icm°

STUDIA MATHEMATICA, T. L. (1974)

On joint spectra
of commuting families of operators

by
Z. SEODXKOWSKI and W. ZELAZKO (Warszawa)

Abstract. In thig paper we study basic properties of joint spectra of mutually
commuting families of operators of a Banach space X. The speetra in question are
the bicommutant spectrum o, the commutant spectrum ¢, the left spectrum o,
the right spectrum oy, the speetrum o and the approximate point spectrum oy (the
study of the last one is the main goal of this paper). Among other results we obfain
here the projeetion property and the speetral mapping property for the spectra oy,
o1, oy, 0, and wo disprove these properties for the spectra ¢’ and o”.

Introduction. Let o be a commutative complex Banach algebra
with unit element I. If A, ..., 4,57, then the joint spectrum is defined
by the relation

o(dy; ..., 4,) = {(f(Al)) --~7f(An))€Cn: fe W(ﬂ)},

where 9 (s7) is the set of all non-zero multiplicative linear functionals
defined on 7. Another formula giving the same set is

0(dy,y -y 4y) = {(dy, ..., A;)eC": the elements
A;—2I,i=1,...,n, generate a proper ideal in o7}.

The last formula makes sense also in a non-commutative algebra (with
an ideal replaced by a left or a right ideal) giving the concept of the left,
rosp. right joint spectrum.

The joint speetrum is a basic coneept for one of most important
chapters of the theory of commutative Banach algebras, namely for
the operational (symbolie) caleulus of analytic functions of several complex
variables. The basic property of the joint spectrum permitting to for-
mulate a theorem on functional caleulus in such a way that the obtained
caleulus is unique is the projection property of the joint spectrum. The
projection property is given by the relation

Po(dyy ...y 4n) = g(dyy ..y 4y,
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where k< n and P is the projection of €™ onto C* given by P (41, ..., 4,)
= (A1, .1y Ak)

For a non-commutative Banach algebra o it is not very clear which
concept should be taken for the joint spectrum, even if o = L(X)is
the algebra of all bounded operators of a Banach space X. In recent
years the attention of several authors was drain to joint spectra of several
mutually commuting operators of a Banach or Hilbert space (some authors
considered algo non-commuting n-tuples of operators, but joint spectra
of such n-tuples may be empty). Various authors accepted various concepts
of a joint spectrum, and 5o Bonsall and Dunecan suggest in the book [1]
the union of the left and the right spectrum. The same concept is aceepted
in the papers of Harte [5], [6]. Dash in [3] proposes the bicommutant
spectrum o', while Taylor in [10], before introducing his very interesting
concept, starts with the commutant joint spectrum o’. All these spectra
coincfde in the case of a single operator with its usual spectrum. Some
special subsets of joint spectra have also been studied, e.g. the left spectrum,
or, particularly, the joint approximate point spectrum (cf. e.g. [2], [3],
(6], [131).

In this paper we discuss the basic properties of the following types
of spectra: the commutant and bicommutant joint spectra o' and o,
the left and the right joint spectrum o) and o,, the spectrum o = o, U 0}
and the joint approximate point spectrum o, all for an arbitrary family
of pairwise commuting operators of a Banach space X. In the first section
we give all necessary definitions, we establish relations between all those
joint speetra and we prove that they always are non-void compact subsets
of a suitable product of the complex planes. In the second section we
discuss the projection property of these spectra. First we show that if
a joint speetrum is defined only for finite families of mutually commuting
operators of & Banach space X and if this spectrum possesses the projection
property, then it can be uniquely extended to a joint spectrum defined
on the family of all subsets of L(X) consisting of pairwise commuting
operators, and possessing there the projection property too. This result per-
mits e.g. to define the Taylor spectrum on the set c¢(X) consisting of all fa-
milies of mutually commuting endomorphisms of X. Then we prove that the
joint approximate point spectrum possesses the projection property. This
is a generalization of a result of Bunce given in [2], where it was shown
that the joint approximate point spectrum defined on finite subsets
consisting of pairwise commuting operators of a Hilbert space possesses
the projection property. Using this result we prove that the left spectrum,
the right spectrum and the spectrum also possess the projection property.
These results were obtained earlier by Harte in [5] and [6], we decided,
however, not to withdraw the proofs when we learned about the results
of Harte after submitting the first version of this paper for publication
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since our proofs are different and clarify the relations between different
types of joint spectra. Finally, using an example constructed by Taylor
in [10] we disprove the projection property for the commutant and bi-
commutant joint spectra. In the third section, added in the second version
of this paper, we discuss the speetral mapping theorem for all joint spectra
considered above. We prove a theorem giving some conditions equivalent
to the speetral mapping property and epplying this theorem we obtain
the spectral mapping theorem for o, gy, o,-and ¢,. Here only the result
on joint approximate point spectra is new, the other results are due to
Harte [5] and [6]. The spectral mapping theorem fails for the commutant
and for the bicommutant spectrum. This fact rather eliminates these
concepls as possible generalizations of a joint spectrum and gives one
more argument towards considering the Taylor spectrum as the proper
generalization. This is resonable also since the Taylor spectrum not only
possesses the projection property and the spectral mapping property,-
but also, as shown in [11], it is suitable for building up an operational
caleulus.

The methods used in this paper are based on the concept of an ideal
consisting of joint topological divisors of zero. This shows that there are
strong relations between this concept and the concepts of joint approx-
imate point spectrum and other types of joint spectra.

§1. Basic definitions and properties of the joint spectra. Let X be
a complex Banach space. We denote by L(X) the Banach algebra of all
continuous endomorphisms of X. If § is a non-void subset of L(X) then
its commutant 8’ consists of all operators BeL(X) such that AB = BA
for all Ae8. Clearly S; 8, implies S, < 8;. Also § = |J 8, implies
8'=N 8. The bicommutant 8"’ of 8 is defined as (8')".

If § consists of pairwise commuting operators then § < 8§ and so
8" = 87 We have also § = 8 since each element of § commutes with
each clement of 8. If we denote by M (S) the family of all maximal commu-
tative subalgebras of L(X) containing S, we have

(L.1) 8 = JM(S)
and
(1.2) 8§ = M M(8),

where (JM(S) = U {&/: e M(8)}, and similarly for MM (S).

TFor any non-void set § of pairwise commuting operators of X the
bicommutant &' is a commutative Banach subalgebra of L(X), while,
in general, the commutant §' is a non-commutative Banach algebra
containing § in its center. .

1.1. DEFNITION. Let X be a complex Banach space and 8 = (4;)er
a family of pairwise commuting elements of L(X), where T is a set of
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indices. The bicommutant joint spectrum o'’ (8) of the family S is defined
as the set of all points Ae CF, & = (A)er, such that the closed ideal generated
by the set {d;—A,I: teT} is a proper ideal in the algebra S'.

In the above definition and in the sequel I denotes the identity
operator.

Thus a point A¢CT is not in the spectrum o'/ (§) if and only if there
exigt a finite set %,...,%, of indices and a finite number of operators
By, ..., B,e8"” such that

n
(1.3) D Bi(dy— 2, I) = 1.
=1
If 8 congists of a single operator A, or § = (4,,...,4,), then we
also write ¢''(4), or ¢ (4,,..., 4,) instead of ¢/ (8). )

The above defined bicommutant spectrum is sometimes called
a spectrum (e.g. in the paper [3] in the case when X is a Hilbert space
and § is a finite set). It is clear that if S consists of a single operator 4,
then o''(A) coineides with the usual speetrum of 4.

1.2. DerFINITION: Let X and S be as above. The commutant spectrum
o' (8) is the set of all points in €%, such that the set {4,—2I: t<T} is
contained in a proper (two-sided) ideal of the Banach algebra §'.

Thus AeC7 is not in ¢’ (8) if and only if there exist indices t,, ..., t, T
and operators B,, ..., B, 8’ such that relation (1.3) is satisfied. As before
we write o'(4y,...,4,) instead of o'(8) for a finite § = (44,"..., 4,)
and in this notation o’(4) coincides with the wusual spectrum of an
operator 4.

The following proposition is an immediate consequence of the def-
initions. ‘

1.3. PROPOSITION. For any family S of mutually commuting operators
in L(X) the following inclusion holds true:

(L.4) o (8) = o' (8).

1.4, DErFINITION. Let X and 8 be as above. The joint approzimate
point spectrum o, (8S) is defined as the set of all 1¢C7 such that there exists
a net (x,) < X, |zl =1 for all a, with

(1.5) lim (4;— 4, T) @, = 0

for each feT.

‘We have o.(8) = o'(8), since if deo,(8)\o'(S), then we can find
indices %y, ..., ¢, and operators By, ..., B,e8’ such that formula (1.3)
holds true. Acting with both sides of this formula on elements z, we

n
obtain ZBi(A,i——ltiI)m,, = &,, what is impossible since the norms of
i=1
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the left-hand side elements tend to 0 with a, while the norms of the
right-hand side are always equal 1.

In the case when § = {4} we have, in general, ¢.(4) * o(4), but
only o,(4) = ¢(4).

1.5. DurFviTION. Let X and S be as above. The left (right) joint spec-
irum oy(8)(o,(8)) is defined as the set of all 2eC% such that the family
(4;— M I)ger gemerates in the algebra L(X) a proper left (vight) ideal.

Thus AeC¥Noy(8) means that there exist indices f, ..., % eI and
operators By, ..., ByeL(X) such that relation (1.3) holds true. Similaryl
2eC™N0,(R) if there are indices t;, ..., ¢, «T and operators By, ... , B,eL(X)
such that

3

{1.6) (A, — 2 1)B; =1.

i=1

Clearly, o,(8) = o' (8) and o,(8) = o'(8).

1.6. DEFINITION. Let X and S be as above. The joint spectrum o(S)
iy defined as

a(8) = 01(8) V o (R).-

Such a definition is given e.g. in the book of Bonsall and Duncap
[1], or in the papers of Harte [5] and [6]. For a single o.per‘a.tor. A this
specttum coineides with the usual spectrum of A, while, in general, the
left or right spectrum does not. .

Tet us also remark that in the paper [3] the expression “joint ap-
proximate point spectrum”, for X a Hilbert space and finite S, is define.d
as our left spectrum. In this ease, however, wo have o.(5) = o-l(S).. This
relation, proved in [3], is also true for infinite families S, Wha.t unmed.mtely
follows from formulas (1.5) and (1.6). We shall see that for an arbltr?.ry
Banach space X the set o, (8) need not be equal to 6;(8), even if § consists
of a single operator. :

1.7. ProPo&ITION. Let X and 8 be as above. We have

(1.7) 0.(8) = a(8)
and no other relation of inclusion holds in general among oy (8), ¢,(8) and
O'X(S).

Proof. Let 4 be a left-invertible but non-invertible legmgnt of X
(this can be realised e.g. if Xisa Hilbert space, A i a non-unitary isometry

of X and B = A*). We have BA = I, while the closures L(X)B and
] ] i i i risht ideals in L(X). Thus we

AL(X) are proper respectively left and rig '

have 0eo,(4), 0ecoi(B), 0¢01(4) and 0¢ar.(B). OOI}Sequenﬂy nelther-the

relation  o(8) = a1 (8), nor a(f) = o, (8) is true in gex.xera,l, even_lf »S

congists of a single operator and X is & Hilbert space. Since for a Hilbert
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space X it iy always. o,(8) = ¢1(8), we see that neither o,(8) = o (8)
nor o, (8) = 0,(8) is true for all X and S.

‘We shall now show that there exists a Banach space X such that
the relation oy(4) = 0,(4) is not satistied for every 4 eL(X). Suppose,
to the contrary, that for every X and every A<L(X) it is always o,(4)
< 0,(4), and in particular 0¢o, (4) implies 0¢o(4). Tt means that an
operator A possesses a left inverse BeL(X), whenever 4 is an isomorphism
into. So suppose that 4 is an isomorphism into and put X, = AX. It ig
a closed subspace of X, isomorphic to X and P = 4B is a projection of
X onto X,. So our assumption implies that whenever there is a subspace
X, = X, isomorphic to X, then there exists a projection P of X onto X,
But this is false e.g. if X =((0,1) (ef [8]). Thus relation a(8)
< 0,(8) cannot be always true.

Finally we prove relation (1.7). Let 1¢CT\g;(8). So there are indices
tyy ..oy el and elements By, ..., B,eL(X) such that relation (1.3) is
satisfied. If there exists a net (4,) = X, ||lo,] = 1, satistying relation (1.5)
for each f¢T, then from (1.3) we obatin

b

D B4y~ HDa, = v,
T=1
what is & nonsense since the left-hand net tends to 0, while the norms
on the right-hand side are equal 1. The contradiction shows that
AeC"™0,(8) and thus we obtain relation (L.7). .
The following proposition gives a useful in the sequel characterization
of the spectrum o, (8). ,
1.8. PROPORITION. Let X and 8 be as above. We have Aeo, (S) if and
only if for every finite subset (¢, ...,1,) = T 4t is

n
(1.8) ini{z (g~ A, D)all: weX, o] = 1} = 0.
4=1
Proof. If Aeo,(8), then by (1.5) we have

lim D'||(4y, — 4, D)z]| = 0

@ g=1

for each finite subset (3;,...,1,) = 7, and so relation (1.8) holds true.
On the other hand, suppose that for a fixed AeC7 relation (1.8) is satistied
for every choice of a finite number of indices 4, ..., ,¢T. First we form
a directed set consisting of pairs of the form « = (z, k) where 7 is a finite
subset of 7' and k is a positive integer. For ay = (7, k,) We write a; > a
in the case when 7; > v and %, > k. We obtain in, this way a directed set
suitable for building up the desired net. We now construct the net (@)
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in the following way. If ¢ = (v, k) with 7 = (fy, ..., t,), then by (1.8)
there exists an element xeX, |2 = 1, such that

n

T 1
- <=
>1 I (Ati l,,il) i %’

and we c¢hoose such, an clement @ as x,. It is clear that for the obtained
net (a,) relation (1.5) is satistied for each teZ. ]

1.9. ProPo&IrION. Let X and 8 be as above. All the seis: o.(8), ay(8),
0,(8), a(8), o' (8), 6" (8) wre compact subsets of CT.

Prootf. It is clear that all considered speetra are contained in K =, L] K,
where. K, = {(4<C, |4 < ¢} with ¢ = 13331[144?”1/" being the gpeetral
radius of the operator 4;; []K, denotes the eartesian product.

Since K iy a compact subset of CF, it is sufficient to prove that all
considered spectra ave closed in CF. _

Take a point A ¢o,(S). By Proposition 1.8 there exists a_finite subset
(ty, ..., 1,) = T such that

inf{i:); Ay, — A D)al: weX, o] =1} = 8 >0.

We take a neighbourhood V of 1 in 7 given by
Vo= {peC”: |uy,— 2] < 8/2m, i =1,...,m}.

‘Tor any peV and weX with |z]| =1 we have

N Dl > D (1A~ A D)2l — el

qu=] i=1

n n ) ’
= Dy — A D)ol = D) 12— = 6= 8/2 = 82,
i=1 i=1

A 7
and. so, by Proposition 1.8 we obtain w0, (8), what implies that C* o (8)
. T
is an open subset of €7 o ‘ | §
It 2¢a(8), then there exist indices 1y, S t,eT :md“ operators
By, .., B,eL(X) such that formula (1.3) is satisfied. We can find a 6'1;>'0
in such a way that for any peC? with Wii““lii] < dfori=1,...,n it is

" W
(1.9) | 3 Bty =) =TI < 1.
‘ ' i=1
This implies that the element
n N
(1.10) D By(Ay—w,T)
gsal
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has in L(X) an inverse @, and so

n
D 9B Ay~ I) =1,
=1
which means, by (1.3), that x¢o;(S), and thus the set C*\o,(8) is open
in C7. Similaxly one can prove that o,(§) is a compact subset of €% and
g0 is the set o(8).

In order to prove the compactness of ¢/ (8) or ¢'(8) we find in 8"
or in § elements By, ..., B, satisfying relation (1.9) for u sufficiently
close to A in CT. It is now sufficient to observe that the inverses of elements
(1.10) also belong to 8 or to 8’ what gives the desired conclusion.

Applying the same method as in the paper [13] we shall prove that
the joint speetra in question never are void for an arbitrary family § of
mutually commuting operators in L(X), where X is an arbitrary B'zmaoh
space. First we recall some concepts which will be useful in the proof.

1.10. DEFINITION. Let o/ be a commutative complex Banach algebra
with unit element I. A subset 8 « o is said o consist of joint topological
divisors of zero if there exists a net (Q,) = &, |Q,) = 1, such that

(1.11) -

for all AeS.

The main result of [13] states that if M is a maximal ideal of &
belonging to the Shilov boundary I'(«), then M consists of joint topolog-
ical divisors of zero.

Applying this result we obtain the following theorem.

1.11. TeEOREM. Let X be o complex Banach space and § = (Ay)ier
a family of pairwise commuting operators in L(X). Then each of the st:ts
0:(8), 01(8), oz (8), ¢(8), o' (8), ¢''(8) is a non-void compact subset of C%.

Proof. By Proposition 1.9 all considered spectra are compact subsets
of €T Since 0,.(8) < 6,(8) = ¢(8) = o' (8) .= ¢''(8), it is sufficient to prove
that o,(8) and ¢,(8) are non-void subsets of C*. Denote by 7 the smallest
closed subalgebra of L(X) containing the set S. It is a commutative Banach
algebra. Let f be a multiplicative-linear functional in & whose kernel
belongs to the Shilov boundary I'(s7). By the main result of [13] this
kernel consists of joint topological divisors of zero. Define an element
2.¢ 07 by setting 4, = f(4,) for each ¢<T."We shall show that Aeo (S) N, (S).'
Since the set {4;,~—4I: t<T} consists of joint topological divi.s:ors of ;ero
there is a net (@,) < «, ||Q.)] = 1, such that ’

Lm|4Q,)| =0

(1.12) Hm{(4,—241)@.l =0

for-cach t¢Z. We now choose clements y «X such that . < 2 and
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Q.%o = 1 for all a. Setting 2, = Q.y, we have |z, =1 and
(Ai—= D) @all = (4= 4 1)Qu¥all < 20(Ay — 2,1) Q]

for each tel. By formulas (1.12) and (1.5) we see that leo,(S).

It A¢a,.(S), then there existindices ty, ..., #,¢T and operators By, ...
vooy ByeL(X) such that formula (1.6) holds. Multiplying hoth sides of
this formula by @, from the left we obtain

n
D Qu(dy —2,D)B; =@,
)

what iy & nonsense, since the left-hand side net tends to 0 by (1.12),
while the norms of operators occuring on the right-hand side are always
equal 1. The contradiction shows that Aeq(S).

The above proof is short and easy, but it gives only the existence of
some clements in the joint speetra. Another proof for the joint approxi-
mative point speetrum was given in [2], in the case when X is a Hilbert
space and S is a finite set of mutually commuting operators. In this proof
it was shown that the joint approximative point spectrum has the finite
projection property (cf. Definition 2.2). It implies not only that the spec-
trum in question is never void, bub also gives an important information
about the gpeetrum itself. In the next section we discuss this property
for considcred above joint speetra of arbitrary families of mutually
commuting operators defined on an arbitrary Bamach space.

Finally we would like to make some comments on the definitions
of joint spectra eonsidered in this paper. The convention assumed here
can o called a spatial convention, i.e. we relate all concepts to a- Banach
space X. Another possible convention is a Banach algebra convention
(congidered e.g. in the book of Bonsall and Duncan [1], or in the papers
of Hatte [B] and [6]), it has same advantages and some disadvantages
with respect to tho spatial one. All definitions in this section can be easily
reformulated into definitions dealing with a Banach algebra only. So if
& iy an arbitrary Banach algebra with unit I, then for § < &/ consisting
of pairwise commuting clements of o its commutant 8§’ and bicommutant
8 wre suibable subsets of o and we obtain more general versions of ¢’
and o' which give the coneepts defined by 1.1 and 1.2 for & = L{X).
Also the Iett and right joint spectra o) and op o In o/ can be defined
similaaly as in 1.4, when taking B, from . We have, clearly,

(1.13) o(8) = o, x(8)
and
(1.14) 0,(8) = 0, «(8)

3 — Studia Mathematiica 1.2
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if & = L(X). In the Banach algebra convention it is possible to express
the left spectrum by the right one (we shall use it in the next section).
Namely, for a given Banach algebra 7 we define s/ as a Banach algebra
with the same eclements, the same norm, and the same linear structure
as the Banach algebra 7 but with a new multiplication defined as
AoB = BA. We obtain in this way a Banach algebra which is antyiso-
morphic to «/ and for any s-tuple of mutually commuting elements
(Ayy ooy Ay) = (= 7 a8 the set) we have

(115) o‘l,.vr/(Ali e An) = Gr,.v? (AI.: AR An) N

While for o', ¢", o, 01, and ¢ the Bamach algebra convention is

less restrictive then the spatial one, it turns out that for the joint ap-

proximate point spectrum the spatial convention is more general. We
obtain here the Banach algebra definition, or rather two of them assuming
X = & and interpreting the elements of 7 as operators of left multi-
plication B — AR, or right multiplication B - BA. We obtain in this
way the concepts of a left and of a right approximate point spectrum
as it is done e.g. in the paper [6]. Here the Banach algebra convention
is more restrictive and since the main subject of our article is the study
of the joint approximate point speetrum, we decided, also for the unicity
of exposition, to use the spatial convention. The reader will observe
that all presented here results are valid also in the Banach algebra con-
vention essentially with the same proofs.

§ 2. The projection property.

2.1. DEFINITION. Let X De a complex Banach space. We denote
by ¢(X) the family of all subsets § = L(X) consisting of pairwise com-
muting operators, and by ¢ (X) the family consisting of all finite
members of c(X). A spectral gystem on c(X), or on ¢(X) is a map
8 = o*(8), where S = (4;).r belongs to c(X) or ¢(X), and o*(8) is
a subset of C7, satisfying the following conditions:

(a) For each & the set o*(8) is a eompact subset of €7, where T is the
index set for §.
(b) It § consists of a single operator 4, then o*(4) = ¢*(8) is a non-void

gubset of the spectrum o(4).

2.2, DErFINITION. Let X be 2 complex Banach space and let § — o*(8)
be a spectral system on ¢(X) or ¢,(X). We say that the spectral system
8 — o*(8), or the spectrum o*(8) has a projection property if for ecach
S in the domain of definition of the spectrum and for each § = § it is

(2.1) o* () = Po*(8),

where P is the natural projection of CT onto €T, provided 8 = (A;).p
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and § = (A with T < T. In the case when 8§ —o*(8), restricted
t0 ¢o(X), has the projection property we say that the spectrum o*(S)
has a finite projection property (for spectra defined only onm ¢o(X) this
property coineides with the projection property).

The projection property is an important property for many reasons.
One, mentioned in the introduetion, is that a spectrum possessing this
property may be suitable for building up an operational caleulus of
analytic functions. Another related reason is that the projection property
is a necessary condition for having the spectral mapping property (cf.
Scetion 3). Yet another is that a spectrum possessing the projection prop-
erty is mever void, since o*(8) iz a subdirect product of non-void sets
a*(Ay), tel.

We shall now show that a spectral system 8§ — o*(8) defined on
¢(X) and having the projection property can be uniquely extended to
a spectral system defined on ¢(X) and having this property too.

9.3. TuporEM. Let X be a compler Banach space and let 8 — o*(S)
be @ spectral system defined on ¢ (X) and possessing the projection property.
There exists a wnique spectral system defined on c(X), possessing the
projection, property, whose restriction to ¢, (X) coincides with the given
system.

Proof. We fix Sec(X), 8 = (4y)p, and for any finite subset
T c T, T = (b, ey ty), We DUt Pp(A) = (A, ...y &)y 2eCT.

We define

(2.2)  G(8) = {AeC": Pp(A)ec*(4y, ..., 4,,) for all finite T < T}.

Thut &(8) is the projective limit of the family of ecompact sets
o*(4y, - .-, 4;,) indexed by finite subsets (t;, ..., t,) = T and ordered by
inclusion of indices. From the well-known properties of projective limits
it follows that 6(S) is & non-void subset of C* (cf. e.g. [4]). Moreover,
the map § — &(8) satisfies conditions (a) and (b) of Definition 2.1 and
also condition (2.1) of Definition 2.2. Since for any finite set 8§ we have.
dearly 5(8) = o*(8), wo see that § —5(9) is an extension of 8 — o*(8)
onto c(X).

We shall now show that such an extension is unique in the family
of all spectral systems satistying the projection property. Suppose then
that thero exists another spectral system § — ¢(S) defined on the whole
of ¢(X) and satistying there the projection property, which is an extension
of the gystem & — o*(8). We have to show that a(8) = a(8) for each
Sec(X). From the projection property of the spectrum o and from for-
mula (2.2) it follows that &(8) = 5(8) for each Sec(X). Suppose that
for some Sec(X) it is o(8) s &(8), so that there is a Aea(8)N\o(8). Since
both sets &(8) and 5(8) are compact subsets of C¥, there exists a neigh-
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bourhood T of A in €T which is disjoint from o (8). We can assume

Vo= {ueCT: luy—l) <e,i=1,2,...,n}

for some positive &. In particular, if Py (d) = Pp(u), where T' = (t;, ...,1,),
then pe¥ and so u¢o(S). But it is impossible since 1ea(S), and Py (a )
= Pp(c(8)) = o*(dy, ..., 4)-

Let us remark that by the above theorem we can extend the defini-
tion of spectrum, which iy defined on ¢,(X), onto the whole of ¢(X), pro-
vided it has the projection property. Such a situation holds c.g. for the
Taylor spectram o, (8) (ef. [10]), defined on ¢o(X) for an arbitrary Banach
space X,

Let us also remark that if we want to know whether a speetral system
8 — o*(8) defined on c¢(X) possesses the projection property, we have
only to verify whether it has the finite projection property and whether
o*(8) = o(8) for all Sec(X), where o(8S) is given by formula (2.2). We
shall use this remark in proving that some of joint spectra considered
in the preceding section possess the projection property. To this end
we observe that from Proposition 1.8 and from the rematks after Definition
1.5 it follows immediately the following lemma.

2.4. LeMMA. For the spectra o.(S), 01(8), 0x(8) and o(S) relation
(2.2) holds true: .

2.5. THEOREM. For an arbitrary complex Banach space X the joint
approzimate point spectrum o (8), Sec(X), possesses the projection property.

This is a generalization of a result of Bunce, given in [2] for o, (S)
defined on ¢,(H), where H is a Hilbert space, onto arbitrary Banach
spaces and onto infinite families of pairwise commuting operators.

In view of the remarks preceding Lemma 2.4 and by the lemma
itself it is sufficient to prove that the joint approximate point spectrum
possesses the finite projection property. The proof will be preceded by
a few lemmas. The method applied here is the same as that in the paper
[9], where it was used for establishing an important property of ideals
consisting of joint topological divisors of zero.

2.6. LEMMA. Let o7 be a commutative complex algebra with umnit
element I. Let p be a seminorm on & such that the multiplication in </ is
Separately continuous with respect to this seminorm, i.e. for each Ae¢s/ there
exists a positive constomt C 4 such that

(2.3) P(AR)< Cyp(R)
Jor all Res. Then
¢(4) = nt{C: p(AR)< Op(R) for all B in o}

is a submultiplicative seminorm on of. Moreover, if p(I) # O then q(I) = 1.
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Proof. Clearly ¢ is a non-negative homogeneous functional defined
on «7 and p(AR) < g(A)p(R) for all 4, Res?. So for any 4, Bes/ we
have

P(4ABE) <

q(4)p (BE) < ¢(4)g(B)p(R),

what implies
9(AB) < q(4)¢(B).

p((A+B)R) < p(AR)+p(BE) < q(4)p(R)+¢(B)p(R)

and consequently .
q(4+B) < q(4)+4¢(B)

for all A, Bes?. It is also obvious that p(I) # 0 implies ¢(I) = 1.
9.7. LEMMA. Let o be as above and let g be a submulliplicative seminorm
on «f. Suppose that for an element A s/ the relation

(2.4) q(R (eI —A)) > ,q(R)

holds for each complex number ¢ and each R es?, where e, is o positive constant
depending on ¢ only. Then g(I) = 0.

Proof. Suppose that ¢(I) 0. Then J = {Res’: ¢(B) =0} is
a proper idealin &, and «//J is & unital normed algebra with the norm g.

Denote by o7 the completlon of &[J in this norm. If @ is the natural
map of «/ into M then (2.4) implies

q(®(R) (el — B(4))) > e4(P(R)),
where I = @(I) is the unit element of . This inequality means that
O(A)—el 0 for every complex ¢ and ®(A)—el is never a topological
divisor of zevo in 7. Bub such a situation is unpobslble, e.g. for ¢ belonging
to the boundary of the spectium of @(4) in o (cf. e.g. [14]).

9.8, TEMMA. Let X be o complex Banach space and let (A, ..., A,, A,)
be am (n-+1)-tuple of pairwise commuting operators in L(X) such that

(2.5) int{ ¥ l4sall: ol = 1} =o0.

=1
Then there exists a complex scalar ¢ such that
n
int { 314,01+ (40— cD)al]: o] =1} =0.
i=1
Proof. Suppose that the conclusion does not hold. Thus there ex1.s1;
a Banach space X and pairwise commubing operators Ay, 44, ..., 4, in
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I(X) such that for each complex number ¢
n

(2.6) int{ 3|40l + (Ao —eD)al]: o] =1} = &,>0

1=1
and for the n-tuple (4,, ..., 4,) formula (2.5) is satisfied. So there exists
a sequence (w;) < X, [loy]l = 1 and lim|[d;zy| =0 for ¢ =1, ..., n. Let

%
< be the unital algebra of operators on X generated by the operators
Aoy .oy 4y Tt i3 & commutative subalgebra of L(X). For 4 e/ we put
(2.7 . Di(4) = | Az,
for k¥ =1,2,... By (2.6) we have
n

g 42l + (Ao — eI) ]| > &, |je] .

i=1
for all z¢X, what implies

(2:8) 2 24 B) + (4o~ o) B) > e,p4(B)

=1
for all BesZ, kb = 1,2, ...
All seminorms p,, satisfy relation (2.8), since
(2.9) Px(4AB) < p,(4)|B]|
for all 4, Bess.
From fornwula (2.7) we see that p,(A) < [|4]] for each 4es?, and so
each p; can be regarded as an element of the cartesian product of closed

segments
P = []ro, 4],

des?
which is & compact space. Consequently we can take a convergent subnet
(ps) of the sequence (p;), converging to an element peP. We have
0<p(d)<[4] and p(4) =limp,(4) for each Aess. It implies that

P is a seminorm on 7, whicha by (2.9) satisfies
(2.10) P(4B)< p(4)|B]
for all 4, Bes/. We note also that
limp, (BA,) = l'illcnnBAiwk{] =0,
what implies p(B4;) =0 for all Bess and i =1, vy N
Relation (2.8) implies

Zp(AiB) +p((4o—cI)B) > &,p(B),
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or, since p(4;B) =0,

(2.11) 2((4y—el) B) > 5,p(B)

for all BesZ. We have also pi(I) = |zl =1 for all & and so p(I) = 1.
By relation (2.10) we can apply Lemma 2.6 and consequently there
exists on 7 a submultiplicative seminorm ¢ satisfying

{2.12) gq(I) =1.
On the other hand for all 4, Bes/ we have
p((flo—cI)AB)<q((A0—cI)A)p(B),
and by (2.11) we obta:in
P(AB) < 571q((4o— D) A)p(B)
for all Bes?. Thus, by the definition of the seminorm ¢, we have
9(A4) < g((Ao—eD)4)-&7*

for all AesZ and all complex numbers ¢. It means that formula (2.4) is
satisfied. Applying now Lemma 2.7 we obtain g(I) = 0, what is in con-
tradiction with relation (2.12). The contradiction shows that for some
complex number ¢ it is g, = 0. The definition of &, given in formula (2.6)
yields the desired result.

Proof of Theorem 2.5. By the remarks after the formulation
of thig theorem we have only to show that the joint approximate point
spectrum o, (S) has the finite projection property.

Let § = (44, ..., 4,.,) be an (n-+1)-tuple of pairwise commuting
operators in L(X). From Lemma 2.8 we see that if 0co (4,4, o 4y),
then there is a complex number ¢ such that (0, ..., 0, ¢)eo (A, ...y Ayupn),
what in turn implies

On(dyy ey dy) © Por(Ay, .oy Anyi),

where P denotes the projection of C"** onto itis first » coordinates subspace.
On the other hand, the relation

Po(Ayyeony Appr) © 0x(dyyonns 4Ay)

follows immediately from the definition of the joint approximate point
gpectrum. Thus o, has the projection property with respect to projections
onto subspaces of codimension one, for Sec,(X). For projection onto
subspaces of higher codimension we proceced by an easy induction.

From Theorem 2.5 we obtain results of Harte [5], [6] stating that
the joint spectra 0,(8), 0,(8) and o(8) possess the projection property.
First we introduce yet another spectrum. It has some interest of its own,
in this paper, however, it serves only to auxiliary purposes.
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2.9. DEFINITION. Let X be a complex Banach space and let (44, ..., 4,)
be an n-tuple of pairwise commuting endomorphisms of X. We put

. n

(2.13) Ou(Ayy ey Ay) = f2eC™: D(4,—2D) X #X},
i=1

where

k2 n
D BX =Y B weX,i =1, 0}
=1 =1

The reader familiar with the papers of Taylor [10] and [117] will
observe that o,(4,, ..., 4,) is a subset of the Taylor spectrum op(4,, ...
..y 4,) related to the non-exactness of a suitable Koszul complex at one
of its ends (it is also called a defect spectrum).

2.10. Ly, Let X be o compler Bunach space and (A4, ..., 4,)
an n-tuple of pairwise commuting operators in L(X). Then

(2.14) oAy, ooy Ay) = 0n(47, .0, 47),
where A, ..., A} are the conjugate operators defined on the conjugate Banach
space X*.

Proof. First we remark that AY, ..., A} are also pairwise commuting
operators. Let X" = X x ... x X be the cartesian product of n copies
of the space X with norm of an element @ =%y, ..., s,) given by the

formula
lell = ).

We now define a map from X" into X setting
n
Tz = ZAimi.
i==1
This is & linear map and 0 ga, (41y...; 4,) if and only if the corresponding
map I maps the space X onto the whole of X. But 7' is a map onto if
and only if its conjugate map T%: X*—(X™)* iy an isomorphism into.
Every element I' of (X™* is of the form

Fo) = > fil@),
=1

where & = (25, ..., &,)e X" and f;eX*. Thus F can be identified with
an element (f;, ..., f,)e(X*)" so that (X™* is topologically isomorphic to
(X*)" It is easily seen that under this identification the conjugate map
T i3 of the form

T*f = (41f, ..., 43).
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Now, the fact that 7™ is an isomorphism into means that there exists
a positive constant ¢ such that for every feX* it is |T*f] = ¢|fj, or

n
SIA4ifl = elfll. Applying Proposition 1.8 we see that 0¢c,(dy, ..., 4,)
7=1

is equivalent to 0¢o. (AT, ..., 4}, what in turn implies formula (2.14).

From this lemma we obtain the following proposition.

2.11. ProrosirioN. Let X be o complex Banach space. Then the map
S8—0c.(8) is the spectral sysiem on c¢o(X) possessing the projection property.

Proof. Applying Theorem 1.11 and formula (2.14) we see that for
any n-tuple (Ag, ..., 4,)ecy(X) the spectrum o, (44, ..., 4,) is a non-void
compact subset of €. Since for a single operator 4 eL(X) it is o(4)
o(4%), then o, (4) = 0. (4*) < ¢(4") = 0(4). Thus the map S-+0,(S),
Seco(X), fulfils the requirements of Definition 2.1. Finally, by the pre-
vious lemma and by Theorem 2.5 the spectrum o, possesses the projection
property.

Applying Theorem 2.3 and the previous proposition we obtain the
following eorollary.

2.12. CoroLLARY. The spectrum o, can be exlended to a spectrum,
denoted also by o, defined on the whole of ¢(X) and possessing the projection
property. )

2.13. LeMMA. Let o7 be a complexr Banach algebra with unit I. Then
the joint spectra o, (A, ..., 4,) and o) 4 (44, ..., A,) possess the finite
projection property.

Proof. The conclusion follows immediately from formula (1.15),
from Proposition 2.11 and from the formula

”r,ﬂ(Ala vy ) = 0, (Ay, -, 4,),
where the elements 4; in the right-hand spectrum are regarded as pairwise
commutbing operators on the Banach space X = &, given by B—4,B,
BeX = «of, 1 =1,2,...,M

The finite version of the following theorem was obtained in the
papers [H] and [6] of Robin Harte.

914, TusoreM. Lhe left spectrum, the right specirum and the specirum
possess the projection property for an arbitrary Banach space X.

Proof. In view of the remarks preceding Lemma 2.4 and the lemma
itself, we have only to show that the spectra oy (S), a(8) and o(S) possess
the finite projection property. Bub this follows immediately from the
definition of the speetrum o(8), from the previous lemma and from the
formulas

oAy, ey dp) = O'r,d(Aly ceey Ay)
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and
op(dqy ...

where & = L(X).

‘We shall now show that for the commutant speetrum o' (8) and for
the bicommutant spectrum o''(8) the finite projection property fails.
In the introduction of the paper [10] Taylor mentioned that the projection
- property of the spectrum o' follows from the theory developed in this
paper. Actually, the use of an example constructed in the same paper
disproves this statement. The example of Taylor is as follows:

Let D be a compact polydise and U an open polydisc with 0eD
cUc . Put V = UN\Dand X = C9(V) x 0(V), where V is the closure
of V,C(V) is the sup-norm algebra of all continuous functions on v
and _C‘“)(V) is the algebra of all continnously differentiable functions
on V. A b-tuple of pairwise commuting operators on X is defined as
follows: A;(f, 9) = (a:f, 219); 4a(f, 9) = (], 229), A5(f, 9) = (0, 8f/07y),
A (f, 9) = (0, 0f]0Z,), A5(f, 9) = (0, f). Tt is shown in [10] that 0 e’ (A4, ...
f.., Ag), while 0¢0'(4,, 4,), and so the finite projection property fails
or o'.

This example shows also that the finite projection property fails
for the bicommutant spectrum ¢'’. In faet, since 0¢o'(4,, 4,), there
are B; and B, in the commutant (4,, 4,) such that

}-An) = O'l,ﬂ(-A:U LRRS) An)7

(2.15) A.B,+A4,B, = L.

‘We can also have B, B, = B,B;, what can be realized by setting

B, (f, = 4 & )

0 = (e e )
and

B, ’ = 2 % )

(7:4) (121|2+|32[2 ’ 131|2+|22!29 '

Thus 4,, 4,, B;, B, form a mutually commuting family of elements of
L(X) and (2.15) together with the relation (4,, d,, By, B,) < (4,, 4,,
B,, B,)" implies )
(2.16) 0 ¢P1,2‘—7”(A13 -Azy -Bla Bz):

where Py 5(dy, da, A3y &) = (A, Ao).
On the other hand, it is

@47) 0o (Ay, 4,),

since Oeo’(dy, ..., 4;) =o'’ (4y,..., 4;) and since for an arbitrary
Sec(X), 8 = (Ap)er, and for an arbitrarty S;<= 8, 8; = (4,). with
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T < T, we have

(2.18) Po'" (8) = o' (8y),

where P is the natural projection of €T onto €. Formula (2.18) follows
immediately from the definition of the bicommutant spectrum: if
0 ¢0’'(8,), then, by (1.3) and the fact that the bicommutant of 8, is con-
tained in §'', we obtain 0¢Po¢’’(8). Relations (2.16) and (2.17) show
together that the finite projection property fails for the bicommutant
spectrum.

The above remarks show that both the commutant and the bicommu-
tant spectrum do not form suitable concepts for a spectral theory of
operators, at least from the point of view of the functional caleulus and
the spectral mapping theorem (cf. the next section). The bicommutant
spectrum could be perhaps taken into acecount since formula (2.18) can
serve as a substitute for the projection property, but, on the other hand,
it is bigger then the commutant spectrum, which in turn does not possess
a property analogous to that given by formula (2.18). This is again an
argument for the utility of the Taylor spectrum: it has all desired prop-
erties and it is smaller then the commutant spectrum.

§ 3. The spectral mapping theorem. In this section we discuss the
spectral mapping theorem with respect to polynomial mappings for all
joint spectra considered in previous sections. Such a theorem has been
already obtained by Harte [5], [6] for the joint spectra o, ¢, and o,
defined on ¢,(X). Here we prove & general theorem from which we obtain
the results of Hatrte in a more general setting of infinite families of mutually
commuting operators of X, as well as the spectral mapping theorem for
the joint approximate point spectrum o, what is a new result.

For the commutant spectrum o' and for the bicommutant spectrum
¢'' the spectral theorem fails.

3.1. DEFINITION. Let T and 7T be non-void sets of indices. A poly-
nomial map p: CT—C is a map z—p(e) = (pe(@)per < € zeC?, given
by means of a family (denoted by the same letter) p = (Pe)per, each
py depending only upon a finite number 2, ...,2, of coordinates of
2 and being a polynomial with complex coefficients in these coordinates.

3.2. DEFINITION. Let X be a complex Banach space and let 8—0*(8)
De a spectral system defined on ¢(X). We say that the spectium a*(8)
has the spectral mapping property with respect to polynomial mappings
(abbreviated as SM-property) if for each Sec(X), 8 = (A, and for
each polynomial map p = (Py)rerr it i8

(3.1) o*(p8) = po*(8).
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Here pS is a member of ¢(X) given by

8 = (Z’i’(Atl(t’), ceey -Atn(t’)))t’s:l"7
where p, depends only upon the coordinates @)y + vy By
If a speetrum o*(S) possesses the SM-property, then it possesses
also the projection property, what can be seen by taking T’ < T and
setting py(2) = 2, t' 1",
Thus, in particular, the SM-property fails for the spectra o’ and o”.
The projection property is then a necessary condition for having
the SAM-property. It is, however, not a sufficient condition, what can
be seen by setting o*(S) =t]lo-(A,), 8 = (A)iep, 50 that the relation
(8.1) fails e.g. for 8 = (4, 4) with o(4) = [0, 1] and p = (2;,+2,, 2y —2y).
‘We shall prove now a theorem giving necessary and sufficient condi-
tions for having the SM-property. Applying this theorem to oy, o1, o and.
o, we shall establish the SIM-property for these spectra.
3.3. THEOREM. Let X be a complex Banach space. Suppose that a*(8)
18 a spectrum defined on ¢(X) and possessing the projection property. Then
" the following conditions are equivalent:
(1) For any two commuting operators A, A,eL(X) and for any two
complex numbers a and B it is

(32)  o*(4y, 4y ady+fAy) < {(2r, 23, arr+ o) < C7: (2, 2,) € ).
{ii) For any three mutually commuting operators A, Ay, Aye (X)) it is
(3.3) o* (4, Ayy Ay) = 014y, 4y, 43] (Ay, 4,, 4,;),

where [Ay, Ay, A5] 4s the smallest unital Banach subalgebra of L(X) eon-
taining the elements A,, 4,, 4, and 014, 45,451 (8) 8 the joint spectrum of
o subset 8 of the Banach algebra [A,, A,, 4,]. ’
(iii) For an arbitrary Sec(X) and for an arbitrary polynomial mapping
p it is
(3.4) po*(8) = o*(p8).
- (iv) For-an arbitrary 8ec(X) and for an arbitrary polynomial mapping
p it is
po*(8) = o*(p8),
i.e. the spectrum o* has the SM-property.
Proof. The implieations (iv) =(iii), (iii)=(i) and (ii) = (i) are obvious,
so it is sufficient to prove that (i) implies (i) and (iv).
First we prove (i)=(ii). Let 4,, 4,, A, be three pairwise commuting
elements of L(X). The commutative Banach algebra (41, 44, 4;] can
be regarded as an element of c¢(X), say [4,, d,, 45] = (B We fix
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an element deo*([d;, 4., 45]), 2 = (A)ereCT, and so we define on the
algebra [4,, 4,, 4;] a functional given by A(B;) = 4. The condition
(3.2) implies that B—A(B) is a linear functional defined on the algebra
[4, 45, A;5]. The projection property of o* implies that for each Be
[4, 45, 4;] we have

(3.8) A(B)es*(B) < o(B).

Since for a single element Be[4,, 4,, 4;], we have clearly

o(B) = 014y, 4,451 (B),
the relation (3.5) shows that for all B in [4;, 4,, 4,] it is

A(B) 50[41,42,43](3)

and so, by the main result of [7], A(B) is a multiplicative linear functional
in the algebra [4,, 4,, 4;]. Denote by MM the set of all multiplicative
linear functionals defined in the algebra [4,, 4,, 4;]and by % the subset
of M consisting of all functionals of the form A(B). With this notation
we have

(3.6) o*(8) = {(f(4D)eer < C": feT},

where § = (4 < [A;, 4y 4g].
On the other hand, by the definition of the joint spectrum in a Banach
algebra, we have

0[41,42,43](5) = {(f(At))tsTECT‘ fe ‘Jﬁ}

and so 9N < MW implies 6*(8) = oy, 4,,4,(8) for each § = [4,, 4,, 4]
Thus the formula (3.3) follows. ’

The formula (3.6) also establishes the implication (i)=-(iv), since for
P = (Pr)yer We have

po(8) = 2 {[f( A eCT: )

= {{ellr A0}y g €™'s FeR)
{(#{pe((Aherl)y g e€*': Fe)
= *((pe(8))rer) = o*(8),

Il

where 8 = (4)er-

Remark. The above result is also true for a spectrum o* defined
on co(X).

The spectral mapping theorem for the spectra o), oy, 0, and o, follows
from the relations

0x( Ay, Aoy Ay) © 01(Ayy Ayy Ag) < 0(4y, 4y, Ag) = Opd,,d5,43) (A, 4, 45)
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and
0p(dy, Ay 45) = J[AI,A2,A3](A12 A, 4y),

which hold true for any triple 4,, 4,, 4, of pairwise commuting operators
in L(X), and from the condition (ii) of the previous theoren. So we have
3.4. TaroreM. Let X be a complex Banach space. Then the joint spectra
Ory 01 Oy, and o defined on ¢(X) possess the spectral mapping property
with respect to polynomial mappings.
As we mentioned before, the part of this theorem concerning the
spectra o1, o, and o is due to Harte [5] and [6].
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Domains of attraction of stable
measures on a Hilbert space

by
J. KUELBS* and V. MAND REKAR** (East Lansing, Mich.)

Abstract. We characterize all probability measures in the domain of attraction
of a stable measure defined on the Borel subsets of a real separable Hilbert space H.

1. Introduction and notation. Let B be a topological vector space
and #(F) the class of Borel subsets of H. We say that a probability
meagure on #(F) is in the domain of attraction of a probability measure
w on AB(E) if there exists real numbers b, >0 and vectors a, in
' X +... +X,

by

where X, X,, ... ave independent identically distributed random variables
with £(X,) =P (i =1,2,...). and P is a Borel probability measure.
The b,’s are called norming constants. In case H iy a real separable
Banach space it is shown in [6] that stable measures and only stable
measures have non-empty domains of attraction. When F is a real
separable Hilbert space H, a detailed Levy—Khinchine representation
of the stable measures analogous to the one-dimensional case [3] is
obtained in [6] and it is used here to characterize probability measures
P which lie in the domain of attraction of a non-degenerate stable
measure on H. Our results will include and generalize the work of
Rvadeva [9] when H is finite-dimensional. The difficulty in the infinite-
dimensional case results from the fact that the conditions for weak
convergence of infinitely divisible measures ([4] and [7]) involve certain
compactness criteria and these are attacked by wusing the concept of
regular variation and modifications of some of the elegant ideas
in [1].

Let u be a finite Borel measure on a topological space X. Then 4
in #(X) is called a continuity set of u if p(dA) = 0 where 04 denotes
the boundary of 4. A set §, is called the support of u if

E(n=1,2,...) such that .Z’( - a,,) converges weakly to u
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