STUDIA MATHEMATICA, T. LI. (1974)

Riesz products on non-commutative groups

b

JACEK CYGAN (Wrocław)

Abstract. A condition of lacunarity on a subset of a group and a construction of a set satisfying it are given. The following result is then obtained. Suppose that G is a discrete amenable group, X-a subset of G whose elements form a sequence which satisfies this lacunarity condition and, moreover, there is a constant c such that |Ox| < c for all $x \in X$. Then by replacing every $x \in X$ by a suitable $y \in Ox$ we obtain a Sidon set Y in G. Thus examples of Sidon sets in FC groups are obtained.

The aim of this note is to investigate an intriguing notion of a Sidon subset of a non-abelian discrete group introduced by A. Figà-Talamanca.

(1) If G is an abelian discrete group, then a subset S is called a Sidon set if every bounded function on S is a restriction of a Fourier-Stieltjes transform of a bounded measure on \hat{G} .

Even though for non-abelian group there is no natural dual group G the algebra of Fourier-Stieltjes transforms on G was defined by P. Eymard [1] and following the idea of A. Figà-Talamanca we use this notion to define Sidon sets for non-abelian groups in a complete analogy to (1). The definition and the elementary properties of Sidon sets, most of them noticed by A. Figà-Talamanca, are given in Section 1; see also [2].

One of the main tools in constructing Sidon sets in abelian groups are Riesz products. Our main objective here is to test this method for non-commutative groups. It has turned out, however, that it is much better adapted to the commutative case. However, under some restrictive assumptions on a group we are able to use it to produce non-trivial infinite Sidon subsets.

1. Sidon sets. Let G be a discrete group. Let B(G) be the Fourier-Stieltjes algebra of G as defined by P. Eymard in [1]. Let ϱ denote the left regular representation of $L^1(G)$ on $L^2(G)$, i.e.

$$\rho(f)g = f * g, \quad f \in L^1(G), \quad g \in L^2(G).$$

We write $||f||_{\varrho}$ for the norm of the operator $\varrho(f)$.

We shall use the following theorem of A. Hulanicki (cf. [4]):

A group G is amenable if and only if $||f||_{\varrho} = \sup_{T} ||T_{f}|| = ||f||_{\varSigma}$ for all hermitian functions f in $L^{1}(G)$, where the least upper bound is taken over all *-representations T of $L^{1}(G)$.

DEFINITION 1. We say that $E \subset G$ is a *Sidon set* if every bounded function on E is the restriction of a function in B(G).

THEOREM 1. Suppose that E is a subset of an amenable discrete group G; then the following three conditions are equivalent:

- (a) for every complex valued function c on E with $\|c\|_{\infty} \leqslant 1$ there exists a function $u \in B(G)$ such that u(g) = c(g) for $g \in E$ and $\|u\|_{B(G)} \leqslant M$, where the constant M depends only on E;
- (b) for every function $d: E \rightarrow \{\pm 1\}$ there exists a function $u \in B(G)$ such that $||u||_{B(G)} \leq K$ and

(2)
$$\sup_{g \in E} |u(g) - d(g)| \leq 1 - \delta \quad (\delta > 0),$$

where K and δ are positive constants depending only on E;

(c) there exists a constant c > 0 such that for every function $f \in L^1(G)$ with the support in E we have:

$$||f||_1 \leqslant c \, ||f||_{\varrho}.$$

Remark. Condition (a) is only formally stronger than the one in Definition 1. In fact, if E is a Sidon set, then the mapping

$$T \colon B(G) \ni u \mapsto u|_E \in L^{\infty}(E)$$

is a surjective bounded linear operator, so we may apply the open mapping theorem to get the constant M.

Proof of the theorem. (a) \Rightarrow (b) is obvious. (b) \Rightarrow (c): Let $f \in L^1(G)$ be real with the support in E. Define d on E so that $d = \pm 1$ and $d \cdot f = |f|$. By the hypothesis, there is a function $u \in B(G)$ which satisfies (2).

If Re $u = \frac{1}{2}(u + \overline{u})$, then Re $u \in B(G)$, $\|\text{Re } u\|_{B(G)} \leq K$ and it also satisfies (2).

We have

$$|f\operatorname{Re} u - |f|| = |f| |\operatorname{Re} u - d| \leqslant (1 - \delta) |f|$$

hence we have $f \operatorname{Re} u \geqslant |f| \delta$ and

$$\delta \|f\|_1 = \sum_{g \in E} |f(g)| \, \delta \leqslant \sum_{g \in E} f(g) (\operatorname{Re} u)(g) \leqslant \|\operatorname{Re} u\|_{B(G)} \|f\|_{\mathcal{Z}} \leqslant 2K \, \|f\|_{\varrho}.$$

If f is not real, put $f_1 = \frac{1}{2} (f + \bar{f})$, $f_2 = \frac{1}{2i} (f - \bar{f})$; then f_1 and f_2 are real with supports in E, so:

$$\frac{1}{2} \|f + \bar{f}\|_1 \leqslant K \delta^{-1} \|f + \bar{f}\|_0 \leqslant 2K \delta^{-1} \|f\|_0$$

similarly

$$\frac{1}{2} \|f - \bar{f}\|_{1} \leq 2K\delta^{-1} \|f\|_{\rho}$$

and finally

$$||f||_1 \leqslant 4K\delta^{-1}||f||_2$$
.

(c) \Rightarrow (a): Let $c \in L^{\infty}(E)$ and $||c||_{\infty} \leqslant 1$. The set

$$\mathscr{L}_E = \{ \varrho(f) \in \mathscr{L}(L^2(G)) \colon f \in L^1(G) \text{ and supp } f \subset E \}$$

is a closed subspace of $\mathscr{L}\big(L^2(G)\big)$ (norms $\|\cdot\|_{\varrho}$ and $\|\cdot\|_{1}$ are equivalent because of (c)). The function Φ_{c} defined on \mathscr{L}_{E} by the formula

$$\Phi_c(\varrho(f)) = \sum_{g \in E} f(g) c(g)$$

is a linear functional on \mathcal{L}_E and it is bounded:

$$|\Phi_c(\varrho(f))| \leqslant ||f||_1 ||c||_{\infty} \leqslant c ||f||_{\varrho}.$$

By the Hahn-Banach theorem it can be extended to a functional Φ on $\mathscr{L}[L^2(G)]$ with $\|\Phi\| \leq c$. Now we define the function u on G by the formula $u(g) = \Phi(\varrho(\delta_g))$, where $\delta_g(h)$ is equal to 1 for h = g and 0 for $h \neq g$. For $f \in L^1(G)$, $\|f\|_{\mathcal{L}} \leq 1$ we have:

$$\left|\sum_{g \in G} f(g) u(g)\right| = \left|\sum_{g \in G} f(g) \Phi\left(\varrho\left(\delta_g\right)\right)\right| = \left|\Phi\left(\varrho\left(f\right)\right)\right| \leqslant \|\varPhi\| \|f\|_{\varrho} \leqslant c$$

hence:

$$|u(g)| = \Big|\sum_{g \in G} \delta_g(h) u(h)\Big| \leqslant c$$

and

$$\sup \left\{ \left| \sum_{g \in \mathcal{G}} f(g) u(g) \right| \colon f \in L^1(G) \text{ and } \|f\|_{\mathcal{Z}} \leqslant 1 \right\} \leqslant c$$

so $u \in B(G)$ and $||u||_{B(G)} \leq c$ (see [1], Proposition (2.1), p. 191). Finally we check that for $q \in E$

$$u(g) = \Phi_c(\varrho(\delta_g)) = \sum_{h \in G} \delta_g(h) c(h) = c(g).$$

2. Riesz products. First we introduce some notations. Let N be the set of natural numbers ordered in the reverse order, i.e. $N = \{..., 2, 1\}$ and let A be a finite subset of N. We denote by I_A the set of all sequences $\langle e_i \rangle_{l \in \mathbb{N}}$ such that $e_l = 0$ for $l \notin A$ and $e_l \in \{0, 1\}$ for $l \in A$. Let $\underline{i} = \langle e_l \rangle_{l \in \mathbb{N}}$ be such a sequence. By \underline{i}' we denote a sequence $\langle e_i' \rangle_{l \in \mathbb{N}}$, where $e_l' = 0$ for $l \notin A$ and $e_l' = 1 - e_l$ for $\overline{l} \in A$. Now let $a = \langle a_l \rangle_{l \in \mathbb{N}}$ be a sequence of real numbers.

We write $a^{\underline{i}} = \dots \cdot a_n^{e_n} \cdot \dots \cdot a_1^{e_1}$. It is a real number because A is finite. Similarly, if $x = \langle x_l \rangle_{l \in N}$ is a sequence of elements of G we write $x^{\underline{i}} = \dots \cdot x_n^{e_n} \cdot \dots \cdot x_n^{e_1} \in G$ and $(x^{\underline{i}})^{-1} = x_1^{-e_1} \cdot \dots \cdot x_n^{e_n} \cdot \dots \in G$. If $j = \langle d_l \rangle \in I_A$, then

 $a^{\underline{i}+\underline{j}}=\ldots\,a^{e_n+d_n}_n\ldots a^{e_1+d_1}_1.$ In particular, when $\underline{i}=\underline{j}$ we write $a^{\underline{i}i}$ instead of $a^{\underline{i}+\underline{i}}$.

The following is a generalization to a non-commutative case of the condition: $R_s(X,x)=1$ for $s\in N, x\in X$; $R_s(X,e)=1$ when s=0 and $R_s(X,e)=0$ for $s\in N$ (cf. [5], p. 124).

Condition (C). We say that a sequence x_1, x_2, \ldots of elements of G satisfies condition (C) if no two elements of it are conjugated in G and for every natural N and $i, j \in I_{(N,\ldots,1)}$

$$x^{\underline{i}}(x^{\underline{j}})^{-1}\epsiloniggl\{ e\}\Rightarrow \underline{i}=\underline{j}, \ Ox_k\Rightarrow \underline{i}=\underline{j} \ on \ \{N\ldots 1\}\diagdown \{k\} \ and \ e_k=1, \ d_k=0,$$

where $Ox_k = \{yx_ky^{-1}\epsilon G: y\epsilon G\}.$

THEOREM 2. Suppose that G is a discrete amenable group, X a subset of G whose elements form a sequence which satisfies (C) and, moreover, there is a constant c such that $|Ox| \leq c$ for all $x \in X$. Then by replacing every $x \in X$ by a suitable $y \in Ox$ we obtain a Sidon set Y in G.

Proof. For sake of simplicity for a function f in $L^1(G)$ we write

$$f = \sum_{g \in G} f(g)g$$
.

Let $X = \{x_1, x_2, \ldots\} \subset G$. We consider the products

$$P_N = \prod_{k=N}^1 (a_k e + b_k w_k) \prod_{l=1}^N (a_l e + b_l w_l^{-1}),$$

where $\langle a_l \rangle_{l \in \mathbb{N}}$ and $\langle b_l \rangle_{l \in \mathbb{N}}$ are the sequences of real numbers with $a_l^2 + b_l^2 = 1$ for every $l \in \mathbb{N}$ and we see that

$$P_N = f * f^*$$

and so P_N is positive-definite.

We call the P_N the Riesz products since if the x's commute

$$P_N = \prod_{k=N}^1 \left[a_k^2 e + a_k b_k (x_k + x_k^{-1}) + b_k^2 e
ight] = \prod_{k=N}^1 \left[e + c_k \left(rac{x_k + x_k^{-1}}{2}
ight)
ight],$$

where $c_k = 2a_k b_k$ and so P_N is the Fourier transform of the ordinary Riesz product

$$\prod_{k=N}^{1} \left(1 + c_k \cos x_k t\right)$$

if G = Z (cf. [6], p. 208, v. I).

We have

$$P_N = \sum_{\underline{i} \in \mathcal{I}_{\{N...1\}}} a^{\underline{i}'} b^{\underline{i}} x^{\underline{i}} \sum_{\underline{j} \in \mathcal{I}_{\{N...1\}}} a^{\underline{j}'} b^{\underline{j}} (x^{\underline{j}})^{-1} = \sum_{\underline{i},\underline{j} \in \mathcal{I}_{\{N...1\}}} a^{\underline{i}' + \underline{j}'} b^{\underline{i} + \underline{j}} x^{\underline{i}} (x^{\underline{j}})^{-1}$$

and so

$$P_N(e) = \sum_{i,j} a^{i'+j'} b^{i+j}_{--j},$$

where the summation is over the <u>i</u>'s and <u>j</u>'s from $I_{(N...1)}$ such that $\omega^i(\omega^j)^{-1} = e$.

By Condition (C) we have

$$P_N(e) = \sum_{i \in I\{N,\dots 1\}} a^{2i'_l} b^{2i} = \prod_{l \in \{N,\dots 1\}} (a_l^2 + b_l^2) = 1.$$

Similarly

$$P_N(y_k) = \sum_{i,j} a_{\underline{i}}^{i'+\underline{j}'} b_{\underline{i}+\underline{j}} \quad \text{ for } y_k \in Ox_k,$$

where the summation is over the <u>i</u>'s and <u>j</u>'s from $I_{\{N,...l\}}$ such that $x^{\underline{i}}(x^{\underline{j}})^{-1} = y_k$. Thus we have

$$P_N(y_k) = \sum_{\underline{i_1},\underline{i_2}} a^{2\underline{i_1'}} b^{2\underline{i_1}} \cdot a_k b_k a^{2\underline{i_2'}} b^{2\underline{i_2}},$$

where the summation is over all \underline{i}_1 's and \underline{i}_2 's such that

(4)
$$\underline{i}_1 \in I_{\{N...k+1\}}, \ \underline{i}_2 \in I_{\{k-1...1\}} \quad \text{and} \quad x^{\underline{i}_1} x_k (x^{\underline{i}_1})^{-1} = y_k$$

and

$$(5) P_N(y_k) = a_k b_k \sum_{\underline{i}_1} a^{2\underline{i}'_1} b^{2\underline{i}_1} \sum_{\underline{i}_2} a^{2\underline{i}'_2} b^{2\underline{i}_2} = a_k b_k \sum_{\underline{i}_1} a^{2\underline{i}'_1} b^{2\underline{i}_1};$$

here $\underline{i}_1, \underline{i}_2$ run over all sequences which satisfy (4). The sum of the values of P_N at the points belonging to the same conjugate class is

$$\sum_{x \in Ox_k} P_N(x) \, = \, \sum_{\underline{i},\,\underline{j}} a^{\underline{i'}+\underline{j'}} b^{\underline{i}+\underline{j}} \, = \, \sum_{\underline{i}_1,\underline{i}_2} a^{2\underline{i'}} b^{2\underline{i}_1} a_k b_k a^{2\underline{i'}} b^{2\underline{i}_2},$$

where the summations are over all $\underline{i},\underline{j}\in I_{\{N...1\}}$ such that $x^{\underline{i}}(x^{\underline{j}})^{-1}\in Ox_k$ and $\underline{i}_1\in I_{\{N...k+1\}},\ \underline{i}_2\in I_{\{k-1...\}}$. Thus

$$\sum_{\alpha \in Ox_k} P_N(\alpha) = a_k b_k \prod_{l \neq k, l=1}^N (a_l^2 + b_l^2) = a_k b_k.$$

Consider the positive-definite and normalized functions P_N , $N=1,2,\ldots$, as a subset of the unit ball in the $L^{\infty}(G)$. It is a precompact set in the weak-star topology of $L^{\infty}(G)$.

Now we consider the Riesz products as defined in (3) with all the coefficients a_l and b_l equal to $2^{-1/2}$. We denote them by p_N , N = 1, 2, ...

121

icm©

Let $\langle p_{N_l} \rangle$ be a subsequence of $\langle p_N \rangle$ *-weak convergent to a positive-definite and normalized function p_0 . We denote by S the corresponding subset $\{N_l\}_{l \in \mathbb{N}}$ of natural numbers. We have $\sum\limits_{x \in Ox_k} p_{N_l}(x) = \frac{1}{2}$ for every $N_l \in S$ and so $\sum\limits_{x \in Ox_k} p_0(x) = \frac{1}{2}$. Since $p_{N_l}(x) \geqslant 0$ for all $x \in Ox_k$, $N_l \in S$, also $p_0(x) \geqslant 0$ on Ox_k . Consequently there exists $y_k \in Ox_k$ such that $p_0(y_k) \geqslant \frac{1}{2c}$.

Now we are going to check that the set $Y = \{y_k\}_{k\in\mathbb{N}} \subset G$ satisfies condition (b) of the Theorem 1. Let $d\colon E\to \{-1,1\}$. We put $a_k=d(y_k)2^{-1/2}$ and $b_k=2^{-1/2}$ and we construct the Riesz products (3) with such $\langle a_k\rangle$ and $\langle b_k\rangle$ and denote them by P_N^d . Notice that (5) implies that

$$P_N^d(y_k) = d(y_k)p_N(y_k)$$
 for $k, N \in \mathbb{N}$.

Now we consider the functions $P_{N_l}^d$ with $N_l \in S$. For the *-weak limit point P_0^d of $\langle P_{N_l}^d \rangle$ thus we have

$$P_0^d(y_k) = d(y_k)p_0(y_k)$$

since $p_{N_l}(y_k)$ tends to $p_0(y_k)$ as l tends to ∞ . We see that condition (b) of Theorem 1 is satisfied with K=1 and $\delta=\frac{1}{2e}$.

3. Construction of a set. Now we propose an inductive procedure which in some classes of non-abelian groups leads to a set $X = \{x_i\}_{i \in \mathbb{N}}$ which satisfies Condition (C). We do not specify the precise conditions on a group which guarantee that the set thus obtained is infinite. In the abelian case this procedure is similar to the construction of a dissociate set (cf. [3], p. 400).

Construction 1. 1) Select $x_1 \in G$ such that $e \notin x_1 \cdot Ox_1$ or equivalently $Ox_1 \cap Ox_1^{-1} = \emptyset$. If this is not possible the set X is void.

2) Assume that $x_1, ..., x_N$ have been selected. Let

$$A_N = \{x_{-}^{i}(x_{-}^{j})^{-1} \epsilon G \colon i, j \epsilon I_{\{N...1\}}\}$$

and

$$B_N = O_{A_N} \cup Ox_1 \cdot A_N \cup Ox_1^{-1} \cdot A_N \cup \ldots \cup Ox_N \cdot A_N \cup Ox_N^{-1} \cdot A_N,$$

where $O_A = \bigcup_{\substack{a \in A \\ a \in A}} Oa$ and $A \cdot B = \{ab \in G: a \in A, b \in B\}$ for $A, B \subset G$. We select x_{N+1} in $G \setminus B_N$ in a way such that

(6)
$$A_N \cap x_{N+1}^{-1} \cdot Ox_{N+1} = \{e\}$$

and

$$A_N \cap x_{N+1} \cdot Ox_{N+1} = \emptyset.$$

(If this is not possible, then $X = \{x_1, \ldots, x_N\}$.)

PROPOSITION 1. The set X obtained from the construction above satisfies Condition (C).

Proof. 1° Let $x^{\underline{i}}(x^{\underline{j}})^{-1} = e$, \underline{i} , $\underline{j} \in I_{\{N,\ldots\}}$ and let $n \in \{N \ldots 1\}$ be the greatest number such that $e_n = \underline{i}|_n = 1$ or $d_n = \underline{j}|_n = 1$, where $\underline{i} = \langle e_n \rangle$, $\underline{j} = \langle d_n \rangle$. There are then three possibilities:

$$e = x_n a, \quad e = bx_n^{-1}, \quad e = x_n cx_n^{-1}$$

with $x_n \in X$, $a, b, c \in A_{n-1}$ (here $A_0 = \{e\}$) and only the third one is possible because x_n was chosen from $G \setminus A_{n-1}$. We obtain $\underline{i}|_m = \underline{j}|_m$ for $N \ge m \ge n$ and $x^{\underline{i}_1}(x^{\underline{j}_1})^{-1} = c = e, \ \underline{i}_1, \ \underline{j}_1 \in I_{\{n-1,\ldots 1\}}$ and we apply the same reasoning to N = n-1 and finally get $\underline{i} = \underline{j}$.

2° Let $w^{\underline{i}}(x^{\underline{j}})^{-1} \in Ox_k$, \underline{i} , $\underline{j} \in I_{\{N...1\}}$ and let n be such as in 1°. The case k > n is impossible because $x_k \notin O_{A_n}$ implies $O_{x_k} \cap A_n = \emptyset$. If k = n we have three possibilities:

$$x_n a \in Ox_n$$
, $bx_n^{-1} \in Ox_n$, $x_n cx_n^{-1} \in Ox_n$ with $a, b, c \in A_{n-1}$,

that is,

$$a \in x_n^{-1} \cdot Ox_n, \quad b \in x_n \cdot Ox_n, \quad c \in Ox_n$$

and conditions (6), (7) and $a_n \in G \setminus O_{\mathcal{A}_{n-1}}$ imply that only the first case is possible with a=e, that is, $i|_n=1$, $j|_n=0$, i=j on $\{N\ldots n+1\}$ and $a^{\underline{i}_1}(a^{\underline{j}_1})^{-1}=a=e$ $\underline{i}_1,\underline{j}_1\in I_{\{n-1\ldots 1\}}$. We apply 1^0 to get $\underline{i}=\underline{j}$ on $\{n-1,\ldots,1\}$.

If k < n, then $x_n \cdot a \in Ox_k \cdot bx_n^{-1} \in Ox_k$ or $x_n \cdot cx_n^{-1} \in Ox_k$, that is, $x_n \in Ox_k \cdot A_{n-1}$, $x_n \in Ox_k^{-1} \cdot A_{n-1}$, $c \in Ox_k$ so the only possible is the third situation and we get $\underline{i} = \underline{j}$ on $\{N \dots n\}$ and $x^{\underline{i}_1}(x^{\underline{j}_1})^{-1} \in Ox_k$, $\underline{i}_1, \underline{j}_1 \in I_{\{n-1\dots 1\}}$ and we apply 2° again.

Choosing w_{N+1} outside $O_{\mathcal{A}_N}$ yields that no two elements of X are conjugated in G.

EXAMPLE 1. Suppose that the set $[G,G]=\{ghg^{-1}h^{-1}\epsilon\ G:\ g\epsilon\ G,\ h\epsilon\ G\}$ is finite and the set $S=\{g^2:\ g\epsilon\ G\}$ is not. Then there is an element x_1 $\epsilon\ G\setminus [G,G]$ with $x_1^2\neq [G,G]$. Assume we have chosen x_1,\ldots,x_N , and select $x_{N+1}\epsilon\ G$ such that neither x_{N+1} nor x_{N+1}^2 belong to the finite set $B_N\cup [G,G]\cdot A_N$. We shall show that the conditions (6) and (7) above are satisfied. If (6) does not hold then there are $\underline{i},\underline{j}\in I_{\{N,\ldots\}}$ such that $\underline{i}\neq\underline{j}$ and

$$x_{-}^{i}(x_{N+1}^{j})^{-1} \epsilon x_{N+1}^{-1} \cdot Ox_{N+1} = [x_{N+1}^{-1}, G] \subset [G, G].$$

Let n be the greatest number $n \in \{N_n^{n} : 1\}$ such that $\underline{i}|_n \neq \underline{j}|_n$. We have

$$x^{i}(x^{j}_{s})^{-1} = cx_{n} \cdot ac^{-1}$$
 or $x^{i}(x^{j})^{-1} = cbx_{n}^{-1}c^{-1}$, $a, b \in A_{n-1}$

hence $x_{n} \in [G, G] \cdot A_{n-1}$ which is a contradiction. If (7) is not satisfied, then there is $a \in A_N$ which also belongs to the $x_{N+1} \cdot \partial x_{N+1} = Ox_{N+1} \cdot x_{N+1} = [G, X_{N+1}] \cdot x_{N+1}^2$ and consequently $x_{N+1}^2 \in [G, G] \cdot A_N$ which is not true.

icm[©]

From Proposition 1 we conclude that the set $\{x_1, \ldots, x_N, \ldots\} = X$ satisfies Condition (C). Obviously $|[G, G]| = c < \infty$ implies $|Ox| \le c$ for every $x \in G$ and we can apply Theorem 2 to the set X. Of course, being FC group, that is, a group with finite classes of conjugated elements, G is amenable.

Remark. When the commutator subgroup G' of the group G is finite and the set S in the example above is infinite, we can perform the selection of the set X less carefully. That is take x_1 from $G \setminus G'$ with $x_1^2 \notin G'$ and x_{N+1} such that neither x_{N+1} nor x_{N+1}^2 belong to the set $G' \cdot B_N$. None of the two elements of the set X obtained in that way are congruent modulo G' and it is not hard to see that the subset $\{\bar{x}_1, \ldots, \bar{x}_N, \ldots\}$ of the abelian group G/G', where $\bar{x}_N = x_N G'$, is a Sidon set in G/G'.

EXAMPLE 2. Let G be a finite group and $g \in G$ such that

$$Og \cap Og^{-1} = \emptyset.$$

We consider the direct product

$$\prod_{n=1}^{\infty} G_n, \quad \text{where } G_n = G \text{ for } n = 1, 2, \dots$$

and its subset $X=\{x_1,x_2,\ldots\}$, where every x_N is of the form $(e,\ldots,h_N,e,\ldots,g,e,\ldots)$ with g on the N+1-th axis, h_N on 2^p-l -th axis, where p and l are such that $N=2^p+l$, $0\leqslant l<2^p$, and e elsewhere. $e\neq h_N\epsilon$ G is arbitrary. We are going to check that the selection of X agree with Construction 1. Because of (8) we have $Ox_1\cap Ox_1^{-1}=\emptyset$ and $A_N\cap X_{N+1}\cdot Ox_{N+1}=\emptyset$. Clearly $x_{N+1}\notin B_N$. If $a\in A_N\cap x_{N+1}^{-1}\cdot Ox_{N+1}$, then it may differ from e only on the one axis and, by the following lemma, a=e.

LEMMA. If $x^{\underline{i}}(x^{\underline{j}})^{-1}=(e,\ldots s,e,\ldots)$ for $\underline{i},\underline{j}\in I_{\{N\ldots l\}}$ with s on the n-th axis, $n\leqslant N+1$, then s=e.

Proof. Induction. For N=1 it is obvious since $x_1=(h_1,g,e,\ldots)$ with $h_1\neq e$. Suppose that lemma is true for N-1. For N we have:

$$m_{-}^{i}(x_{-}^{i})^{-1} = x_{N}^{e_{N}} x_{-}^{i_{1}}(x_{-}^{i_{1}})^{-1} x_{N}^{-d_{N}} = (e, \dots, e, \dots)$$

here $\underline{i},\underline{j} \in I_{\{N...l\}}; \underline{i}_1,\underline{j}_1 \in I_{\{N-1,...l\}}$. If s is on the N+1-th axis we put

(9)
$$x_1^{i_1}(x_1^{j_1})^{-1} = (e, ..., s_1, e, ...)$$
 with s_1 on the $2^p - l$ -th axis

and by induction hypothesis we have $s_1 = e$, so x_N^{eN} is equal to x_N^{dN} on the $2^p - l$ -th axis, hence $e_N = d_N \ (h_N \neq e)$ and s = e. If s is on the n-th axis with n < N + 1, then x_N^{eN} is equal to x_N^{dN} on the N + 1-th axis, so $e_N = d_N$ and we use the induction hypothesis to (9) with s_1 on n-th axis.

Since the direct product of finite groups is FC group thus amenable and $|Ox| < |G|^2$ for $x \in X$, we may obtain a Sidon set Y from X by Theorem 2.

Choosing a suitable sequence $\langle h_n \rangle$, we get "more or less commutative" set Y. For example, if we put $h_n = h$ for all n and add the condition $[h, Og] \not\models e$, then the set Y will have a property: for every $y_0 \in Y$ there are infinitely many y's from Y which do not commute with y_0 .

References

- P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), pp. 181-236.
- [2] A. Figà-Talamanca et M. Picardello, Les multiplicateurs de A(G) qui ne sont pas dans B(G), C. R. Acad. Sci. Paris, Sér. A, 277 (1973), pp. 117-119.
- [3] E. Hewitt and H. S. Zuckerman, Singular measures with absolutely continuous convolution squares, Proc. Cambridge Philos. Soc. (1966), pp. 399-420.
- [4] A. Hulanicki, Groups whose regular representation weakly contains all unitary representations, Studia Math. 24 (1964), pp. 37-59.
- [5] W. Rudin, Fourier analysis on groups, 1962.
- [6] A. Zygmund, Trigonometric series, 1968.

INSTYTUT MATEMATYCZNY
POLSKIEJ AKADEMII NAUK
WROCŁAW
MATHEMATICAL INSTITUTE
POLISH ACADEMY OF SCIENCES
WROCŁAW

Received May 30, 1973

(693)