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STUDIA MATHEMATICA, T. L. (1974)

The gemeralized almost periodic part
of an ergodic function

by
GORDON 8. WOODWARD (Lincoln, Nebragka)

Abstract. Let @ be a locally compact non-cmnpa.ctjt.beliau group,ﬂ]ljenoizeﬂ:;
dual of ¢ by I' and the Bohr compactification of & by.rG. Let 0(G) btzh (4 s??emum
all bounded complex-valued uniformly conjuinuous funqt1or}s on G um]ijer efmipc e
norm. Let IM(G) be the set of all positn_re ?Jranslatlon-mva.rw.zlt' n.ea;e 1; ;dent O,f
on (&) with norm 1. A @e0(@) is ergodic if .9"(«7;.) (y) = M(gy)@li mﬁv(p)h g
M IM (@) for each ¢«I'. Given an ergodicgq}mgr f) g]iix;ey Fo(fxp) ;ira;i Lgyker:els =7
B e e}'gf"_ii" % orgodio. i d to define the class of
to give a more:accessible (_ilefm.mon of ergodie funct;fni ;;I;ized define the olass of
‘Weyl almost periodic funetions in 0 (&). €(G) can be char : e e

ich are absolutely continuous with respecb'to Haar measure on & | : b
Kitles for Weyl a,lmzst periodic functions. Using these cresults Whez;hG e_efis?;; géoodrzz
can construct a large class of functions in I (G)né‘(G? f Moreovler ter i e
@ such that I (g)? ¢£(G). Such ¢’s as given here are BesEcov‘ltch almost p
functions which are necessarily not Weyl almost periodic.

Introduction. If ¢ is weakly almost periodic ‘[2], (3] on @, theix F (Iq;)
is -almost periodic. Weyl almost periodie .fuz_lct;ons @ ([11, 0121a—1—> ;f< 2),
Section 4) are not so well behaved, ’k.)ut it is tme 1.:hat ﬁl’ézlp) twe'rjoqz]j c
Very little has been published eoncerning the generalized a 5os hps, lodie
part F(g) of an ergodic function ¢ on G.. }Iowev.er, Ka;lumne_[ (]) a%v some
interesting results concerning null ergodie fune‘mons. (F 1(q)) = ).t S
use his Theorem 2 together with tsev‘erall cc;-nsct;uctwe emmas to P
fhat &(GF) i : elosed under pointwise products. . )
that (flff )niis,o]rlg; in the gencralized a,hno&.st periqdic part ?f a,nl (ffgq[c%c
function @ arises from the study _of ergodic sets in F‘o‘urle} é\,\(na Fhm?moq{;
For oxample it would be useful 1f.F (p) = F(w) for 150111; : (yhc;‘ t]l:l,t
periodic funétion o on @ Our main theorem (Theorem 6) implies tha
this i rne in general. ‘
o ncghzlazfilﬁit%ons and first few results a.'re‘ of interest for the ge?é
eral locally compact non-compact a.belian:‘group G‘ and a.re.hno ;23
complicated to deal with than when G = R o Z _So 1@ G beG suf) aa. % ; l;lpe
Let I' be the dual of @, G the Bohr compa.ctlﬁea.tlop of G, a,? ,11 the
dual of @. Denote by P (@) and AP (&) the spaces of trigonometric poly
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mials and almost periodic funections on @, respectively, under the supremum
norm [|l,. Recall that I'; is I' under the discrote topology and that
AP(Q) is identified with ¢ (@) in a natural way. We denote the z-translate

of a 9 0(&) by g, where g,(y) = o(y —ax) for x, y<@G. The space of bounded

regular Borel measutes on @ is denoted by M(@).

A continuous linear functional M on ¢ (@) is an invariant mean on
G if

(a) [IM] = M (1),

(b) M(p,) = M(p), for all peC(@) and ze@.

Here [+l denotes the norm of a linear functional. The set of all such
means is denoted by IM(@). Note that (a) implies that each M <IM (@
is positive.

We say that peC(G) is ergodic at yel'if F(p}(y) = M(gy) is indepen-
dent of M <IM(&). Such 2 @ is ergodic if and only if it is ergodic at each
yeI. Denote by #(G) the space of ergodic functions on @ with the su-
premum norm. Tt is a Banach space. Since @ hag only one invariant mean,
AP(@) < #(6) and M(gy) = g(y) for geAP(G) and yel. Here § denotes
the Fourier transform of ¢ considered as an element in L!(G).

Given p = Ya,y<P(G) and pe&(G), define the mean convolution
(pog) (@) =M, (p (@ —y)g(y)) for some M IM(§). Since pog= Ya,# () (y)y,
this definition is independent of the choice of M. Sinee P(@) is uniformly
dense in AP(®), the function gop(x) = My(q(w—y)zp(y)) is independent
of MeIM(G) and almost periodic for each gecAP(@). Moreover,
(409)"(¥) = 4(») #(¢) () for each y el Note that if one also has pcAP(G),
then gog = g* ¢, the convolution in VAN

Let {p,} = P(&) be an LY@ bounded approximate identity. Then
for pe& (@), the net {p,o¢} is bounded in L*(@). Since {(p,0¢)"} con-
verges pointwise to % (p) on Ty, {p.og} has exactly one weak® cluster
point ye L™ (G) and y = F (¢). Set F(p) = yand let (F) = {F(p)lge&(G)}.
The map F is continuous and linear, but not injective (the image of Cy(@)
is {0}).

There are three rather basie facts concerning the M ¢IM(@) which
we use:

L. For feZ'(G) and ¢<0(@®), M (fxg) =f(o) 2 (). Similarly, fx(qog)
= (f*g)op = qo(f*p), whenever q<AP(G) and peéd(G).
2. For qeAP (@), ped(G), and =z, y <@,

“(qO (p)a; - (qD ‘P)y”m < M(! g] ”‘Px - ‘Py”w) = ”él“l”% - ‘py”oc 3
where [igil; is the norm of ¢ in I*(@).

3. {M ()| MIM(G)} = N {co(B(y))| peco(Tre)}). Here co denotes
convex hull, B(p) the range of ¥, and Tro the set of translates of . O
course peC (@),
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Here 1 is & consequence of the fact that fxe is the uniform limit of

a sequence of particular linear sums of translates of ¢; 2 is immediate

from the definition of M; and 3 can be found in [4], proof of Theorem
2.1. . . o

An averaging kernel {k,} on G is a net in L'(G) satisfying

(a) Tim, [k, =lim,Fu(0) =1,

(b) N, ||k, — (ke)yll, = 0 for all we@. . ‘

One particwlarly nice averaging kernel can be .deﬁned as fo‘llona.
Let {U,} be a neighborhood base for o< I" which consist of compa.ctt syltl;
111611‘1&(: sots. Denote the measure of AU“ by |T,| and the‘ charac »ensj .
function. of U, by x.. Define &k, by k, =}!Ua[—1xf: xﬂf. Wsl;?vzh;n?:é?ﬁ‘s

i i i k.; is a net of po
ordering o < g if and only it Uy € U, { 2 :
in IH&) lech satisfies (a). To prove (b), ﬁxAx e, an mdex‘ a, a.nd_ cilso;)‘iz
geI*(@) so that § =1 on U,. Since (g—g,) (0) = 0 and smceLll)o(l}n e -
spectral sets ([6], Section 7.2.5), there is for each # an hye L _)l WWe
h. =0 on a neighborhood of zero such that (g —go) — Pnlls < 7"
tﬁun have for f >« and sufficiently large

lop— (Ra)alls = Il (s — (Tep)a) g1l
= [[kp* (g — Gudllx
< glla Mg — ga) — halls A+ g% Fonlly
<n
o . 5
i i T 5 Iso be described in this contex
The classical averaging kernels can & eseribe _ -
Ir?ljl(1 instance let ¢ = R or Z and let {} be a poslltwe increasing uribound).
ed net in G. Let x, be the characteristic function of the interval [o, @,
in ¢ z'md set u, = a7 y,. Olearly, u, satisfies (a) a,nd.(b). . -
The connection between averaging kernels aﬁld. mva];u:,;l pinozis -
i i ing theorem and corollary who ¢
gummarized in the following t : roll: 0se Proots we
i lysis of averaging kernels
ghall gketech (a more detailed ana and
;pplicmiom i the subject of another paper). (See also [2], Part I )0 -
Tit[«‘ORFM Let {k,} be an averaging kernel on G and suppose peC(G)-

e s = sup{| M (p)]| M <IM (&)} = limﬁ}PHku*ter-

ith % o (Tre)
i iti k,(0) = 1. Then Fkxgeco(Tre
ssume each &, is positive with k, 1 e)
Henib?: limsup ||k plle by Fact 3. Converselslr;[ if peco ;Tquo),s ﬂ;(ﬁ f;ﬁp
2ty (b) o fmpli 0. Hence sz lim sup |k.* ¢l »
-ert f {k,} implies | Feo p — Tk @llco — :
21;¥n<bgyoFa{ct }3. Flt))r the general &, we pegd only J::\ote tha,tj, (?rop]elx(;?é
(f) implies the positive part kF of k, satisfies (e kg —kKofs =0, W
ezt = (k) (o).
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COROLLARY. Under the hypothesis of the theorem, @ is ergodic at yeI'
if and only if {Tx(pp)} is uniformly Cauchy and comverges to ¢ = F (¢)(y).

If {k*(gy)} is uniformly Cauchy, then property (b) implies it must
converge to some constant ¢. If o iy ergodic at y set ¢ = & (@) (p). Now
apply the theorem to the function ¢y —ec and use property (a). This
corresponds to Theorem 3.1 of [2].

Let {u.} be the previously defined averaging kernel for G = R.

According to the corollary, a p<C(R) is ergodic precisely when
@2
ugk (pe™ ") (@) = a7t [ g(t)e~Wa
. T~Ty .
converges uniformly in # to some constant as o — oo, for each yeR. Thug
&(R) consists exactly of the uniformly continnous Ryll-Nardzewski almost
~ periodic functions on R as defined in [5].

In a similar manner we can use the theorem to give a satisfying
definition of Weyl almost periodic funetions ([1], pages 71, 72, 82). Firgt
the clagsical case G = R. A @eC(R) is Weyl almost periodic if and only
if there exist a sequence {p,} = P(R) such- that

{*)
But

lim  sup
T—oo —ca<z<oo

1 @
7 [ et —pa(0)idt =0(1), as n-> co.
=T

1 7 .
7 [ 100 ~p.018 = ugi lp~p,I(a),
a-T | :

where {up} is as before. Thus (*) is equivalent to

(%) msup luz*|p—p, o = o0(1), a5 n - oo,

r R .
which must remain valid when {u,} is replaced by any averaging kernel
on G by the theorém. So we define, for the general G: g<0(G) is Weyl
almost periodic on G if (*+) holds for some {ps} = P(@) and some (there-
fore every) averaging kernel - {uz} on G. Let W(@) denote the class of
Weyl almost periodic funetions in €(G) and W(G) = {F(p)| pe W (@)}
Of course, W (@) < &(6); hence W(GF) < &(G).

‘Where possible we nuse the standard notation in TFourier analysis.
However, the reader must be slightly ecareful since the same notation
is used to denote action on @ as well ag @. For example, if ge AP (@), then
g and [gll; refer to qeI*(G). ‘

_The space &(G). Our first result gives a useful characterization of
#(G) for the general non-compact G. For technical Teasons however, we
will restrict our attention to those weL™(G) whose gpectra are precompach

icm®
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in I We definc the isometric homomorphism p: M(G) - M (G) ) by
[ado(n) = [qdu for ue M(G) and g AP (). Since each feL'(G) determines
a unique measure in M(G), o(f) is well defined.

ProrosrTroN 1. Let {k,} be an averaging kernel on G and suppose that
peL®(G) has spectrum which is precompact in I'. Then pe&(G) if and only
if for each yel )

) Limsup o (k) (yy) =% (Pl = 0.

Proof. Let {pg} = P(§) be an L'(G) bounded approximate id.em;i.ty:.
By definition, pe & (@) if and only if there is a g & (G) such that F (p) = y.

Therefore, pgogp = pyry for each f. This means that {p;op} converges

to u both on the I*(F) norm topology and in the bounded L™ (&) weak*
topology. In particular,

llo () (97) =9 ()]l < mnsgﬁ [ (200 (7)) —F (@) (V)|
= limsup||p0 (ka* (97)) —F (@) (9)]]eo
= limsui) 950 [ka® (97) —F () (¥) oo
< 1ims1g1_>npﬁ|hnka* (@) —(FP)(P)]o-

Sinee ped (@), we conclude that (1) holds for any ’tp.eé‘(G). Gonverieh:
suppose u satisfies (1) and has precompact speetrun} in T TO]'uZJ {fﬂtmﬁ {
< P(§) is equicontinuous amd bounded on &; hence it has a Cf )te u; <
point @ in the topology of uniform convergence on compact subsets of G.
Since : N )

eat (7) — % (P)lleo < limsup (oo (2% (97)) = 9 (V)]s

= llo(Fa)* (97) — % (Moo

we conclude that @e<#(G) and that F(p) = w.‘l N

Part of our interest in Proposition 1 lies in .the followymg emolld;ly
whose validity follows direetly from the proposition and its proof. T (;
z-topology is the topology on C{G) of uniform convergence on compac
sets. ~

COROLLARY 2. Assume ype & (G). .

() If {u} = M(G) is norm bounded, then the weak* cluster points

g 1 —

of {ugsp} are in &(G). .
& fzii;,}If {ug} = ING) is norm bounded, then the v-cluster points of
. e in &(@). » '
{ugeyp} are in o ) ~ 4

(iii) In either case 1im, || (Fa) (ug% wy) — g (9)¥ (9o = 0, wniformly
in p whenever {k} is an averaging kernel on G.
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An analogous result holds for Weyl almost periodic functions. Simply
replace &(@), ¢(G) with W(G), W(&).

The techniques used in proving Proposition 1 can also be used to
prove: ypeL®(G) with precompact spectrum in I' satisfies ¢ = F(p) for
some ge W(@G) if and only if

lim sup limsup o (%) | pgrp — vl ||l = 0,
a B .

where {¥,} is an averaging kernel on @. This extends slightly a clas-
gical result ([1], Remark, page 107).
The following is a simple and interesting construction concerning
the generalized almost periodic part F(p) of a pe W(GF). We present it
- here because it sets the tone for our later work. Let 1 = k; < ky < ... be
a sequence of integers satisfying k; = 0 mod(k;_,) for i > 2 and let {a,} be
a sequence of bounded complex numbers. Define the sequence {g,} of
periodic functions on the group Z of integers as follows: if k¥ = 0 mod(%,),
set @, (k) = a,; if & = 0 mod (k) and %k % 0 mod (k; ) for some 1 <j < n,
set @,(k) = a;. Let p(k) =lime,(k) for k¥ # 0 and set ¢(0) = b, where

b is a cluster point of {n~'Y a,}. Define the averaging kernel {f,} on
1

Z by fuk) =Tkt if 0< k<K, and f,(k) = 0 otherwise. Since ¢(k)—
—q@,(k) #0 only if & = 0 mod(k,,,), it is easy to see that

lim lim sup Hfm* ¢ —@al Hw =0.
n m

Thus ge W(Z). We claim that F(p) is almost periodic (i.e. continuous on Z)
if and only if the sequence {a,} converges. To see this define {p,} = P(Z)
by pu(k) =k, if k& = 0 mod(k,), and p,(k) = 0 otherwise. Observe that
P Flp) = p,0p. Now one can easily verify the equivalence of the fol-
lowing statements and hence prove the claim: F(p)<C(Z); {p,*F(p)}
is uniformly Cauchy; {a,} converges; ¢ is almost periodic.

The basic difference between the previous construection and the one
needed to establish our main result is in the choice of the bhounded se-
quence {g,} of periodic functions on Z. The “new” ¢, will converge in
INZ) to a peL™(Z) and pointwise on Z to a bounded function ¢. The
construction of the ¢, will ensure that {p,*y} converges pointwise to
¢ for an appropriately chosen sequence {p,} = P(Z) which is bounded
in IZ) and that (usually) ¢¢ W(Z); hence w¢ W (&) according to the
remark following Corollary 2. Finally we will give conditions on the ¢,
which are sufficient to imply that pe&(Z) and y2¢ &(Z) (this also implics
w¢ W(G). It will follow from [5], Théoréme 2 that these conditions
are not vacuous. As indicated the result will be proved for G =Z and
then extended.

icm
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The construction. To begin, let B > 0 and choose any sequence {k,}
of positive integers satisfying (1) 3 &, /kppy < 00, (2) kpyy = 0 mod(k,),
and (3) (n+1)k, < ky,,, for n=1. Let {ay} be an array of complex
numbers with modulus bounded by B where (¢, j) satisfies 2 <4 < oo and
0<j< k;_,. Finally, for »>2 set

I, = {keZ| —nhy_ <k < —(n—1)k,_,}

and define K, = I,+k,Z. Note that I, < (—k,,—k,_,) and that
L+ %, < [Ky.yy by), for o= 2.

The sequence {p,} is inductively defined. Let @, be a periodic com-
plex-valued function on Z whose period divides %, and which is bounded
by B. Suppose @y, ..., ¢, have been defined. Given ke K, there is
2 unique 0 < j < k,_, such that k = (—nk,_, +j) mod(%,). Set g, (k) = ay;;
if k¢IK,, then set @, (k) = ¢, (k). It follows that @, has period dividing
%, and that g, ditfers from g, on at most K, v... VK, =L, for
any 1< 7 < n. In particular, {p,} converges pointwise on Z to a function ¢.
Morcover, since [[@llo < B, the sequence {p,} has an L™(Z)-weak* cluster
point » (actually ¢ is a limit point). The phrase admissable triple will
refer to any triple ({p,}, ®, v) that can be construeted as above.

In the next three lemmas it is proved that pe&(Z) if and only if
9e8(Z). For m>n, set Ly, = O and define 4, = L, 0 [0,1,) for
any m, n. Denote the cardinality of a set K by |K|.

LeMMA 3. Assume m < n.

n—1
(i) gm0 Ayl = Badtndinhy [] @ =Rk
j=m+1
n—1
(ll) |-A'm,nl < kﬂr 2 k]‘kf_-f‘ll'
. j=m

Proof. Since |4, . = Sldgn 0 Af,l over m<j<n (i) follows
immediately from (i). Thus we need only prove (i). To begin call each
interval of the form [sh,, (s+1)%,) an r-interval. Reeall that each K.
sonsisbs of r-intervals, precisely onme from each r-+l-interval. Set A
= Ay O Ay, and let a, be the number of m-intervals in [0, 70,.)‘0 4,
# >m. There are k.,/k, r-intervals in [0, k.,). Bach one (I:()ntmns o
meintervals in Ky N (Epgs Y ... Y K), but one of these r-intervals is
in I,,; none are in Ko, K45, ... Thus there are o, (b Byt =1) = oy
m-intervals in [0, %,.1) N 4. This holds for » = m+1,..., n—1. Therefore

|A1n,n 8} Afn-&—l,n] = kman = 7‘:man—1(knk';il _1)
e & km(km-i—zk';z}i-l _1) ves (knk;—l-l '—1)

= k,,kmk,;ﬁrl(l—k,,,“k,;fﬂ) e (=T R ).
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LEMMA 4. limﬂ =Pl = 0.

Proof. It is sufﬁmen’r to prove that {g,} is I*(Z)-Cauchy. Let m < n
and recall that ¢,, and @, both have period dividing %, and that ¢, ditfers
from ¢, on at most L, ,. In particular

\
Ip—1

lpn—ulls =T D) g ()

k=0

— (k)] < E'Bk;l{Am,n“
where B is the bound for {||p,l.}. Now apply Lemma 3 (ii).

Define {p,} = P(Z) by p,(k} =k, if kek,Z and p, (k) = 0 otherwise.
We observe that |p,ll, = 1 and that p,*g@, = @, for all m < n beeause
the period of such a g, divides &,. Hence {p,*v} converges to yin L'(Z)
by Lemma 4.

LeMMA 5.

(1) {pn*y} converges pointwise to ¢.

(il) If ged&(Z), then v = F(p).

(iii) pe&(Z) if and only if pe&(Z).

Proof. We begin by computing p,*@, for m <n. Since p, has
period %, the period of p,*p, must divide %&,. Hence we need only
compute P, *@, (k) for 0 <k < k. Fix such a k. Then

Pt ta(k) =Fa D) Dulb—8)pn(s)

o<s<ky,
= kmk';l 2 ‘pn(k +8%n),
. 0<8<lpy
where by, = Fp/ly. Set By, = [[(1—F;/k;y) over m+1<j<n—1 and
Qn = hmBm - Reeall that for j < n we have @, = @;on (E;py U ... UKL

and obselve that the number of j-intervals in (K;,, V.
iy precisely k%4 . 0 AZlL
sum as

.pm*lpn(k) = kmk;I (¢7n(70) k;bll 1Am—1 n n Afﬂ.,n‘) "I"

LUK, N0, k)
In particular, we can w'rite the above

+ T Tt erl( D sty [ g O Al

j=m 0<8<lpy 5
—~1

'—“Pm(]*) m—-1n+2,lm,a( 2

~1
i 1,Ia+slcm) Ty Bo7 1. Bj
j=m B34 lm,n

by Lemmsa 3 (i). Therefore

My ¢ () = o) Qo + ZV (6 67,5,

j=m

Generaliced almost periodic part of an ergodic function 111

where
Y — 71
Vm,j(k? =ln; 2 Oy 1, sk 2

0<8<ly,n

being an average, has modulus bounded by B. Since limp,, *@, = p,*v

. . n
by Lemma 4, im@,, =1, and lime, (k) = ¢(k), we conclude
m m

limp,*yp(k) =@k), keZ
m
which proves (i).

Since {p,} and {p,*p} converge to v in L'(Z), the proof of (i) will
follow immediately from limllpmow~ D *Pylle = 0, which we now prove.
Let {f,} be the averaging kelnel on Z defined by f,(k
and f, (%) = 0 otherwise. Obgerve that

=Tkt for 0<k < %y

1) 111]in||(fnpm) %@ ~PprO¢lle =0,

since ¢ is ergodic by assumption. Let %'eZ be arbitrary and choose
0<k<bk, so that %k =k mod(k,). Since p,op has period dividing
ko, (1) implies the existence of funetions 4, on 7 satisfying ||4,]., —0
such that
(fa2m) *@ () = (fom)*@(R)+ 4, (K.
But ¢ =@, on (—ky, k,). Thus, for m <n,
(fnpm) *‘P(kl) == (fn.pm) * @, (k) + An(k’)
= Pk, (B A, (k') for all &'.

Therefore 1Hm 9,0 ¢ — P * @olle = 0.
w

To prove (iii) observe that if y «& (Z), then ¢ <& (Z) by (i) and Corollary2.
The converse follows immediately from (ii). m

The previous lemma allows us to easily dlstmgmsh between L®(Z)
and & (Z). For instance, if v is a bounded nonergodic function on. Z, then
the ¢ in the admissable Luple ({pu}) @, p) corresponding to ay = 7(j—k;_,)
for 0 < § << by, and 4 5= 3 is nonergodic. Henee y ¢ &(Z). A simpler example
arises from ay = (—1)° for 0<<j < oy and 922

Now wo will construct some nontrivial ergodie functions. To begin,
et o he any bounded function, on Z which is zero for k<< 0 and for

Te U I,

111,1]11“11(11 Let gy be as before and suppose ¢y and a;; have been defined
for L{h<n, 0KJ<hiy, and 2<i<n Let 0 < 8 < ky_;. Detine

Pu(8) +o(s)
Pu—1(8)

Inductively define the arvay {a;} as well as {p,} in the following

if s¢K, U
it seK, UV

UK, .,

v = Pas(8)+0(8) = CUE, .
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Define ¢, as before. Since {a;} is bounded, this process gives rise to an
admissable triple ({p.}, @, ¥)-

In the proof of the next theorem, the following description of the
relationships between the @, and ¢ is used. Let n >2 and let T = [sk,,
(s4+1)k,) be an arbitrary n-interval. Either

Ic(UK) o Ic{UL).
n+1 41
In the first case, ¢ = ¢, on I. For the second, let 7 = (s, n) be the first
j such that I < K;. Then I = (K, U ... UK, ;)°; hence ¢, = ¢,_, on I.
Now choose s, so that .

and

sk, —8, k, = —rk,_, mod(k,).
Then, by definition,

(pr(Skn""j) == ‘Pr—l(Skn'Fj) -+ U(srkn'{‘j)

= Pu(sky+i)+ o(s, by +]);, 0<J<hye

Now suppose I < k, for some p >7. Then for the corresponding 8p We
have

#p (8 4-0) = @pi(ska+J) F o (8T, +0)s 0K G < Ty
But

Spky = phy_y + sk, mod (k,) = sk, mod(%,)
= —71k,_; +8,k, mod(%;);

hence s,k, = K,. Thus o(s,k,+j) = 0 for 0.<j < k,. Therefore ¢, = g,
on I. We conclude :

either ¢ =@, or ¢ = @, 40 sy, on L.

Finally let m < » and recall that ¢, = ¢, on (K,,., U... U K,)°. In par-
ticular, for any n-interval I, ¢,, differs from ¢, on at most |4,,,.} points
by at most |jo|-

THEOREM 6.

(i) pe&(Z) if and only if ce&(Z).

(i) If we&(Z), then p*e&(Z) if and only if o*c&(Z).

Proof. First note ¢ &(Z) precisely when S (o) = 0 (similarly for o?)
since o(k) = 0for k& < 0. Define the averaging kernel {f,} onZ by f, (k) = &
i —k<k<0 and fi(k) =0 otherwise. Fix. we[0,2x), let 2 <<m < N,
and let I = [sk,, (s+1)k,) be an n-interval. Aceording to the remarks

icm
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preceding this theorem, there is a 6 =1 or 0, an 7 = r(s, n), and an s,
such that

(1) fax(@e™™O)(sly) = k5" Y (pu() + 00 (8, Tty —sky + )67
I

=Iz* D om(f)e™ +a(my n, 8)+ 1516 D 0(8, ki — ke, + )6
I I
= ok (0™ 0) (5Toy) -+ Oy (06~ 20) (s, T,) <Cn=0Tn) - g (m , m, ),

where |e(m, %, 8) < Ty 1ol | Al < llolles D) s/Rejyr. Given a >0 choose

m
N2 so that ¢ > |lolled T /le1, N <j< co. Then [ —dplle< ¥ —@mll:
< a for all m>= N. Fix m > N and choose n, >m 8o that
@) 1o # (P~ ™) = (@) < @ for all 73> my.

Assume firgt that v, hence ¢, is ergodic. Then there is an %, = f4
guch that

3) [|fn*((pe"""“('))——.f(q9) (@)oo < @ for all %= n,.

Since S (p) = ¥, we conclude from (1), (2), and (3)
{4) 8| fu (06N (8,Kp)| < Ba, > Mg,

where 8,7 = #(s,n) depend on s, n. We claim (4) remains valid with
§ =1 and s, replaced by anyinteger s'. I s’ < 0 or if [s' %y, (s'+1)k,) = LU K;
(j =mn-+1), this follows from definition of 0. Otherwise choose p so that .
8' by, < Top..; amd consider the n-interval I determined by sk, = k,—pk,_,+
+48'%,. Then I < K,,. It r =r(s,n) <p, then 'k, = srkn—?fk,__lmod(zcr).
This implics [§k,, (s’ +1)%,) = UK, (j =n+1), a contradiction. There-
fore, for this I, p =r(s,n), s, =&, and § =1. We conclude

|k (06™0) (sh,)| < 3a
for all %> n, and all seZ which implies
IF (06N o < Bat O (2, [Ky), W —> 00.
Since @e[0, 2n) and a >0 are arbitrary, ced(2).

The converse is much eagier. The ergodicity of o together with (1)
and (2) implies (3), which means ped(Z). Hence ped(Z) by Lemma 5.
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To prove (ii) notice first that ({¢}, ¢%, v?®) is also an admissable
triple. In particular we can proceed as in (i). The expressions become

(B)  fax(¢2e™™0) (sky)
=fn ‘P'%n —fx() +6fn —ix(.))(s T ) (8,00 —slcn)+

+20f, (06”0 (8,ky) ™M) - &' (m, 5 5),

where [ (m, 7, 8)| < ([plleo + [0]le0)® > #;/%; 11 . Since we aze assuming ye & (Z),
m

part (i) tells us that oe#(Z). In particular the first and third terms of
(B) converge uniformly in s to (¢2,) (®) and 0 respectively as n —> oo.
Now argue preecisely as in the proof of (i) to conclude (ii). m
Suppose now that ¢eC(Z) satisfies
(@) ok) =0 if ke(—o0,0)u (U Ky,
(®) (b) oed(2), ’
(¢) o*¢&(2),

and let ({g,}, ¢, ») be the admissable triple determined (up to ¢,) by o.
Then Theorem 6 implies ye&(Z) but v ¢ &(Z). It follows that wed(Z) N
N W(Z)* since W (Z) and hence W (Z) is closed under products. In partic-
wlar ped(Z) N W(Z)°. The referee has pointed out that ¢ is in fact
a bounded Besicovitch almost periodic funetion ([1], pages 73,95) which
is ergodie but not Weyl almost periodic. That is, there is a sequence
{pn} = PtZ) such that the sequence

. 1 2
7, = limsup ] o (k) — P ()]
n k=—n

converges to zero. In this case set p,, = ¢, and observe that |r,| =
O (S k;kjey) as m — oo, This estimate, which holds for any admissable
m

triple, is based on Lemma 3 and the fact that k;_, /(%; —5k;_;) — 0.

The existence of o C(Z) satistying (P) follows essentially from a result
of Kahane ([3], Théoréme 2). However this implication requires some
notation and a few comments. To begin, choose g<C(R) supported on
[0, 1] so that §(t) # 0 for 1[0, 2x]. (¢ =1 at &, 0 off [0, 1], and linear
on [0,4] and on [§, 1] will work.) For ve0(Z) define T,(z)eC(R) by

T, (z)(r) = 2gr—~
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By usmg an (wua.gmg kernel, it is easy to see that T () e&(R) if and
only if ze&(Z). In fact if ved(Z), then F(T, (7)) = §F(v) where F(7)
is considered as a periodic funetion on R. Define T 7 (T)y = Ty(z) on
[n, n+1) and T,(v), = 0 clsewhere. The theorem of Ka.hfme 1mphes
there exists a 41 valued function 4 on Z such that f = 2 AT, (v), e E(R)
and F(f) =0 (4 (l(‘I)(‘ll(lh on 7). For our purposes let v be the characteristic

funetion of [0, co) Ulfj )” and observe N4 (n) Ty(v), =T, (47). Set ¢ = A=
2

Then o satigfics (a) and (b) of (P). Since o2 = 7 and sinece

- n—1
Tt ) w(h) = 1=k Ayl = [ ] (=T /ky)
[iBat T2 kn J=1

is bounded away from zero, o also satisfies (c).

Lemma 5, Theorem 6, and the remarks concerning Weyl and Besi-
covitich almost periodic funetions remain valid when Z is replaced by R.
To show this we meed: if {f,} and {h,} ate averaging kernels on Z and
R respectively and if <R, fhe .

() B (z0™O)p = Tim [y (1) 60 ..
n

Its proof iy straightforward it af, 'und nh, are the characteristic functions
of [0,n) « Z and [0, n) < R, respectively. The general case then follows
immediately from the theorem in the introduction. Before continuing,
let us assume (g2)" () # 0 for te[0, 2=) (the g mentioned eatlier works)
and observe that (LI’[,(r))2 = Tz(7%). Given y in the admissable triple
({pu}s @, ), detine T, () eI (R) by T,(p)=1LmT,(¢,) in L'(R). We call
{Ty (@)}, T, (9), T,(w)) an admissable triple on R. Now observe that ()
together with Proposition 1 and Corollary 2 is all that is needed to extend
Lemma 5 and Theorem 6 to R. The fact that T,(y) no longer necessarily
has precompact spectrum in R offers no problem. This assumption was
only used in Proposition 1 to guarantee the existence of certain cluster
points. Iere T',(p) is such a point. Finally, we note that if T ()" is the
transform of w gmoml Ryll-Nardzewski or 'Weyl almost perlodle % on

R([b], [1]) with [f |xlde umiformly bounded (hence any Weyl a-p

funetion), then 1,(p)eS(R) or W(R), respectively. To see this let {f,}
e M) be o buundod approximate jdentity with support f, compact.
Then f,*xeC(R) and is in the same class as y. Henee f,xT,(p)e 8 (R)
or W(R). But T,(¢) is the uniform Hmit of {f,*T,(¢)}
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Integration of evolution equations
in a locally convex space

by
V. A. BABALOLA (Iba-dan, Nigeria)

Abstract. Let H = H(R™) be the space of all real-valued functions in (% (R™)
having every partial derivative in L, (R™) and topologized by the seminorms defined
as follows:

> [ p¥g()ra)t,

v]=0 R™

pile) = ( peH, i =10,1,2,...

Let A De an elliptic differential operator with coefficients possessing bounded deriv-
atives of all orders. This paper solves the Cauchy problem for the system:
ou (£, t)
73
w(0,1) =f(t),

= (du)(&,8), &> 0,teR™,

FeH, teR™,

1. Introduction. The present paper is a follow-up to [2], and its
knowledge is assumed here. Let 2 be an open subset of a Euclidean space.
For convenience we shall denote by 0% = 0*(2) the space of all infinite
times continuously differentiable real-valued functions on 2 and by
CF(Q) the space of functions in 0*(2) having compact support in L.

Now let A Dbe the partial differential operator of 2nth order in
m-dimensional Euclidean space- R™ given by )

n

(L) A= (=1 Y DO, (D",

lel, [v=0

where the coefficients a,, belong to C*(R™) with bounded partial deriv-
atives of all orders. We assume further that a,,(?) = a,,(t) for |o| = |¥]
= n-and there is a constant & >0 such that

- ¥,
(1.2) DTG A N SN
lel=]|=n F=1

for each (fy,...,%,)eR™; so that A4 is an elliptic differential operator.
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