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Abstract. In the present paper we will prove gome theorems concerning the
jcanonical docompositions of operator-valued functions in Hilbert spaces. Wo consider
positive definite, completely positive, completoly contractive functions and represen-
tations of subalgebras of O*-algebras. Moreover we give some corollaries about dilatable
functions.

To begin with we introduce some notation and definitions. We denote
by H tho Hilbert space with the inner produect (, ). L(H) stands for the
algebra of all linear, bounded operators in H. For AeL(H) we write
R(A) = {Az, zeH}. Iy stands for the identity opcrator in H. If If is
a closed subspace of H then M+ denotes the orthogonal complement of M.
An operator P eL(H) such that P = P* = P* is called a projection. If P
is aprojection onto the subspace M then P denotes the projection onto I~
AeL(H) is a contraction (or contractive operator) if ||A||<<1. BEvery
involution preserving homomorphism of involutive Banach algebra B
into L(H) is called *-representation of B. Every homomorphism of B
into L(H) is called a representation of B.

It is well known (see [11], ch. 1.3.2) that for a contraction T <L (H)
there are subspaees Iy, H, = Hi reducing 7' such that the operator
Ty = T|p, is the unitary opcrator in H, and Ty = Ty, is completely
non-unitary. The decomposition 1 = T,@T, is uniquely determined.
It iy called the canondcal decomposition of IT.

Tivery contiaction 1'el (H) induees a representation IT (by the J.von
Noumann. inequality) of . the dise algebra A (") into L(IH) such that
IT(L) = Iy, II(2) =T and |II]<1. A(I") congists of all holomorphic
unctions in the open unit dise {|z| < 1} continuous in ity closure {|2| < 1};
I' = {]g| =1}, The representation IT has the following property: T is
unitary if and only if there is a *-representation Ir: O(IN—L(H) which
ig-an extension to C(I") of the representation IT. If such IT exists then
it iy unique. )

The reinterpretation of the canonical decomposition reads as follows:

* There exist subspaces H,, Hy = HE < H ‘reducing II(u) for all wed(I')
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such that the representation ITo: w—II(w)lg, has an extension to the
*_representasion of C(I") into L(H) and no non-trivial part of 1Ty : u-—>IT (@)_] 7,
has an extension to ¢(I") which is a *representation. The decomposition
I = II,®I, is determined uniquely. . .

TLet X be a compact Hausdorff space. A subalgebra A < 0(X) is
called a function algebra (on X) if 4 is norm-closed, contains consta.p‘ns
and separates the points of X. Let T'(.): A—L(H) be a rep‘reseg‘mmop
of A. Following [5] we call the closed subspace M = H X-reducing .for
T() if M reduces all operators T'(u) for wed and the rcpregenmtlorn
w—T(w)|a has an extension to a *.representation of the alge.bra, 0(X)
into L(M). The representation T(.): A—L(H) is X-pure if it has no
nontrivial X-reducing subspace. ’

Tt has been proved by Foiag and Suciu [5] that for every represen-
tation T(.) of the function algebia A (on X) into L(H) there is a largeg;
subspace M « H which X-reduces T(.). The part of T(:) in Mt i
X-pure. Notice that it is not necessary to agsume that T'(.) is a bounded
representation. An ingenious new proof of Foiag—Sucin theorel'ﬁn. has been
given by Seever in [9]. The method of Seever as well the original proof
given in [5] depend essentially on the commutativity of A. N

The present paper deals with a general method of decompositions
of arbitrary operator-valued functions. We use some elementary prop-
erties of von Newmann algebras, in particular the equivalence of pro-
jections. The crucial point of thiy method is contained in Lemma 2. In
Part 2 we consider positive definite functions on semi-groups, groups
and algebras, next—completely positive functions and some corollaries
about dilations. In Part 3 we generalize the above Foiag-Suciu result
and give the eanonical decomposition of completely contractive functions.

Professors W. Mlak and Cz. Ryll-Nardzewski kindly provided me
with several valuable suggestions, which I have gratefully incorporated
in -the final version of the present paper.

1. Preliminaries. Let P, be two projections belonging to L(H)
onto the subspaces M, N of H respectively. Then PvQ, PAQ stand for
the projections onto MVIN = {z+y,we M,yeN}, MON respectively.
Tt is well known that the following conditions hold true (see [6] for
references): :

(i) PQ is the projection (onto MnN) if and only if PQ = QP.
(i) P+@ is the projection (onto M@N = M vXN) if and only if
PQ = QP = 0.
(iii) P —Q is the projection (onto M NN+)if and only if PQ = QP = Q.
(iv) PAQ = lim (PQ)" strongly.
n—-00

(v) (PLv@hHt =PAQ.

icm

Decompositions of operator-valued fumctions in Hilbert spaces 267

The operator UeL(H) is a partial isometry if U ig an isometric
operator on the orthogonal complement of its kernel. Equivalently: U
is a partial isometry if and only if U* U is the projection. If U is a partial
isometry then the space R(U*U) is called the initial and R(UU*) —
the final space of U. If U is a partial isometry, so does U*.

© Let A be a strongly closed subalgebra of L(H). % is called a von
Neumann algebra if it is symmetric (i.e. Ae W= A% ) and containg the
identity Iy of L(H). We refer to [4], [12] for the theory of von Neumann
algebray. Let & be an arbitrary subset of L(H). The set &' == {T'eL(H):
T8 = 87 for all Se &} is called the commutant of &.
BICOMMUTANT THEOREM. Ior every von Neumann algebra U < L(H)

A =W

POLAR DECOMPOSITION. For every operator 1 < L(H) there are operators
|7, U such that T' = U|T|, |T| = 0 and U is the partial isometry (we put
1T} = (I* 1))

We say that the projections P, @ which belong to the von Neumann
algebra A are equivalent with respect to A if there is a partial isometry
Ue A such that U*U = P and UU* = Q. We write then P ~Q. We notice
that P~ if and only if Q~DP.

Let T be an operator belonging to L(H). We write II[T] for the
projection onto R(T). Using the bicommutant theorem it is not difficult
to prove that for every operator TeL(H) with the polar decomposition
T = U|T|, both U, |T| belong to the von Neumann algebra % (7') generated
by 1" (i.e. the smallest von Neumann algebra containing T). The polar
decomposition implies that II[T]~IT[T*] = II[|T|] with respect to A(T).
The last equality is true, because R(T*) = R(|T)).

Using this equivalence we prove first:

LumwmA 1. Let P,  be two projections belonging to L(H) onto M, N < H
respectively. Let U be a von Neowmann algebra generaled by P, Q. Then
PvQ—Q~IP-—-PAQ with respect to A

Proot. The projections PvQ—@, P —PaQ belong to A by (iv),

and (v). Morcover, ker (QP) = M+*@(MAN+Y) or, equivalently R(PQ)

== MO (M NANY)L Henco JI[PQY] =P —~PAQ and T [QP] = Q@+ —@QL AP+

=PvQ—¢ (by(v)). The obvious equality: (PQL)* = (@+P) and the
equivalence IT[1™]~IT[T] for all T eL(H) finish the proof. The proof
of this lemna is a modification with suitable changes of the proof given
in [12], page 19.

Let @ be an arbitrary set and let ¢: Q—L(H) be an operator function.
Suppoge we are given a property (W) concerning such ¢’s. We say that
the closed subspace M < H (W)-reduces the fumclion ¢, if M reduces
every operator ¢(u) (% e Q) and the function w—-g (1)), has the property (W).
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Let N be a closed subspace of H reducing all p(u) (uef2). We say that

- the function u—>p(u)|y is completely non-(W), it there is no non-zero sub-
space I of N which (W)-reduces this function. The closed subspace M < H
is called the largest (W)-reducing subspace for the function ¢ if M contains
every closed subspace of H which (W)-reduces ¢.

Assume now that the property (W) is hereditary, i.e. if the subspace
M (W)-reduces the function ¢ and the subspace N < M reduces ¢ then
N (W)-reduces . The following simple property will be proved for the
sake of completness.

(A) Let M be the largest subspace of H (W)-reducing ¢ and let (W) be
heredital. Then the function ¢q: w—g(u)l,,, is completely non-(W). If
@o(t) = g (u)ly then the decomposition ¢ = pDey 48 determined uniquely.

Proof. Let I be a subspace of H (W)-reducing ¢ and ¥ <= M. Then
N < M and N = {0}. Now we take the decomposition H = M'@®M" where
M', M reduce ¢, M’ (W)-reduces ¢ and the function ¢"(u) = @(u)ls-
is completely non-(W). Then M’'< M and the space MOM' (W)-reduces
@ by the hevedity property of W. But MOM' < M’ and consequently
MoM' = {0} hence M = M' and M = M", q.e.d. ‘

Let 2 be an arbitrary family of projeetions in L(H). We assume
that £ is closed in the strong operator topology and the following con-
dition holds true:

(1) If P, Qe then PVQeZ.

Then there is the least upper bound LUBZ = /& of the family 2 and
/2 belongs to & (see [6] for references). The following lemma is basic
for the construction of decompositions of operator-valued functions:

Leymma 2. Let U be o von Neumann algebra in L(H) and # < A be
a family of projections. We assume that & satisfies the following conditions:

(I) If P,Qe? then PAQe2.
(I1) If P,Qe? and P,Q are pairwise orthogonal then P +Qe2.
(D) If P,Q<? and Q<P then P—QeP.

(IV) If Pe2, Qe N, Q is a projection and P ~Q with respect to A then
Q2.

Under our assumptions PvQeP for P,QeP. Hence LUBP = \/P
exists, and consequently, if P is strongly closed, then \/P belongs to P.

Proof. We take two projections P,Qe?. By (I) PAQe#? and by
(IIX) P—PAQe? c A. By Lemma 1 PvQ—Q~P—PAQ (with respect
to the von Neumann algebra generated by P, @ and consequently, with
“respect to every von Neumann algebra containing P and @). Hence, by
(IV), R =Pv@Q—Q is a projection belonging to #. But PvQ = R+
belongs also to £, by (II), because B and @ ave two pairwise orthogonal
projections from . This completes the proof.
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‘We come back to the function ¢ on a set 2 into L(H) and to the
property (W) of this function. We assume that (W) is hereditary. Using
Temma 2 we will give the method of decomposition of this function.

PROPOSITION 1. Let ¢ be an arbitrary funciion on the set Q into L(H).,
Let the considered property (W) be hereditary. We define the set

P = {P: P is a projection, Pe W and the funciion u—p(u)lpp) has
the property (W)},
where A = ((p(.Q)U(p(Q)*)'.
If @ is closed in the strong operator topology and (L)~(IV) are irue
for @, then there is a largest subspace Hoc H which (W)-reduces o. The

Sfumction @y(u) = qo(u)|H L is completely non-(W) and the decomposition
1=Hy

¢ = 0Dy (where po(w) = @(u)lg,) s uniquely determined.

Proof. By the basic lemma 2 there is a projection LUB# = /P2
Tvery space R(P) (P <) (W)-reduces the function ¢. Weput Hy= E(V2)
It NV is & closed subspace of H (W)-reducing ¢, then the projeetion ¢ onto
N belongs to 2 and @ < V2, which implies that ¥ < H,. We use now
(A) and complete the proof.

2. Positive definite and completely positive functions. We consider
an arbitrary set 2 and a complex Hilbert space H. F(2, H) stands for
the linear space (with pointwise addition and multiplication by scalars)
of all functions f: 2-~H having finite supports. The support of f = {we2:
flw) # 0}

The function K: Qx Q-L(H) is called positive definite if for all
F(.)eF (2, H) the following inequality holds true:

D {E(u,y 0)f(0), Fw) 0.
U, Ve R
The function K: @ x Q—>L(H) is completely non-positive definite if
there is no non-zeve subspace of H which reduces K to the positive definite
function.
Trgormy 1. For every function K: Qx Q—L(H) there is o largest
subspace H, < II reducing K to the positive definite function. The Sumection

Iy (uy ) == K (u, ”)Fnl.,, g is completely non-positive definite. The decom-

position K == W DK, (where K(u,v) = I (u, 'v)]Ho) 8 uniquely deter-
mined.

We will give two proofs of this theorem (Proof I and Proof IL). In
the first proof we use Lemma 2 and Proposition 1. The second proof
is direct but longer thamn the first one and we do not use in it the von
Neumann algebras. Notice that the method of the second proof iy very '
similar in its fivst steps to the proof of bicommutant theorem.
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Proof I of Theorem 1. We define the von Neumann algebra
A = (E(R2xQUE(L2x 2)). Let P be a projection belonging to .
‘We introduce the following condition:

@) D) (B (u, v)Bf(v), Pf(w)) = 0 for f(.)eF (2, H)

u,veR

and we define the set

# = {P: P is a projection belonging to % such that for every

f()eF(Q, H), (2) holds true}.

It is plain that &2 is strongly closed. We will prove that £ satisties
the conditions (I)-(IV) of Lemma 2.

Let Pe# and TeL(H). For f(.)eF (2, H) the function g(u) = Tf(u)
belongs to F(2, H).

Hence

D (w, 0)PIf(v), PIf(w)) = }(K(u, v)Pg(v), Pg(u) > 0.

Hence if P, Q'G.Q’, then PQ e A and PQ satisties (2). It follows that (PQ)*e A
a.nd (PQ)" satisty (2) for all integers n > 0. Hence, by (iv) PAQ = strong-
lim (PQ)" belongs to 2. We just proved that our # satisfies (I) of Lemma 2.

We .next prove (II). It P, Q% and PQ = QP = 0 then P+ @ is the pro-
jection from A and for f(.)eF (R, H) we have

DK (1, 0)(P+Q)F (), (P+@)f(w)) = DI (w1, 0) (P+Q)f(0), ()

= DE (w, 9)Pf(o), Pf(w))+ DK (u, ©)Qf(v), @f(w)) > 0.

Hence P+Qe2. Toprove (III) we proceed as follows: if P
thenPQ = QP — Q and P—¢ =PIiPQ — P(I—Q)e2. 0e? @<,
The crucial step is the proof of (IV). We take Pe#, a projection
Q< ¥ and assume that P~@. Then there is a partial isometry Ue U such
that U'U =P, UU* = Q. In other words, U is the isometric operator
from R(P) onto R(Q). We take f(.)eF (2, H) and uwef. Then there is
Yy = Py,cB(P) such that Qf(u) = UPy, = Uy,. The cquality |Qf(w)|
= IIUI.’%U = |ly,,/| implies that the function g(u) =y, is well-defined. More-
over, if f(u) = 0 then @f(u) = 0 and |y,|| = [lg()| = 0. Hence g(u) = 0
which shows that g(.) belongs to F(£2, H). We have finally:

D (w, )Qf (), @f (w)) = (K (u, v) UPg(v), UPg(u))
= D\UPE (u,v)Pg(v), UPg(w) = (K (u, v)Pg(s), Pg(w)) >0

which implies Q<. Using Proposition 1 we finish the proof.

A simple illustration of Theotem 1 is at hand.

The operator T is called completely mon-positive if there is no a non-
zero subspace of H reducing T to the positive operator.
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COROLLARY 1. For every operator K e L(H) there is the largest subspace
H, =« H reducing K to the positive operator K, = K|g,- The operator

K, =K IH b is completely mon-positive and the decomposition I = K®dK,
1=

4s umiquely determined.

Proof. Let KeL(H). We take an arbitrary set Q = {u,} and wo
define the function XK (u,, %,) = K, which is positive definite if and only
if K is the positive operator. Applying Theorem 1 we complete the proof.

But we can prove divect this corollary as follows: It is wellknown
{(see [2], I) that for every operator T <L (H) there is the largest subspace
of H, which reduces T to the self-adjoint operator. Let M be a such
subspace for the operator K and let K’ be the part of K in M. X' has
a suitable spectral measure F(.) in M defined on the Borel subsets of
the real Line. We define the subspace H, = R{E(c)) of M (where o
= [0, o)), which is the largest subspace of H reducing K to the positive
operator. Using (A) we complete the proof.

Proof II of Theorem 1. We write H, = H®...®H and for

AeL(H) n-times
40 ...0
P
0..04

It is easy to verify that if P and @ are two projections belonging to L(H),
then f—'n, én and (?:/Q),1 are projections belonging to L(Hy), and lsan,,
= (Pv@Q),. We observe now that a function K: Q2 x Q-L(H) is positive
definite if and only if for all integers # = 0 and %y, ..., Uy € £ the operator

K (thyy )5 eney K (Ugy Ug)
K (g Ug) 5 e g K (g, Un)

~ ~

K o= K (tyy oery W) =

is positive in H,.

Wo fix the integer n > 0 and the finite subset o = {Uyy «ery Up} OF 2
Wo take projections P,QeL(H). If P,Q com]lmmtz with all K (w;, 'ug)
(¢,j=1,...,n) then the projections j’n, @n and P,v@, commute with K.
Moreover, it B(P) and E(Q) reduce K|,y to the positive defjnite ihinction
on. w X o then I%.i’n > 0and ]}'.'22,1 > 0. Corollary 1 yields that K (f)ann) >0

and hence K (PvQ), > 0. It follows that B(PvQ) reduces Kl,y, to the
positive definite function on o xXw. Hence we get that for every finite
subset » < £ there is a largest subspace M, < H reducing the function
K| ,xo b0 the positive definite funection. Next we observe that if w, and w,
are two finite subsets of 2 and w, < o, then M, = M,,. Indeed, M,,
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reduces all operators K (u, ») (%, vew;) because it reduces all operators
K(u, v)(#, vew,). Taking zeros for suitable vectors in the definition of
the positive definiteness, namely for vectors, corresponding to these
elements of w,. which are not in ,, we get that the part of K|, ,, in
M,, is the positive definite function. Hence M,, < M, , because M,
is the largest subspace reducing K, 1o, t0 the positive definite function.
We take finally H, = () M,,, where v < 2 is runing over all finite subsets
of Q. We must show that H, reduces every operator K (u,v), u, vef.
To prove this we take u,ve and the finite subset y <« Q. It is plain
that if 4, vey then M, reduces K(u,v). Assume now that (u, v) ¢y X .
Then we consider the finite subset y, = yU{u, v} of £ and obscrve that
for weH, = M, we have K(u,v)weM, = M, by the above remaiks.
Hence K(u,v) leaves H, invariant. Using similar arguments we prove
that H, is invariant for K (u,v)*. Thus H, reduces K (u,v) (4, veL).
The definition of H, implies that H, is the largest subspace of H reducing
K to the positive definite function and the proof is finighed.

Now we will consider completely positive functions. Let B, B’ be
O*-algebras and n—an arbitrary positive integer number. Suppose that
8 < B is a symmetric subspace of B. B,, denotes the C*-algebra of nxn
matrices (%y);j=,...,n; Where u;eB with the natural, hermitian invol-
ution (uy)* = (u}‘,-). 8, stands for the subspace of B, of nxn matrices
(uy) over 8. The linear function ¢: BB’ (resp. ¢: S§—B’) is called posi-
tive if for every positive element ueB (resp. 1eS) @(u) is positive. The
linear function ¢: B-+B’ (Tesp. ¢: S—B’) is completely positive if for
every positive integer n the funetion g¢,: B,~>B, (resp. ¢,: S,~By)
defined as follows:

‘Pn((’“ij)) = (‘P (“ij))

is positive. This definition was introduced by Stinespring (for O*-algebrasg)
and generalized by Arveson (for symmetric subspaces of C*-algebras) —
gee [1]. If we assume that B is an involutive Banach algebra and B’ is
a C*-algebra then the definition of completely positivity may be per-
formed following Paschke [8] as follows: 4 linear function ¢: B—B’ is
called positive if for all weB: ¢(u*u) is positive in B’. The function ¢:
BB’ iy completely positive if for every integer n >0 and (uy)eB,:
o ()" (%)) = 0. If B is a C*-algebra then an element 4B is positive
if and only if it has the form o*» for some veB. The last definition of
completely positivity implies immediately that:

(B) If B is a C*-algebra then the limear function ¢: B—L(H) i
completely positive if and only if ¢ is positive definite.

Let B be a C*algebra and § < B its symmetric subspace. Let ¢:
S8—L(H) be a linear function. We define the sets
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Py = {P: P is a projection in (p(8)Up(8)*) such that for every weB,
%= 0: p(u)P = 0}.
Py = {P: P is a projection in (p(8)Vp(8)*) such that for every infeger
n3z 0 and for every positive element (uy) Sy, qp((4g)) 13,, 8 the
positive operator}.
Using the same arguments as in the first proof of Theorem 1, we verify
casily that the properties (I—(IV) of Lemma 2 hold true for £, and 2,.
Weo get therefore the following:

TrroreM 2. If 8 is o symwmetric subspace of C*-algebra B and ¢:
S§~L(H) is o linear function then there is the largest subspace H, = H reducing
the function ¢ to the completely positive (resp. -positive) function ¢ (a)
= (@) lm, (we8). The function, p,(a) = @(@)|gyziy 18 completely nom-com-
pletely positive (resp. positive) and the decomposition ¢ = p,@Dp, 48
uniquely determined.

Now we will give some corollaries about dilatable functions. We
consider an involutive semi-group @G (i.e. (uv)* = v*u* for all u,ved)
and. the function 7'(.) on @ into L(H). Let K be a Hilbert space, E:
H-X be a lincar, bounded operator and 7'[.]: G—L(K) be a*-representa~
tion (i.e. involution preserving homomorphism) of G into L(K). We
will say that (K, R, T[.]) is an E-dilation of the function T'(.) if for all
wel, ue@: T(w)w = R*T[u]Re. (K, T[]) is called a dilation of T(.)
it KoM and T(wa = PT[ule for all we@, zeH, where P stands for
the projection from K onte H. Following Sz.-Nagy we call the function
T(.): G—L(H) positive definite if the function K (u,v) = T (u*v) is
positive definite on G x G. It is easy to observe that if G has the unit
then every positive definite function on G preserves involution.

The following theorem has been proved by Sz.-Nagy [10].

DinATIoN TrmornM 1. Let G be a multiplicative, involutive semi-
group with the unit ¢ and let T(.): G—L(H) be an arbitrary function.

a) If 1) has an K-dilation (I, B, T[.]) then the function T(.) is po-
sitive definite.

D) If the function T'(.) 4s positive definile on G and if there is a function
e() 0 on G such that for all f(.)eB (G, ) and weG: .

) 1%:;(1*(10*10*74;7;) F(0), F(w)) < o(w) u%; (T (w*0) £ (), f(w))

then theve is an R-délation (K, R, T[.]) of the function T'(.).

Moveover, if for all w,ve@: T{uev) = T (uz,v)-+T(uzyw) for some
2y Ry, &y then T'[&] == T'ey]--T[2]: : '

Notice that if T'(6) = I in the above theorem then we can identify
H with the subspace of K and B* is interpreted as the projection from
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K onto H. Consequently, in this case (K, T[.]) is simply the dilation of
T(.) and T[e] = Ixk.

It is well known that for an operator A eL(H) there is the largest
subspace M which teduces 4 to the zero operator (this is also a trivial
consequence of Lemma 2). Tet M be a closed subspace of H and let
P, @ be two projections such that AP = 'PA, AQ = Q4 and R(P) = M,

R(Q) « M. Then A(Pv@) =(Pv@Q)A and B(PvQ) = M. Hence there
is a largest subspace N of H reducing the operator 4 and N = M. Suppose
that the function T(.): G—L(H) has an R-dilation (X, E, T[ 1) and consider
the operator T(e)—Ig. It follows that there is the lmrgest subspace M,
of H which reduces T'(e)— Iz to the zero operator in M,. Hence T'(e)ly,
= Iy, . Moreover, there is the largest subspace M < M, which reduces all
_ operators T(u) (we@). It is clear that T'(e)ly = Iy This implies that M
is the largest subspace reducing T'(.) to the function which has a dilation.
Summing up and applying Theorem 1 and the Dilation Theorem 1,
we geb

PROPOSITION 2. Let G be a multiplicative, involutive semigroup with
the unit. Let T(.): G—~L(H) be an involution preserving function. Assume
that there is a function ¢(.) =0 on G, satisfying the condition (3) for all
fl)eF (G, H) and weG. Then

a) there is o largest subspace H, < H which reduces the fundtion T'(.)
1o the function To(.) = T(.)lg, such that To(.) has an R-dilation;

b) there is a largest subspace M < H,, which reduces the fmwtwn

T'o(.) to the function, having a dilation.

Some simple applications of Theorems 1 and 2 are now in order.
Take a group G and a function T(.): G—>L(H). The mapping u—>u"" is
the involution in G. The function T(.) is positive definite if the function
K(u,v) = T(u'v) is positive definite. The theorem below which iz due
to Naimark (see [11]) may be derived from Dilation Theorem. 1.

DIIATION THEOREM 2. Let G be a group and T(.): G—L(H) be @ po-

sitive definite function such that T'(e) = Iy. Then there ewists a dilation
(K, T[.]) of the function T(.).

. Notice that T'[.]: G—L(K) iz the unitary representation of & into
L(EK). Applying Theorem 1 we get

PrOPOSITION' 3. For every group G and every function T(.): G—>L(H)
which preserves involution (i.e. T(w™") = T(u)* for ue@) there is the largest

subspace Hy = H reducing the function T'(.) to-the function having o dilation.

Now we consider an arbitrary operator TeL(H) and we define the
funetion T(.) on the additive group Z of integer numbers as follows:

T'(n) =T" for n=0, T(n) = T, for n < 0.
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This is the celebrated theorem of Sz.-Nagy [11] that the operator
T ig contractive if and only if T'(n) is the positive definite function. Applying
Theorem. 1 with @ = Z and K(n,m) = T(n—m) (n, meZ) we get

COROLLARY 2. For ecvery operator TeL(H) there exists the largest sub-
space Hy < H reducing 1 to the coniractive operator Ty = Ty, The operator
T, = Tlﬂga i8 completely non-contractive and the decomposition T = T dT,
is uniquely determined.

Consider now an. involutive Banach algebra B and a linear, positive
definite function 7'(-) on B into L(H). T'(-) is positive definite as the
function on the involutive, multiplicative semigroup B.

DIivATION THEOREM 3 (see [7]). If the involutive Banach algebra B
has an approvimative umit and the linear, positive definite function T'(.)
48 bounded then T(.) has an R-dilation (K, R,T[.]) where, as usually,
T[] B=L(K) is a *-representation of B.

If an involutive Banach algebra has unit, then the boundedness of
every positive functional on B implies that every positive definite
function on B iy bounded. Moreover, if B is a C*-algebra then it has an
approximative unit and every positive functional on B is bounded. Hence
every linear, positive definite function on a C*-algebra is bounded. Dilation
Theorem 3 implies immediately that:

(0) If B is an involutive Banach algebra with unit or B is a O*-algebra
and T'(.) s a Vinear, positive definite function on B, then T'(.) has an R-dilation
(E, B, T[.]). |

Combining the Dilation Theorem 3 and Theorem 1 (taking £ = B
and K(a, b) = T(a*d) for a, beB) we get

ProposITIoN 4. Let B be an involutive Banach algebra with an ap-
provimative wnit- and T'(.) be a linear, bounded function on B into L(H).
Then there is a largest subspace H, of H which reduces T(.) to the func-
tion having a R-dilation (I, B, T'[.]).

Moreover, (C) implies the following corollary:

GororrAry 3. If B is an involutive Banack algebra with wmit or B
is a O*algebra and if T(.): B-~+L(H) is o linear function then there ewists
a largest subspaco M, of H which reduces T'(.) to the function having
an R-dilation (K, R, T'T.]).

It has been proved by Arveson ([1], th. 1.2.8.) that if B is o (*-algebra
with the unit ¢ and § is its norm closed, symmetric subspace containing
e then every completely positive function ¢: S—L(H) has a completely
positive extention py: B—L(H) such that ¢ = @;|g. The following corol-
lary is a generalization of the Corollary 3:

QoROLLARY 4. Let B be a C*-algebra with the unmit e and let S be its
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norm closed, symmelric subspace containing e. Then for every linear Junction
T(.): 8—L(H) there is a largest subspace Hy, « H reducing T(.) to the
Junation Ty(.) = T(.)lg,, which has a completely positive extention T'y(.):
B—L(H,).

Proof. By Theorem 2 there is the largest subspace H, of H, which
reduces the function T(.) to the completely positive function To(.) = T'(.)|x,
on S. The Arveson result above implies that Ty(.) has a completely po-
sitive extention Ty(.): B—L(H,), and the proof is finished.

Notice that the extention T, (.) in the last Corollary is positive definite,
by the remark (B), and, by Corollary 3, it has an R-dilation (X, B, T'[.]).

3. Decomposition of representations of suba]gebra; of (C*-algebras.
We take a C*-algebra 4 with the unit ¢ and its norm closed subalgebra

B containing e. Let P(4) be the set of all pure states on 4 and P(4)—its
closure in the weak topology of the dual 4*. We say that B separates the

points of P(A4) if for all ¢, p,eP(A) @1l = polp implies ¢, = @,. Firsh
we prove afore-going generalization of the Foiag—Suciu theorem in the
context of subalgebras of O*-algebras in the noncommutative case. We
need the general Stone-Weierstrass theorem for C*-algebras—see [3] for
references.

THEOREM (STONE-WEIERSTRARS). Let A, B be as above and suppose

that B is the symmetric subalgebra separating the points of P(A). Then
B =A.

Now we congider a funection 7'(.) on a closed subalgebra B of the
C*-algebra 4 with unit eeB. The closed subspace M < H is called .4-re-
ducing for T'(.) if M reduces every operator 1'(b)(beB) and there is a *-re-
presentation T[.]: A—L(M) such that T(b)ly = T[b] for beB. The
funetion 7'(.) is A-pure if there is no non-zero A-reducing subspace
for T(.). : .

Now we will prove the following lemma:

LovvA 3. Let TeL(H) be an arbitrary operator and cy, ¢y two real

positive numbers. Then there is a largest subspace M of H which reduces
T and such that for ze M: || Tzl < ¢ 2], 1Tl < ¢, ll2|.

Proof. We write 7 = {T, T*} and
2 = {P: Pe7’, P is a profection and |TP} < ¢y, | T"P| < ¢5}-

# is strongly closed in L(H). We will prove that & satisfies the con-
ditions (I)=(IV) of Lemma 2.

. Let Pe?,8c<L(H), 8| <1 Then [TPS|<|TP| I8 <e;, and
IT"P8| < ¢, It follows that if P, Qe then PQe# and consequently
for all integers >0 (PQ)"e#?. Hence PAQe#; which proves (I). To
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prove (1I) we take projections P, Q@2 such that PQ = QP = 0. Then
for el we have:

|22 +Q)alf = |12l + | TQul} < |ITPIP | Pl + | TQIF [|Qa]*
< AP +Q)alk < dillf

Q)| < ey ll| i P, Qe wel. Now we prove
then I'Q = QI = O and P—Q =P —PQ

q.e.d.

By similar token |17(P
(I, M P, Qe#?, Q=0
=P(I~Q)ed.

We tuke e, Qe T, () ~P with respect to 7. Let U be the partial
isometry belonging to 7 such that U*U =P, UU* = Q. For zeH we
can find yeR(P) such that UPy = Uy = Qu. Hence || = Uyl = |||
Finally wo get: [|1Qal| = [TULy| = |UTPy| < |ZPyl| < o]l and |T*Q|
< oy which shows that Qe2. Applying Proposition 1 we finish the
proof, : .
Notice that if we pub ¢, = ¢, = 1 then we get immediately from
Lemma 3 Corollary 2.

The following theorem generalizes the Foiag~Suciu result of [5]

Taporiyg 8. Let A be C*-algebra with unit ¢, B —its closed subalgebra
containing ¢ and separating the points of P(A). Let T(.): B=L(H) be an
arbitrary function. Then there is the largest A-reducing for T'(-), subspace
Hy, = H. The fumetion Ty(u) =T (u)| ut (weB) is A-pure and the decom-
position T(.) == Ty( )BT () where To(w) = L' (u)lg, (ueB) s unigquely
determined.

Proof. By Stone-Weierstrass theorem, ‘E]'le algebra 4 is generated
by BUB*. We write D) =T®) and T®) =TH)* if beB and
T = T(B)UT(B)*. Lebt by, ..., by, be clements of BUB* and let P be
a projection belonging to 7. We consider the inequality

(4) | 3 g B[ <] 3 by by,
Aol B1eensly

and define the sot @ of all projections Peg” for which the condition (4)

holds truo for every choice of by eBUB, n=1,2,... #is closed in the \
gtrong operator fopology. We' take P, Qe P and for I;ije,'(}"\il%“ 1‘.‘.1‘:(\.

opexator 7 = 3 0(by) ... P(by). T 0 = [ 33, -0 B[ 00 = 1| 3] S b3
then [|Z(PvQ)| = ¢, and 12*(Pv)| < ¢, by Lemma 3. Hence, LUB &
= \ & belongs to 2. We fix now the projection Pe® and take tho space
N = R(P), which reduces the function T'(.). Since P satisfies the condi.tmn
(4), wo may extend the function Ty(b) = T'(b)ly to A‘mhe well-defined
*.popresentation of A into L(N). ”}Iis (%XtOl:ﬂ)iOll is given by the fol-
lowing formula: Ty (Y by - by ) = ST by ... T () for by, .oy by 6B uB*

and zeN and we denote it also by Ty, We must verify that this
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definition does not depend on the form oi the element b,
precisely, we must show that 1f Z b; Z‘cjl
Ojys ++es G, ¢ BUB® then ST (b (b ).1,_ VT( D

s
Using the condition (4) we get

)
“ZT 11 % 24 f 011

1...1),. . More
n

i for bh’ bl ,

T(cj Yo for meN

B, ol < || Dby i,— 3o 0|l
= 0.

This proves that 7'y is the well-defined *-representation of 4 into L(N)
and consequently & is the A-reducing subspace for T'(.). We put H,
= R(V#). The preceding consideration implies that H, 4-reduces T'(.)
because VZe#. Now we will prove that H, is the largest such subspace
of H. Let L = H be A-reducing subspace for T(:). It is well known that
every *homomorphism from an involutive Banach algebra to a C*-algebra
is contractive [3]. Hence, if Py stands for the projection onto I then
Pre 2, which proves that H, is the largest 4-reducing subspace for 7'(.).
We apply (A) and complete the proof.

Now we will give a decomposition theorem for completely con-
tractive functions. The definition of complete contractivity was intro-
duced by Arveson [1]. Let B be a (™-algebra with the unit ¢ and §—its
symmetric subspace containing e. The linear function ¢ from § to the
Banach algebra B’ is called contractive it |lp(u)||<1 for all ueS. The
linear function ¢: S—B' is completely contractive if for all n =1, 2
the function ¢,: S,—B,, is contractive.

Let S, B be as above and let ¢: S—L(H) be a linear function.
We define the sets: 7 = ¢(8)Ug(8)* and

P, ={P: P<J"', P is a projection such that for weg, |p(u)P| < 1},

={P: Pe7", P is a projection such that for every m =1, 2,...

‘ and (uy)eS, we have [lpy((uy) 2yl < 13.
Using the same arguments as in the proof of the Lemma 3 we geb:

THEOREM 4. Let B be a (*-algebra with the unit ¢ and § —its symmetric
subspace containing e. Let ¢: S—L(H) be a linear function. Then theve
is the largest subspace Hy < H mducmg @ to the completely contractive (or
contractive) function.

The following result has been proved by Arveson [1].

I 8, B are as above and ¢: S—L(H) is a completely contractive
function satisfying ¢(¢) = I then there is a completely positive extention
@1 B—>L(H) of ¢lg such that ¢,|g = ¢. Using this result we will prove
now:

COROLLARY 5. Let B be a O™-algebra with the unit e and S iis symmetric
subspace containing e. Let ¢: S—L(H) be a linear function such that
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ey = Igy. Then there is the largest subspace H, of H reducing ¢ to the
Jumction po(a) = @(a)lg, for a8 having a completely positive ewtontion p,:
B—L(H,). Moreover, the Sfunction @, has an R-dilation.

Proof. By Theorem 4 there is the largest subspace H, of H , reducing
the funetion ¢ to the funetion ¢y(a) = ¢(a)|g,, which is completely con-
tractive. The above Arveson result implies that there is an extention ¢, :
B-~L(H,), which is the completely positive function. By (B), this extention
is positive definite on B. (C) finishes the proof.

4. Localization theorems. Lot us point out that Seever in [9] besides
proving the canonical decomposition proved that the projection on its
parts belong to the von Neumann algebra U generated by the range of
the representation in question. Now a little trivial heuresis is in order.
Sinee this concerns a commutative case, Seever’s result means that the
projections on the parts of canomnical decomposition belongs to A and
consequently they belong to the center YNA'. Now a natural question
appears: whether an analogous property holds true for decompositions
diseussed in the present paper. To be more precise we define von Neumann
algebras Ay, Ap where K: Q%X Q-»L(H) and T(.): B-L(H) are the
functions appearing in. Theorem 1 and Theorem 3 respectively, as follows:

g o= (K(2x QUE@RXLQY) and Up= (T(ByUT (B)Y).
Lt % be g or Ap. Now the question is: whether the largest projections
P, = VP involved in proofs of Theorem 1 and Theorem 3 belong to the
center ANY’ of the algebra Y. The basic Theorem 5 below gives the
positive answer to this question. We start with the following lemma:

LemMA 4. Lot A be a von Neumann algebra in L(H) and et 2 < A
be a family of projections. We assume that P satisfies the condition (IV)
of Lemma 2, that is: if Pe? and Q is a projection belonging to A, equiv-
alent to-.P with respect to W, then Qe P. If PeP and X is an unitary operator
from W then the projection @ = II[XP] is equivalent to the projection P
und Qe .

Proot. We take Pe? and an unitary operator Xe®. Sineo X* is
A,lﬂo tho unitary operator, then X* maps H onto H. Hence BK(XP)

RXPXY and @ = II[XP] = II[XPX*]. Bub tho operator XPX* iy
Hulf-tmlwinl‘ and (XXM = XPX*XPX* = XPX* which proves that
XPX* iy o projection and henco @ = XPX"< 2. Morcover, tho operator
U = XP iy the paitial isometry belonging to %W and U* U = P, UU* = Q.
Ienco P~ with tespect to % and Qe#, which finishes the proof.

TrRorEM 5. Let U be a von Newmann algebra in L(H) ond let # < A
be a family of projections, satisfying the condition (IV) of Lemma 2.
Then if there is the LUB & = P, of the family & and PyeP then P, belongs
to A'. Consequently, P, belongs to the conter AW’ of the algebra A
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Proof. Tt is well known that the von Neumann algebra is the
linear span of its unitary elements. We will prove that every unitary
operator X belonging to % commutes with P,. Let X be an unitary operator
from 9. Then, by Lemma 4, the projection /[ XP,] belongs to #. Hence

II[XP,] < P, and R(XP,) = R(P;), which proves that RE(P,) is the
" invariant subspace for X. Using the same arguments for the unitary
operator X* we derive finally that B(P,) reduces X. But hence X Py = PyX
which proves that Pye %', g.c.d.

All sets of projections defined in Theorems 1-4 satisty the assumption
of Theorem 5. Thus, the projeetions onto the parts of canonical de-
compositions described by these theorems belong to the centers of the
suitable von Neumann algebras.
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