the function r: @-»{2, co> by () = [Re 2(1—2)]"' and
the funchon q: 2-C by q(z) = [2(1L—#)]"". Let us observe that

[r(2)I" = Re [g(e)]".

For every m =0,..., N—1 let (bs)sen and (), be the ortho-

normal systems in H such that

B,.b,,

’
mj ﬁmj bmj

for j =1,2,...
where f,,; = 8;(B,,). (Such systems exist — cf. [4].)

icm°®
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Let us detine the functions ¢,: 9—K(H) (0 <n<2Y—1) by
w’ﬂ;(z) = B?Pbl(z)BHlfl (z) b B"bk (z)
for ne A (n = 2" 2" 4 42, with 0 < my <.
mn(z) =0 for n¢ A
where B,,(2) is a operator defined by
“Bm (S’) bm'i = ﬁz{;l(;) \|~Bm|l«qu‘z) b;n]'
for m =0,...,N=1, j =1,2,...
It is clem that each function ¢, (n =0, 2% —1) I8 w-continuous
in @ and w-analytic in the interior of 2. Moxeuvel form =0,...,N—1

”Bm Wlle = Hanfu
”Bm l+7"/ ”m “Bqu for — oo <y < oo
It follows from (3.12), (3.13) and Proposition 1.2 that for 6

we have
(f | ) By

( f o (Dlfgar) " =
0 ns 4

= (“f H ,,Z,':) (p,,(@)?()“('l))”:jd‘i)lm’\( exp[

Now, to complete the proof in the case (i), we shall show (3.12) and
(3.13).

To prove (3.12) let us observe that from the orthogonality of Walsh
system we obtain

fH anwn “ dt = jm«( VJ)%

< My, <N —1)

=(q—2)¢""

lll] )) ( )

}fl di)””

2 1Bul)

M

))( ZD““’" (t)) dat

NEA

= E t’l'(])n-r)n)-

ned”

Then, by Lemma 1.1 and the definition of D, we have

) oo
1 ; LN\ .» 3
{}_,Lm'(]):*“n) % ‘_}J_}J ‘S'/((‘ym]) Taes 8y ((’vm,‘.”)
net ek fo L
(2]
>1 (Z v‘j "”L ) ( \ hj (’m, ) Z H(/wl“i! ' “0‘111./%”3'
new 1 a1

From the definition of the set 4 we ;3(\1,
.\'

N —
DO 1o < < e[ nanM

ned” Ms=() mmo

Combining the three inequalities above we obtain (3.12).
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To prove (3.13A) let us observe that for every 0 <<t<<1
(1) =ImP(s)
where
V() = (I4+i0ro(t) ... (I+10y_yry_y(t)) for 0<i<1
(I denote the identity operator).
Hence
120l < 1P(0)le  for 0t
and
N— N N
12()]. < [] I +i0rn Wl = [ | [ (L IO < exp[27 T 16,1L]-
m==0 M= ne==0

Thus (3.13) holds and this completes the proof of (i).
(i) Let p =2k (k=1,2,...). Let Ay, 4, ...,
operators in &,. Let us observe that for 0 <t <1
N-1 N-1

(2 4 ) 3 dnrmce)]

Mm=0 m=

Ay, be arbitrary

= Ym0

where J(,) is extended over all the operators

N—-1

=0 IY (P (t

me=

)@ where ¢

25
=[]e.
Pl
satisfying the condition
(+) 0, =4, for some 0<m<N—1 and for odd »', C, = 4, for

some 0 <m<N—1 and for even #'s. b,,(C) denote the number
of the indices » such that C, equals either 47, or 4,,.

Clearly, b,,(C) > 0 and 2’ b, (0) = 2.
It follows from the ~a,ddltlw‘oy of the trace that
1 N-1 N—
‘}t’l [(’g -Am m )(”L:Am?m( JJ di_‘jt’r (,,)C( )dt
2k 1 N1
- Swn([] o) [Tromoa
Since "
fl ﬁl(rm(i)}bmw) q = L if all b,(0) axe even,
: 0 m=0 0 in the other case,
we have
1 N--1 N-1
(3.14) j [(ZA t))(ZAmwm(t))]kdt = Yuntr 0
M=) M=)
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%%
where 3, ) is extended over all the operators € = [] €, satistying (+)
and the following condition =1

{++) b () ave even for m =0, ..., N—1.

Clearly, for cvery operator € we have

[tx O =2 Zsj ).

Using Lemma 1.1 and the fact that s-numbers of the operator and its
adjoint are equal, we get

2k

2anltr Ol < 2:(+—|) \ 61(n(’v)
S s 2k N1
2kt 2
g 55 ( A )-ﬂm
’5” 2t @y L]
whurt;v 2 is extended over all' sequences (f,,) of non-negative integers
a
with ' B, = k.
M=)
We have ([20), [19])
(27! k!
. _Zuz]c
@)1 OBy~ Bl Byl
where
%) LM
i = [ iy
28!
Thug

N1

7 [] (8 (Ag)) P

K}N l Tl

wmﬂzn\w,,”u

Jeal MO

Fltr O] < M3 S‘z

Ience, by (3.14)

1 N1

( ][ X anr ))(N):’IA . (r))]”df)w"
. mm Ly mliam B
0 M0 =0

N~

< (D H[trC”llzk/ M%[S( 161 _‘1,,L))k]]/2k'

=1 =0
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By the triwngle inequality in Zk we obtain

[Z (Z s < 3 (St = i
=1 m= m=0 J=1 m=0
and consequently
1 (3 auratofa™
n= OA 1 . N:,l /h N1 e
- ( Jm» [(72 Asra () (_}J Ay )] dt) < My 2 A1)
= = m=

This prove that if p = 2k (k = 1,2, ..
Rademacher average.

I p>2 p #2k(k=1,2,..), then the desired result follows from
the case of even numbers by interpolation. To this end fix 44, ..., 45,

.) then &8, has a subquadratic

in §,. Put k = [%] and p, = 2k, p, = 2k+2. Define the strip @ and
the funetion 7: @—<(p,, p;> as in Proposition 1.2. Next define a funetion
p: 9—C by
?(2) = [(1—2)p;" +api'T?
and observe that [7(2)]™! = Re[p ()]
For every m =0, ..., N—1 let (a,,;)2, and (@), be the ortho-
normal systems in H sueh that

A Oy = 0, a’

(m =0,

M

where « G N — lj———lZ )

mj = 8 m)

‘Deine the functions g,: .@—>K(H) (n =0, 2¥ —1) by
(pzm(z) 'mj T amm(Z) “AmHl p/pz)a
for m =0,...,N-1,j=1,2,...
gale) =0 form 2"  (m=0,..,N~—1).

The funetions @, (n =0, ..., 2¥—1) are w-continuous in 2 and w- analytic
in the interior of 9. It iy ea.xy to check that

“(Pgm(ﬂ'}"”/)“pﬂ = ldplly (m =0,..., N-1)

for —oco <y <too and u =0, 1.
It follows from (3.15) that
19V

(f' Moo, (u+1y)w, (¢ )] p"dt)m}“ U“__J Pon (A1) 1 (1 )

n=0 0 m=0
N—

M, (3 uAmuz,)”'.

m=0

Dy dt\)llﬁ/t
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Thus, from Proposition 1.2, we have for 0 = p,(p—p0)/p(P1~ Po)

1 Ny
(IHZAW m ' »(6) dt)l/r(l

1
S =(f] "
M= 0

=0

a0}, (1)

N-1

< g, ( 3 14,05)"

Bg TPy

Ne==()

This completes the proof of (ii).

Reeall that a Banach space X is said to be predual of & Banach space
Y, if ¥ is dual of X. It is well known that if (*-algebra ¥ has a predual
X, then ¥ has an identity (for the definition of a 0*-algebra and its prop-
erties see [181). Lot us obgerve that 8, is a predual of L(H) which is
(*-algebra,.

PROPOSITION 3.2. Let X be a Bamach space predudl of o C*-algebra Y.
Then X has o superquadratic Rademacher average.

Proof. This proof is analogous to the proof of Theorem 3.1 in the
case (i).

Let Ay, .. Av,l bo arbitrary elements in X. Without loss of generality
we can assume that Z [[4,lI* = 1. As in the Theorem 3.1 (i) choose the
M= 0
funetionals By, ..., By_, in Y such that
N--1
(3.16) 2, Byl =1,
m=0
N1 1
(3.17) Z Bm m) = (Z ”Am” ) T=
M=) Ns=

Denote B, = RoB,,, By = ImB, and for every 0<t<1 define
functionals @' (t), @ (¢) in ¥ by substituting in the deﬁnlmon (3 9) B,, by
By, and B, respectively. Define @(t) = @' () +4®'" (¢) and observe that

(3.18) sup (@ (1)) < 2Ve.
Osbesl
Indeed, it follows from the definition of @', @' and @ that
Ne-1
B << 1" ()] 07 (O] = exp (270 3 I1BulF) + exp (27! z HB,,LH)
7IL-’°<0 N
Since for every B in C%-algebra Y we have
< 1B  and |ImB| < |B|,
then by (3.16) we obtain
N1 N:jl
exp(2? Z 1BLE) +oxp (2t 3T I < 2Ve.
Py e ()

Thus (3.18).
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Let us observe that
1.
[0 (4yrat)dt =B, (4,) form=0,..,N—1
0

and by (3.17) we get

(3.19) | f',ff)(t) ( ZV:IA?,M(»;)) & =| ELB,H(A,“)‘ =1.
0 m=0 m=0

Ag in the proof of Theorem 3.1 (i) from (3.18) and (3.19) follows that

j|| NZ—:IAme ()t > 27/

m=0
This completes the proof.
Remark 1. Let us observe that the constant M, is the best constant
in (3.15). This follows from the result of Stechkin [197 which asserts that
MMy, i3 the best constant in the case of “real? (scalar) Khinchin inequality

for even numbers. The fact that M, < 14/:_3 in the complex case was observed
by Pietseh [17].

Remark 2. Our proof of Proposition 8.2 in the case of real sealars
was known before to the specialists in harmonic analysis: Kahane, Katznel-
son, and Drury. To our best knowledge it does not appear in the literature.
It is interesting that in the real case for p =1 it gives better constant,
namely I/E, than the “classical” proof which gives V3. In the complex
case this proof gives the constant 2Ve while Pietsch’s proof [17] gives V3.

§ 4. Applications. In the sequel by II,(X, Y) we denote the space
of p-absolutely summing operators from X into ¥ (see [137).

THEOREM 4.1. For every 1L <p < 2

L(Go, Sp) == HB(G(); Sp)

Proof. This follows from Theorem 3.1 (i) and Corollary 4.4 of [21].
TuEorREM 4.2.

Lty, 81) = [y(ey, 8y).
More generally, if X is a predual of o C*-algebra then
L(Gm X) = ]Iz(coa X)

Proof. This theorem is an immediate consequence of the following
general fact due to B. Maurey:

If X has a superquadratic Rademacher average, then

Li(ey, X) = IT,(c,, X).
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The prool of this fact was communicated to the author by 8. Kwa-
pieft. For the sake of completness we sketeh it here.

Reeall that an operator T': XY is said to be factored through
a Banaeh space Z il there are operators a: X->Z and f: Z—Y such that
T == fia. ‘
The proof bases on. the following remarks, (Here Z denotes 2 Banaeh
space.) ' '

(1) Leg, 1) == Hy(ey, B) i and only i every operator T: ¢y~=I
can he faetored through a 1Llbert space.

(i) Lot 1«2 p 20 TE theve s an operator §: F*—I, which cannot
be factored through 0, then for every natural number « there ave
vy i Bowith |yl = ... = |lz,]| = L such that

Wiy day oo

13 ]
S
L |

k1
7 2(‘}?[0[["*)”"* for all sequences (¢;).

Peil )

(ifi) Liet 4 < p < 2. IE B hay a superquadratic Rademacher average
then every operator §: B*-»1, ean bo factored through [

(iv) It B has o superquadratic Rademacher average and the Banach
space I hag o subquadratie Rademacher average then every operator
N: B> 1 can be factored through a Hilbert space.

For the proof of (i) see [2], (1) follows from the fundamental theorem
of B, Maurey [15]. (iii) follows from (ii) and the observation that if ¥
has o superquadratic Rademacher average then for every unconditionally
convergent sequence (i) in B we have a2 < oo. (iv) is a generalization
of a vesult of 8. Kwapien [10], Proposition 1.3 (ef. also [11]). The proof
is analogous to that of [10], Proposition 3.1. :

JOROLLARY 4.3. 1° Let 1< p < 2. If o sequence (4,) in S, is uncon-

o0
o , . N
ditionally convergent then _\_: ld,ll; < 0.
A=l

8% Let 2 < p < ool If m sequence (A,) i 8y, 18 unconditionally convergent
[a¥)
F 1 ) .
then X A Ih 2 oo
ook .
Proof, 1* This follows imumediately from Theorem 3.1 (1), 2° This
follows from Theorom 2.1 and the result of Kadee [7].
COROTLARY A0, For every 2 < p < oo and every & >0
Li(y, Sp) = /:[za»ka(("m S]J)'
Moreover, there ewists weli{ey, 8,) such that w¢ IT,(¢o, S,).
. B *
Proof, The first assertion follows from Theorem 4.3.2° and Maurey’s

vesults in [18]. Tho second assertion follows from the fact that 8, contains
w gubspace isometric with 1, (see also [9]).
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Exponential. integrability of certain singular
integral transforms

by
RICHARD ROCHBERG* (8t. Louis, Mo.)

Abstract. It is shown that singular integral operators with orl.d ]{01:11@]8 map
bounded functions with support of finite measure to locally exponentially mtcgra..bla
functions. In particular it is shown that the periodie Riesz transform of a function
of supremum norm one is exponentially integrable Of,’ order a for e < m/2 and m/2
is the best possible congtant: This extends and gives a new proof of the known result
for the periodic IHilbert transforro. r : )

The following well-known result concerning exponential integmbﬂ.ity
of conjugate harmonic functions can be proved relatively ecasily using
methods from eomplex function theory (e.g. [8], p. 254).

. i,

TrroreM. Let f be a bounded measurable function on {6; —n < O <x}.

Let Hf be the periodic Hilbert transform of f. If [Iflle < 1 then

wl A

2m
f expa|Hf(°)|d0 < 0o for 0<<ax
0

Examples show that the constant /2 in this result is the best possible.
Tn this paper we will ghow that a result analogous :0 the'abov‘e
theorem holds for linear transformations deﬁn'ed on L"’" (™) by smgula}'
intogral operators with odd kernels. The proof is a.,strmghtforw.ard af,‘pph-
cation of results of O'Neil and Weiss [1] on I'Gamrang‘mnents of functions.
It will follow that the above theorem is true, with .the cqnsta.nt ™ /2{
for periodic Tiesz transforms and that the qogstzmt_ ig ag&,l'n 11J11g> bcsz
possible. (In particular, this giw)res a new, and strietly real variable, proo
of the theorem stated above. - ,
o 1}'Llihci ]al,(u(thoi' thanks Professors R, R. Coifman and G. Weiss for valuable
iscussions and suggestions. .
dlﬂﬂ}?ilflzl i?ﬂ;ﬂilfi%le function f defined on the non-atomic measure
space (I, p), define f*, the non-increasing rearrangement of fy to be the

*This rosoarch wag suﬁpbrted in pa.l‘{i by Niational Seienco Foundqtion Qrm‘nt
GP-34628.
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