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Received December 22, 1972 (624) Abstract. This paper presents the fundamentals of the basis theory for bornological

spaces. The attention is restricted to complete and regular spaces with a bornology
which is either topological or of countable type. Spaces of the latter type are called
T (LB)-spaces. Wo begin by introducing the notions of separability and local separability
in a bornological space and by showing that they agree for (LB)-spaces, which enables
us to give representation theorems for such spaces which are separable. Next, bases
“ and Schauder bases are introduced and a basié lemma which states that a basis of
an (LB)-space is also a ‘local’ basis is proved. Among the many consequences of this
fundamental lemma the most important is that every basis of an (LB)-space is
a Schauder basis. 'We then investigate the relationship botween bornological and
topological Schauder bases and study the properties of a Schauder basis in terms
of the dual sequence of bounded linear functionals. Finally, the connection between
Schauder bases and reflexivity is given and various types of Schauder bages are
analysed. i :

Introduction. The purpose of this paper is to present the fundamentals
of the basis theory for bornological spaces. Attempts have only recently
been made to extend to locally convex spaces the classical basis theory
for Banach spaces. Here we are concerned with developing a similar
theory for regular bornological spaces, the assumption of regularity being
imposed by the central role played by duality. We deal essentially with
Schauder bases and the fact that bornological spaces with such bases
abound in analysis is perhaps motivation enough for a systematic study.
Towever, we make no claim as to the completeness of our discussion.

All nmotions are used in the bornological sense, unless otherwise
gpecitiod. For the notions that are not defined here, we refer to [4]. By
b.e.s. (Le.s.) we mean & hornological space (locally convex space) and
by (LB)-space a complete b.c.s. with a countable base. We are mainly
conecrned, with (IB)-spaces but most of the results obtained can easily
be generalized to b.c.s. for which the homomorphism or closed graph
theorems hold. Tf B is a vegular b.c.s. with dual B, the familiar symbols
o and 7 are used for the weak and Mackey topologies with respect to
the duality ¢E, E*>, unless otherwise stated, and we write then B, and
B, with obvious meaning. Finally, following Kothe, we denote by o the
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product of countably many copies of the scalar field under the product
bornology.

The paper is organized as follows. Section 1 deals with separability
conditions in bornological spaces, from which representation theorems
for (LB)-spaces are deduced in Section 2. In Section 3 the notions of
basis and Schauder basis are introduced and in Section 4 the relationship
between bopnological and topological Schauder bases is investigated.
Section 5 studies the properties of a Schauder basis in terms of the dual
sequence of bounded linear functionals, and Section 6 the connection.
between Schauder bases and reflexivity. Various types of Schauder
bases are amalysed in Section 7.

1. Separability conditions in bornological spaces. A subset of a b.c.s.
T is said to be total in B if its linear span is dense. F is called separable
if it has a countable total subset.

Let B be the bornology of E and let D be a base for B consisting of
bounded disks. The family {Ez: BeD} of normed spaces will be called
a representation of B. Thus we have a biunivocal correspondence between
the class of all representations of E and the class of bases for B consisting
of bounded disks. We then say that E is locally seporable if it admits
a representation consisting of separable normed spaces. Subspaces and
quotient spaces of loeally separable spaces are again locally separable,
and so for direct sums and inductive limits.

Clearly, every locally separable b.c.§. with a countable base is separable,
but the converse is an open question. However we have

PrOPOSITION 1. An (LB)-space (E,B) is separable if and only if it
48 locally separable.

Proof. In order to prove the necessity, let (2,) be a total subset of
(B, B) and let {I,} be a representation of (H, B) consisting of Banach
spaces such that (z,)NF, 7 0. For each & let B, be the closure in Fy of
the subspace spanned by the set (x,: @, eF,). Bach B is obviously a Banach
space and hence {,} is a representation for a bornology B’ = B under
which B is an (LB)-space. Thus B8 = B by the isomorphism theorem.

Since we shall deal only with complete b.c.s., a representation will
always be assumed to consist of Banach spaces.

2. Representation theorems for (LB)-spaces. If G iy a Banach space,
we denote by @, ¢ the direct sum of countably many copies of & and
by C(I) the Banach space of continuous funections on I = [0,1].

TEEOREM 1. Every separable (LB)-space is isomorphic fo:
(i) @ quotient space of ®,I, )
(ii) a closed subspace of a quotient of &@,1%,

(i) & closed subspace of a quotient of @,C(I).

icm
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Proof. Let H be a separable (LB)-space and let {H,} be a represen-
tation of B consisting of separable Banach spaces (Proposition 1). F is
a quotient of @,H,; let ¢: @, E,~E.

(i) For each n, B, is separable and hence there is a homomorphism
u, which takes I* onto Z,. The set of mappings (u,) defines a linear map
u of @,1* onto @,F, which is again a homomorphism. Thus the com-
position map gow is a homomorphism of @, onto B, whence F is
isomotrphic to (@,1*)/H, where H = (pou)~*(0).

(ii) For each » there is & norm isomorphism u, of B, into I*; it follows
from this the existence of an isomorphism u of @,F, onto a closed sub-
space of @,1®. The subspace H = u(p~'(0)) is closed in @,1”. Let y be the
canonical map @,1°—>(®,I°)/H. Then the equation

VoY = Pou

defines a linear map v of B onto a closed subspace of (@,1°)/H. It follows
by the isomorphism theorem that v is an isomorphism of b.e.s. structures.

(iii) Embed F, into C(I) and apply the proof given for (ii).

If E is not separable, Theorem 1 holds with @,I*, ®,I° and @,0(I)
replaced respectively by @,(4,), ©,17(4,) and &,C(XK,), where for
each n, 4, is a set with a suitable cardinal and K, a compact space.

. Obsetve that (ii) and (iii) of Theorem 1 cannot be improved, in the
sense that, in general, there is no bounded embedding of a locally separable
(LB)-space B into either space @,1” or @,0(I), in view of the fact that
each of the latter spaces has a separating dual, while the dual of B may
reduce to {0}.

We shall now give a more explicit version of Theorem 1 (ii) by showing
that for a regular, separable (LB)-space the quotient of @, can always
be chosen to be a suitable co-echelon space. We recall the definition of
a (bornological) co-echelon space.

Let (a) be a double sequence such that 0 < af < a7** for all %, n and
let B, be the space of all sequences () for which

[yl
SI}}) a;: < oo.
With norm-
]wlcl

aj,

(@il = sup
k

B, is a Banach space. Let (™ denote the sequence (a%) for fixed n; then

the sequences af are called steps. The co-echelon space (of order 1) col-

responding to the given system of steps is (bornologically defined to be)

the b.c.s. B = lim®,. It is known that Fis a regular (LB)-space. Mo'-rf.-
—
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over, since each X, is norm isomorphic to I, ¥ is isomorphic to & quotient
space of @,1°. We have:

THEOREM 2. Hvery regular, separable (LB)-space is tsomorphic ito
a closed subspace of a co-echelon space.

Proof. Let E be a regular, separable (LB)-space and let {#,} be
a 1eplesenfa,hon of B by separable Banach spaces. For cach n, K is
a o(B,, B,)-scparable Banach space. Denote by 8, the unit sphere of
E,, by B, the unit ball of B, and by p, the gauge of BS in ¥*. p,, is a gemi-
norm on E* with p,(f) = 1 for feS,nH*. Since E is regular, B, nE* is
o(B,, E,)-dense in H, for all » by [2], Théoréme 1. From this m(l from
the o(#,, B,)-separability of Z, it follows that we ean induetively find
disjoint sets N, of integers and elements (f,: keN,) < S,NE* satisfying
the following conditions

(a) {N,} is a covering for the integers,

(b) the set

5

Ul
U Ul.’pu fch

. i=1lkeN;
is o(H,, B,)-dense in 8.

We now seb ay = p,(f) for all k, thus obtaining a double sequence
as in the definition of a co-echelon space, Let us form the co-echelon
space F corresponding to (a}) and, for each zeW, let the sequence (a5)
be defined by #, = fy(2). If zeE,, condition (b) above yields

Y I— @)l _ o @] 1oy,
oty =sup- = smp- B < wop L e v} — o

so that the mapping z—>(z,) is an isomorphism of ¥ onto a subspace of F.
Since this subspace is obviously complete, it is also closed.

3. Bornological spaces with a basis. A basis of 2 b.c.5. B i a sequence
{,) such that every z<F has a unique expansion

(1) . x_Vala,

n=1

the series being convergent for the bormology of X.

n?

The dual sequence associated with a basis (z,) is the sequence (f,) in

* defined by
fal@y) =1 and  fo(z,) =0 for w k.
(fa)eB*, then (a,) is called a Schauder basis. The normed space

in ([11], Bxample 16.1, p. 160) has a basis which is not a Schauder basis.

A Schauder basic sequence is a sequence («,) which is u Schauder basis
for its closed linear span.

14
<
=
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If (,) is a Schauder basis, a Schauder block basic sequence is a sequence
{(9) of the form »

g,
LY
Y = ‘}_, gy
gy 41
where (my,) i a strietly increasing sequence of positive integers and i, ==0.
It i casily seen that () is actually a basie sequence. The following lemma
is of fundamental importance for the theory.
Luvma 1. Let B be an (LB)-space with & basis (w,). There is o represen-
tation {1} of B such that (v,) )y, is o basis in 1y, for all k.
1’1‘0 of. Let f]f’kj be a ‘r‘(*pl'v%n1:4wi0.n of I such that (w,)NI, 7 @.

N ) \ . F
4, = {(an)eu): a, == 0 for n¢N, and Z a,, &, converges in lﬂ,a}.
neNp

By [11], Proposition 3.1, p. 18, Gy is a Banach space under the norm

) == sup H v il ”
neNy,
t'“n
where the second norm is in F,. Since (x,) is a basis for #, the clements
(¢': jeNy) defined by e = 1 and ¢} = 0 for & = j form a basis for Gy.
Now N, el for all xel, imply

w”k-[ 1
an, ”Ic( 1" ” Oy “Ic

for all (a,)eGy and hence cach embedding Gh—+Gp,; is bounded. Let
G = hm(}k Define a linear map %: G—F by u(a,) = Xanrrn Because

(#,) is & basis for B, w iy biunivoeal and onto. Morom’or w4 is bounded,
since
. i
M HZ O it i, sup ” Z o

nelNy ieN
1=in
for all (a,) el and for all k. Thus « iy an isomorphism. But then denoting
by B, the Banach space u((y) under the norm of G, we obtain the desired
representadion, since w(e") = a, for all m.
TaroreM 3. Let B be an (LB)-space. Hvery basis of K is o Schauder
basis.
Proof. Let (x,) be a basis of ¥; by Lemma 1 F has a representation
{8} such that (,)nE, is o basis of Hy for all & Let || [, 1)(4 the norh
of B,. Define a second norm on H, by

= Nl

w

2) Wl = sup || 3 femay|,  (@eBy),
) n isl
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where (f,) = B* is the dual sequence of (x,) and f;(#) = 0 if @, ¢ Hy. By is
complete for the norm (2) and hence, since |zl < |{|2|l; for all @ in By,
(2) is an equivalent norm on F,. It follows that there exists a sequence
(¢x) of positive numbers such that

Mol < cullele (@)

Now for every n there exists &, such that ;B for 1<i<n. For
all &>k, we have

Fa@) i = | ﬁ,‘ﬂ-(w)m— S @)
=1 =1

L, < 21l < 2z |l

for all ze#,, and hence f,eH*.

Theorem 3 is a generalization of Banach’s well-known Tresult ([1],
p. 111). The proof given, which generalizes an idea of Banach [1], shows,
also through the proof of Lemma 1, the heavy dependence of the con-
clusion upon the isomorphism theorem (or closed graph theorem), in line
with Mibyagin’s observation ([8], p. 92).

COROLLARY 1. Every (LB)-space with a basis is regular.

It follows that every separable (LB)-space with a trivial dual has
no basis. (This statement,-Theorem 3 and Corollary 1 are the analogues
of similar statements valid for complete, metrizable, topological linear
spaces.)

Let us now introduce some notations and definitions. If #, F are
b.c.s. (l.e.s.), we denote by L(E,F) (£ (E, F)) the space of all bounded
(continuous) linear maps from E to F. For L(E, B) (¥ (¥, E)) we simply
write L(E)(Z ().

A subset H of L(E, F) is said to be equibounded if it is bounded for
. the natural bornology ([3], Definition 1, p. 239) of L(E, F), i.e. if the set

H(B) = U u(B)
ueH
is bounded in F for every bounded subset B of B. H is simply bounded
if H(z) is bounded in F for every zeH.
If now (x,) is & Schauder hasis of the b.c.s. B with dual sequence
(fa)y leb

n
sult) = D fu@)@,  (we)
& k=1
be the nth-partial sum operator from F to H. Then (s,) < L(E) and (z,)
is called an equi-Schauder basis if (s,) is an equibounded sequence in L (H).
It is 'well known that in-a Banach space every Schauder basis is an
equi-Schauder bagis. This generalizes to complete b.c.s. as follows.
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TeEoREM 4. If B is an (LB)-space or a complete, topological b.c.s.,
shen every Schauder basis of B is an equi-Schauder basis.

Proof. The sequence of linear operators (s,) converges pointwise
to the identity and hence is simply bounded. If E is an (LB)-space or
a complete, topological b.c.s., then I, is barreled, whence (s,) is an
equicontinuous subset of & (I.). But then (s,) is equibounded in L(B)
by [3], Théoréme 2, p. 241.

4. Bornological and topological bases. From now we shall simply
~write “basis? to mean a Schaunder basis.

The question arises as to the relationship between bornological and
‘topological bages, that is, under what conditions a bornological (topological)
basis for a b.c.s. B (Le.s. B,) is also a topological (bornological) basis for
the Le.s. B, (b.s.c. B) astociated with B (H,). In one direction there is
an eagy result:

PROPOSITION 2. Let B be a regular b.c.s. with a basis (w,). Then ()
is also a basis for B, (and E,).

Proof. Clearly, the linear span of (a,) is dense in B, (B,) and every
2l has an expansion of the form (1), the geries being convergent in
B(B,). Tt remains to show that this expansion is unique. Henece, suppose
that

n

im > e, =0 i B(T,).

W00 Jpmal
Since (@,) is & Schauder basis for I, the dual sequence (f,) belongs to
B* and hence each. f, is a v-confinuous (o-continuous) linear functional
on II. For each n seb

n
Sn = 2 %y

fornl

and let m be tixed. We have, for nzm,
Oy = Fu(8n) = 1M f,(80) =0,
N-r00

and therefore a, == 0 for all a.

The converse of Proposition 2 is false, since there are non-geparable,
regular b.c.s. which are z-separable, o.g. the space ¥ in [10], Exercise
20, p. 195, under its equicontinuous bornology.

TamoreM 5. Let B be o complete, topological b.o.s. and let () be
a basis for B,. If (w,) is total in B, then it is also a Dasis for H.

Proof. Since (s,{»)) converges to 'in H,, the sequence (s,) is simply
bounded, hence equicontinuous, for I, is barreled. But then (s,,.) is
equibounded. Now the linear span of (w,) is dense in X and hence, given
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weB, there is a completant, bounded disk B and a sequence (y;) of linear
combinations of (z,) which converges to # in the Banach space Fg. Since
(s,) is equibounded, there is a completant, bounded disk € such that
(s,) is a uniformly bounded subset of L(Hg, Eg). It follows, with self-
explanatory notation, that

[
lolls

Let D be o completant, bounded disk in £ containing B and . Givon

l8allpe = sup == oo for all «.
zeB

&> 0, there exists &k such that w—ylly < e(L4-M)"" Let g, = Z'am”
then for every n=m we have , =1
m
Sy yk = 2'”] zf] 2 1y == Y
] =i

Therefore, for all n = m,

[l — 8, (B)lip < e — Yallp + Isn () — 50 (Yr)llp
” yk”B—q' ”Sn(m) ""371(/!//3)”0 < (] +1u) H‘I""'ylc”B < &y R

which shows that the sequence (s,()) is convergent to # in B.
The proof of the uniqueness of the expansion

ézéh@m

iy immediate.

In particular, it follows from ‘the above theorem that every topological
basis of a strict inductive limit F of a sequence of Fréchet l.c.s. is also
a bornological basgis for the topological bornology of E.

CoRrOLLARY 2. Let B be a complete, topological b.c.s. and let (x,) be
a basis of H,. If (x,) is total in K, then it i8 also a basis for K.

Proof. Sinee E, is barreled, the assertion follows from Theorem 5
and the well-known fact that in a barreled space a wealk basis iy also
a basis for the Mackey topology [7].

5. Duality properties. A Dbiorthogonal system is a sequence (@, f,)
B x B* such that f,(z,) = 1 and fi(z,) = 0 for &k # n.

PROPOSITION 3. Let B be a regular b.c.s. and let (x,,f,) be a biortho-
gonal system such that (@,) is total in H. For (z,) to be a basis for H it is
necessary (amd also sufficient when B is complete and topological) that (f,)
be o weak basis for B*.

Proof. The necessity is immediate. For the sutficiency, observe that
(8n(w)) converges weakly to 2 for every « in ¥, and hence () is a weak
basis of E. The hypothesis and Corollary 2 then imply the assertion.
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In order to diseuss the duality properties when E™ is given its natural
topology, we need the following lemma which the reader can easily establish
by & routine argument.

Lmvma 2. Let B, I' be reqular b.c.s. and, for a subset H of L(E, F),
denote by H' the set of adjoint maps. Then:

(1) welL(H, F) implies w <Z(F*, B*),

(i) ¢f H is equibownded in L(IJ, B), then H' is equicontinuous in
LB, B,

Moreover, if T is polar the converses of both these assertions are true.

From now on we assume, unless otherwise stated, that K is either
an (LB)-space or a complete, topologieal b.e.s. [f,] will denote the cloged
linear span in H* of the dual sequence for ().

For each n, the adjoint s, of the operator s, is given by

sulf) = ‘fmﬁ (feB®),

Ibﬁl
and we have:

PROPOSITION . If () is a basis for B, then (f,) is an equi-Schauder
basic sequence in B,

Proof. By Theorem 4 and Lemma 2, (s,) is an equicontinuouns set
in & (B*). Since s, (f) converges to f (in the B*-topology) for every f which
is a finite Lncar combination of the f,, it converges also to f in the (to-
pological) closure of the set of these linear combinations, hence

j 77/ f’lb (fE[f,n]),

A= 1
the expansion being clearly unique. Thus (f,) is a basie sequence in B,
since (2,) = B*'.

JOROILARY 3. If (1,) is a basis for B and B is reflexive, then (f,) is
a basis for B,

ProposevionN . Let B be a polar b.e.s. whose dual B> is barreled, and
let (@, ) be o biovthogonal system with (x,) totel in K. If (f,) is « basis
Jor H*, then (»,) is « basis for H.

Troof. Sinee (s,) is equicontinuous, (s,) is equibounded by Lemma 2.
Thoe rest of the proof proceeds as in Theorem B.

Wao shall not here pursue further the investigation of duality properties.

6 Bases and reflexivity. A basis (@,) for B is called doundedly complete
()4 akaﬂ,,) converges in H whenever it is & bounded set, and shrinking

fn) is a bagis for H*.
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The following theorem generalizes a wellknown result. of James
([5], Theorern 1, p. 519) for Banach spaces with a basis, and it is the
bornological analogue of the corresponding topological generalization of
Retherford ([9], Theorem 2.3, p. 281) to a barreled Le.s. with a basis.

TEROREM 6. If (m,) is @ basis for B, then B ds reflexive if and only
if (@) is shrinking and boundedly complete.

Proof. Tf B is reflexive, then (#,) is shrinking by Corollary 3. Now

n
suppose that (Y oz is & bounded sequence in E; the reflexivity of B
k=1 o
implies the existence of a weakly adherent point z<H. Clearly, w= 3 fy()2;,
Foma

weakly, with f;,(#) = o for all k. But this expansion holds bornologieally,
and so (z,) is boundedly complete.

Conversely, let (,) be a boundedly complete and shrinking basis for
. Let B be an (LB)-space and let {E,} be a representation of B such
that (2,) "By is, for all k, a basis for B, (see Lemma 1). For each & let
p, be the projection of E* into B, and let F, be the closed linear span
of (py(f,) in . Since (w,) is shrinking, we have

3) B* =limB, = limF, (topologically).
< <

Let I, be the dual of the Banach space F; under the Mackey topology

7(Fy, F). Since the second projective limit in (3) is reduced, its dual

B, under its Mackey topology =(E*', E*), is the topological inductive

limit of the sequence {Fy} ([10], (4.4), D. 139). Algebraically we have

B = U x ;u

=1

Let zeE*' and let k be such that zeFj. By [11], Theorem 12.5 ¢,

p..129, 7, is isomorphic (as a Banach space) under the mapping z—(z( Ta))s
to the Banach space of sequences of scalars

{(%)3 sup ” 2 A5y

neNy " {eNy,
i<

where Ny, = {n: pz(f,) By}, and the norm is in By, With this convention

in mind, we see that the sequence ( ZI’V 2(f;)%;) is bounded in 7 and hence
R

in B. It therefore converges to an x ¥, sinee (w,) is boundedly complete,

and clearly f;(@) = 2(f;) for all 1eN,,. Since Fy, = By [Fg, we have & = &,

and so B is semi-reflexive, whence reflexive (isomorphism theorem).

Suppose now that E is a complete, topological b.c.s. If ze B>’ then

with Fj < Fj,,.

<)

£ Detfam) == an(wi)ff) —2(f)  (feB),

=
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n
gince (,) is shrinking; the sequence (Yz(fi)®;) is therefore weakly
. =1

bounded in. F. But then it is also bounded, and since (z,) is boundedly
complete there exists an » in & such that

O = Zz(fi)mi'

gl
Tt follows that # = 2 and, consequently, # ig reflexive.

7. Regular, bounded and normal bases. The definitions and results
in this and the next section should he compared with [6].

Denote by u the Mackey-closure topology of a b.c.s. E. A sequence
(@,) in B is said to be regular if it is disjoint from some wneighbourhood
of 0, so that no subsequence of a regular sequence converges to 0. We
gay that (z,) can be regularized if there is a sequence (a,) of scalars such
that (o,,) is regular. The natural basis («,) of o cannot be regularized
(for every sequence (a,) of scalars, the sequence (oy ;) converges to zero
in w,, and so bornologically since w, is metrizable).

PROPOSITION 6. Let (x,) be a basis of B with dual sequence (f,). Then
(@) is regular if and only if (f,) is equibounded.

Proof. If (f,) is equibounded, then it is r-equicontinuous (H. is
barreled) and hence V = (f,)° is a v-neighbourhood of 0. Sinee v is
coarser than u and @,¢V for all m, (#,) is regular. Conversely, let (w,)
be regular. Since & = 3 f,()s, for all zel, we have lim fu(@)w, =0 in

M=l

n-roo

Handso limf,(x) = 0. Thus (f,) is weakly bounded, hence r-equicontinuous

n~roo
and. 80 equibounded.

We recall that a gequence (#,) is regular in a Le.s. if it is disjoint from
some neighbourhood V of 0 ([6], Definition 1.1). A priori, a basig in B
could be regular without being r-regular; that this is not the ease i shown
by the following:

PROPOSITION 7. A basis (w,) of B is regular if and only if it is v-regular.

Proof. Sufficiency is obvious. For the nocessity observe that (fn)
is equibounded by Proposition 6, hence v-equicontinuous, which, implies
the riegularity of (#,) as in the proof of Proposition 6.

Next we show how regularizability of a basis gives information about
the space.

TamormM 7. If B has a basis () then the following assertions are
equivalent.

(a) (a,m,) 18 regular fof some sequence (ay),
(1) (Buity) 48 equibounded for some sequence (B,) of non-zero soalars,
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(¢) there exists on B a bounded norm,
(d) no closed subspace of B is isomerphic lo o,

o0
(e) there is no subsequence () of (w,) such zhatIZL gy, crists for

all sequences (ayz)-

Proof. (a) implies (b) by Proposition 6, since (f,f,) is the dual se-
quence of (a,x,) when B, = ay

If (b) holds, then it is immediately seen that |lo| = sup |,f, (@)l is
a bounded norm on E. n

Obviously, (¢) implies (d), sinee there is no bounded norm on o.

Now suppose ﬂmt (d) holds and that there is a subsequence (w,)

of (x,) such that 2 ayit,, exists for all (a). Lt

Ma

Uiyt (o) 'em};

=
Tl

By
]

=<1

it is easily seen that F is closed in F and hence complete. Define a linear
mapping « from o to F by

3

2
w{ay) = 2 Oy

fo=1

" . Then « is one-to-one, onto and bounded (direct verification) and hence

an isomorphism by ([4], Corollaire 2, p. 43). Thus (d) implies (e).

Finally, to show that (e) implies (a), let us assume, first of all, that
E is cowplete and topological. Let (o) be an arbitrary sequence and
suppose that for every subsequence (any, ) 20l pi- -neighbourhood V of
0 there exists &y such that a, &, < V for mll k > ky. If follows that (ankwnk)
converges to 0 for u, and so lt contains a subsequence (bornologically)
convergent to 0 ([4], Théoréme 1, p. 15). But then (a,x,) converges to
0 for u ([4], ’I‘héoréme 1, p. 15) and so is a bounded sequence, which
implies that 2 a, &, exists, since (a,) was arbitrary. Thus (e) implies the

=1

existence of a sequence (a,) with a subsequence (a, ) such that (a,%wnk)
is regular and an induction proecess finishes the proot for the case of K
complete and topological. If now F is an (LB)-space, then it is clear
that the sequence (|l 2,) is ‘regul(w (here we take a representation
{B,} of B such that x,<E, for all ») by lj,l, |f,, )| < 2|||=}|],, and Prop-
osition 6.

Since (a) does not depend on (e) when F is an (LB)-space, we have
also proved:

COROLLARY 4. (a)~( of Theorem 7 hold in every (LB)-space with
a basis.

COROLLARY . Hvery basis of an (LB)-space can be regularized.

and henee B containg a sequence (y,,) such that [ £, (,,)
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This refleets a well-known property of bases in Banach spaces.

COROLLARY 6. If H is o separable (LB)-space on which there is no
bounded norm, then 1) has no basis.

The following dual form of Proposition 6 holds.

ProrosirioN 8. A basis (x,) of B is bounded if and only if the dual
sequence (f,) 18 a lopologically regular basic sequemce in B™.

Proof. It (x,) is bounded, the set ¥ o= §(a,)" s o neighbourhood
of 0 in B* and [, ¢V for all ». Thuy (f,) is Jog:n] AL

Sonversely, suppose (f,) regalar; then there is a bounded set B in
B with

sup{lfu(l: yeB} =1 for all n,

= 1. By Theorem 4
there is o bounded subset ¢ of H with

U '?n(b))"' U S?l(k) = .

Since

Fulu)iy, == 85 () — 8. W) e

for all m, the sequence (f,(y,),) is bounded and henee so niast be (),
Tor [ (i) = L.

A sequence which is both bounded and regular will be ce led normal.
Then we have:

PROPOSIEION 9. A basis (x,) of K is normal if and only if the dual

sequence (f,) s a topologically normal basic sequence in B*

Proof follows from Propositions 6 and 8 and the fact that H, is
barraled. )
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Recoived April 4, 1973 (669) Decompositions of operator-valued functions

in Hilbert spaces
WACLAW SZYMANSKI (Krakow)

Abstract. In the present paper we will prove gome theorems concerning the
jcanonical docompositions of operator-valued functions in Hilbert spaces. Wo consider
positive definite, completely positive, completoly contractive functions and represen-
tations of subalgebras of O*-algebras. Moreover we give some corollaries about dilatable
functions.

To begin with we introduce some notation and definitions. We denote
by H tho Hilbert space with the inner produect (, ). L(H) stands for the
algebra of all linear, bounded operators in H. For AeL(H) we write
R(A) = {Az, zeH}. Iy stands for the identity opcrator in H. If If is
a closed subspace of H then M+ denotes the orthogonal complement of M.
An operator P eL(H) such that P = P* = P* is called a projection. If P
is aprojection onto the subspace M then P denotes the projection onto I~
AeL(H) is a contraction (or contractive operator) if ||A||<<1. BEvery
involution preserving homomorphism of involutive Banach algebra B
into L(H) is called *-representation of B. Every homomorphism of B
into L(H) is called a representation of B.

It is well known (see [11], ch. 1.3.2) that for a contraction T <L (H)
there are subspaees Iy, H, = Hi reducing 7' such that the operator
Ty = T|p, is the unitary opcrator in H, and Ty = Ty, is completely
non-unitary. The decomposition 1 = T,@T, is uniquely determined.
It iy called the canondcal decomposition of IT.

Tivery contiaction 1'el (H) induees a representation IT (by the J.von
Noumann. inequality) of . the dise algebra A (") into L(IH) such that
IT(L) = Iy, II(2) =T and |II]<1. A(I") congists of all holomorphic
unctions in the open unit dise {|z| < 1} continuous in ity closure {|2| < 1};
I' = {]g| =1}, The representation IT has the following property: T is
unitary if and only if there is a *-representation Ir: O(IN—L(H) which
ig-an extension to C(I") of the representation IT. If such IT exists then
it iy unique. )

The reinterpretation of the canonical decomposition reads as follows:

* There exist subspaces H,, Hy = HE < H ‘reducing II(u) for all wed(I')

§ ~ Studia Mathematica L.3
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