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Riesz products on non-commutative groups
by
JACEK CYGAN (Wroctaw)

Abstract. A condition of lacunarity on & subset of a group and 2 construction
of a set satisfying it are given. The following result is then obtained. Suppose that &
is a discrete amenable group, X — a subset of G whose elements form a sequence
which satisfies this lacunarity condition and, moreover, there is a constant ¢ such
that |Ox| < ¢ for all z¢ X. Then by replacing every s X by a suitable y ¢ Oz we obtain
a Sidon set ¥ in @. Thus examples of Sidon sets in FC groups are obtained.

The aim of this note is to investigate an intriguing notion of a Sidon
subset of a non-abelian discrete group introduced by A. Figa-Talamanca.

(1) If @ is an abelian discrete group, then o subset § is called a Sidon
set if every bounded function on 8 is a restriction of o Fourier—Stieltjes

transform of a bounded measure on G.

Even though for non-abelian group there is no natural dual group q
the algebra of Fourier-Stieltjes transtorms. on G was defined by P. Eymard
[1] and following the idea of A. Figh-Talamanca we use this notion to
define Sidon sets for non-abelian groups in a complete analogy to (1).

. The definition and the elementary properties of Sidon sets, most of them
noticed by A. Figa-Talamanca, are given in Section 1; see also [2].

One of the main tools in constructing Sidon sets in abelian groups
are Riesz products. Our main objective here is to test this method for .
non-commutative groups. It has turned out, however, that it is
much better adapted to the commutative case. However, under some
restrictive assumptions on a group we are able to use it to produce non-
trivial infinite Sidon subsets.

1. Sidon sets. Let @ be a discrete group. Let B(G) be the TFourier—
Stieltjes algebra of @ as defined by P. Eymard in [1]. Tet ¢ denote the
left regular representation of L'(G) on I*(G), ie.

o(f)g =frg, feI'(@), geI*(@).

We write ||f], for the norm of the operator g(f).
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We shall use the following theorem of A. Hulanicki (cf. [4]):
A group @ is amenable if and only if ||f|l, = sup | T4 = ||fll= for all
T

hermitian functiops f in L!(@), where the least upper bound is taken
over all x-representations 7 of L'(G).

DrriNiTION 1. We say that B < G is a Sidon setif every bounded func-
tion on F is the restriction of a function in B(@).

TuroreM 1. Suppose that E is a subset of an amenable discrete group
then the following three conditions are equivalent:

(@) for every complex valued function ¢ on B with |c||l, < 1 there exisis
a function weB(G) such that w(g) = ¢(g) for ge B and |[u||pe < M, where
the constant M depends only on H;

(b) for every fumction d: B—{41} there exists a function we B(G)
such thot |ullpe < K and

&) sup [u(g) —d(g)| <1—6

geE
where K and & are positive constants depending only on ¥;
() there exwists a constant ¢ > O such that for every fumction fe I'(@)
with the support in B we have:

Il < elifllp:

Remark. Condition (a) is only formally stronger than the one in
Definition 1. In faet, if F is a Sidon set, then the mapping
T: B(@)>ur>ulge L*(E)
is a surjective bounded linear operator, so we may apply the open mapping

theorem to get the constant M.
Proot of the theorem. (a)

(6> 0),

=(b) is obvious. (b)=-(c): Let fe L'(G)

be real with the support in E. Define d on Esothat d = +1and d-f = |f].

By the hypothesis, there is a function ue B(G) which satisfies (2).
If Reu = §(u-+7%), then Rewue B(G), IRe /g < K and it also satis-
* fies (2).
We have
[fRew—|fl| =
hence we have fRew > |f]é and

Bifl = X I X flg) (Rew)(

gsE r/sL

< |fHIRew—d| < (1—-06)f]

9) < [Re ullgg I fllz < 2K |f],-

. 1 = 1 .
If f is not real, put f; = oY (f+5) fo = 5 (f—7F); then f, and f, are real
with supports in FE, so:

Hf < K87 + 7, < < 2K {flls
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similarly .
=Tl < 2K57Yf),
Il < 455111
(¢)=(a): Let ce L°(B) and ||, < 1. The set
Zr ={o(f)e 2(L(@): fe I}G) and supp f = B}

is a closed subspace of % (L*(@)) (norms |- |}, and |-||; are equivalent becanse
of (c)). The function @, defined on &y by the formula -

= D f(g)elg)

geE

and finally

is a linear functional on #y and it is bounded.:

. (e(H < Iflllielle < llll,-

By the Hahn-Banach theorem it can be extended to a functional @ on
& (L (&) with |&|| < ¢. Now we define the function « on G by the formula
u(g) = ®(0(8,)), where §,(k) is equal to 1 for h =g and 0 for h + g. For
feIM@), (Ifls<1 we have:

| D f@uig)| = Ing)@ 8,))| = 1Bl < IBNIA, < o

(¥
hence: ’

ﬁ] N6, (1) u(h}
gs’}
and
sup {| 3 f(g)ulg)]: fe I'(@) and Iflz <1} <o
geG

80 ue B(G) and [lullpg < ¢ (see [1], Proposition (2.1), p. 191).
Finally we check that for ge ¥

u(g) = B,{o(3,)) = D 8,(h)e(h) = e(g).

heGt

2. Riesz products. First we introduce some notations. Let N be the
seb of matural numbers ordered in the reverse order, ie. N=1{..,2,1}
and let A be a finite subset of N. We denote by I, the set of all sequences
{eDren Such that ¢ == 0 for 1¢A and ¢ ¢ {0,1} for le 4. Let 4 = {eprw
be such a sequence By 1 we denote a sequence {eD1ens where ¢ = 0 for
1¢A and ¢ =1—¢ for led. Now let o = = {an be a sequence of real
numbers. -

We write a® = ... -afre ... -afl. It is a real number because 4 is finite.
Similarly, if & = {z>..x is & sequence of elements of ‘¢ we write ot =
LaLafeG oand (@) =ar% ... @ T § = {dpeI,, then
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att = ... gfttn , gft%. In particular, when § = j we write o’ instead
of att?

The following is a generalization to anon-commutative case of the condi-
tion: R,(X, z) =1 for se N, ze X; B,(X, ¢) = 1 when s = 0 and B,(X, ¢)
= 0 for se N (cf. [5], p. 124). ’

Conprrion (C). We say that a sequence &y, @, ... of elements of G
satisfies condition (C) if mo two elemenis of it are conjugated in G and for

every natural N and i, je Iy, n

{0} =i =
o (zd)~ -
( Omy=>i = j on {N...1}N\{k} and ¢, =1, dy =0,
where Oz, = {y2,y e G: ye G}

THEOREM 2. Suppose that G is a discrete amenable group, X a subset
of G whose elements form o sequence which satisfies (C) and, moreover, there
is a constant ¢ such that |0x] < ¢ for all xe X. Then by replacing every we X
by a suitable ye Ox we obtain o Sidon set Y in G.

Proof. For sake of simplicity for a function f in L'(G) we write

=199
geG
-Let X = {&, ,,...} = &. We consider the products
1 N )
(3) Py = H(a’ke+bkwlc)n (@me+ba™),
k=N =1

where <{a;>;.n and (b are the sequences of real numbers with af + 8} = 1
for every I« N and we see that

Py =fuf*
and 8o Py is positive-definite.
We call the P, the Riesz products since if the a’s commute

Py = n (@, + azby (o, + o5 t) -+ bhe] = ]—][ o+6, (éw, izwlr )]7

k=N Jom N

where ¢, = 2a;b; and 8o Py i§ the Fourier transform of the ordinary Riesz

product
1
” (1 - ¢ ,con 1)
k=N .

it @ =Z (cf. [6], . 208, v. I).
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We have
Py = dviat Y i)t = 3 aH ()
ielin,., 1} jelen., 1y Lieloy..a}
and so
Py(6) == Z‘ @t H piH

o]
where the summation is over the ¢'s and j’s from I{N .y Such that
()Y e
w* (') < 6.
By Oondﬂsion (0) we have

Pyle) = AV pE =

LTI

| @+8) =
le{N...1}
Similarly
Py(yy) == Zaﬁ'*i'bi'*i for y, e Oy,
where the summation ig over the 4’ and j’s from Iy ; such that
wi(@d)~" =y, Thus we have

Zazilbﬁil a, b azizbzwz

Tul

'P 'ylr

where the summation is over all i;’s and 4,’s such that

(4) toe Loy, iy o€ Lgany and  ofm(@h)t =y,
and
(5) ‘ -PN(’yk) a’kbkz 2%11)2712““12 bhz = ahbk yaz"l bml

k)
here 4y, 4, run over all aequences which satisfy (4). The sum of the values
of Py at the points belonging to the same conjugate class is

2 Pylx) = Z’ AP e Za“lb”‘la beatia iz,
weOny i Iufiy

B P i —1
where the summations arve over all 7,je Iy, Such thab 2 (2t e Oy,
and dye Loy, prnyy o€ Lgewn,.ye THUS

ayby ] l (@] 4-07) = aybys-

D) Pylw) =
lahloy sl

weOzy
Congider the positive-definite and normalized functions Py, N==1,2,.
as o subset of the unit ball in the L®(§). It is a precompact seb in the
weak-gtar topology of L™(@).
Now we congider the Riesz products as defined in (3) with all the
coefficients «, and b, equal to 27, We denote them by P, N =1,2,

3 — Studia Mathematica LI.2
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Let {py,> be a subsequence of {py> #-weak convergent to a positive-detinite
and normalized function p,. We denote by § the corresponding subset

{N}y Of natural numbers. We have > py(@) =% for every Nye S and
! zeOxy
50 Y pol@) = 4. Since py,(#)>0 for all ae Oz, Nie S, also py(2) =0
ze0zy,

. 1
on Oz,. Consequently there exists y, ¢ Oxy, such that p,(yy) = e

Now we are going to check that the set ¥ = {yi}rw < G satisfies
condition (b) of the Theorem 1. Let d: B—~{—1, 1} We pub a = a(iy,)2~ 12
and b, = 27 and we construct the Riesz products (3) with such {a;> and
(by> and denote them by P%. Notice that (8) implies thab

Py = dW)on(yy) for B, Ne N,

Now we consider the functions P%,l with N; e S. For the «-weak limit point
P2 of (P> thus we have

Pi(ys) = A(Yn)Poys)
since py,(y;) tends to DoY) 28 1 tends to co. We see that condition (b)

1
of Theorem 1 i satisfied with K =1 and 6 = D

3. Construction of a set. Now we propose an inductive procedure
which in some classes of non-abelian groups leads to a set X = {mh.n
which satisfies Condition (C). We do not specify the precise conditions
on & group which guarantee that the set thus obtained is infinite. In the
abelian case this procedure is similar to the construction of a dissociate
set (cf. [3], p. 400).

. CoNSTRUCTION 1. 1) Select ;<@ such that e ¢ #,- Oz, or equivalently
Oz, N0x;* = @. If this is not possible the set X is void.

92) Assume that @, ..., @y have been selected. Let

Ay = {ggi(mi)‘ls G iy jely )
and
By = 04,008, Ayu007 " Ay ... U0ny: AyU0z5" Ay,

where O, = |{JOa and A-B = {abeG: acA,beB} for A,Bc @ We

aed
select @y, in G\By in a way such that
(6) Ap0uih Ozy,y = {6}
and .
(M) Ay, 1Oz =B

(Tf this is not possble, then X = {z,, ..., oy}.)
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ProposIrioN 1. The set X obtained from the construction above satisfies
Condition (C).

Proof. 1° Let #i(af)™" = e, i,je Iy 1y and let ne {¥ ...1} be the
greatest number such that e, =il, =1 or d, = j|, =1, where 7 = {¢,,
j = (d,>. There are then three possibilities:

6 == g,q, =20y, e = mcm;
with @,¢ X, @, b, 6c 4,_, (here 4, = {¢}) and only the third one is possible
because &, Was chosen from GN\A4,_,. We obtain. 4|, == ji,, for N=m>=n
and a8 (@)™ =0 == e, 4y, fye Iyq. .y and we apply the same reasoning
to N == n—1 and finally get 4 == j.

20 Let ot(ad) e Oy, 1, je Iy, oy 80d let n e such as in 1°. The case
%>n is impossible because ¢ O, implies 0, N4, =@. If & =n we
have three possibilities:

@, ae O, , buy'e On,, w00, e On, With a,b,ce 4, _;,
that is, ‘
aezt- Oz,

bewx, 0x,, ceOwn,

and conditions (6), (7) and 2, G\O,4 , imply that only the firgt case
is possible with @ = e, that is, i, =1, jl, = 0, ¢ = j on {&¥ ... n+1} and
@i (@) e @ == 64y, Jre Iy, .y We apply 1°to get¢.= jon {n—1,...,1}.

Tf % << 1, then &, ae Omy, bay* e O, or v, 02, " €Oy, thait is, @, e Omye Ay,
Bpe Ox b A,.y, e Oy, 8o the only possible iy the third gituation and we
get i =j on {N...n} and ¥ (af)™ e Omyy iy fre Jina.yy a0nd we apply
2° again.

Choosing @y.., outside 04, yields that no two elements of X ave
conjugated in @. .

Examrrs 1. Suppose that the set [(, @] = {ghg™'h™'e G: ge@, he G}
ig finite and the set § = {g% ge @} is not. Then there i3 an element w,
cG\[G,G] with o ¢[¢, @] Assume we have chosen @i, ...,%y, and
select w0y, ¢ G such that neither @y, nor #yy., belong to the finite seb
Byul[G, 6] 4. We shall show that the conditions (6) and (7) above are
satisfied. If (6) does not hold then there are 4, je Iy, such that ¢ + j and

mi(wi)’“le mﬁlil Ody = [mjvtu: Gl (GG

Let n bo the greatest number ne {N].. M1} fsuch that |, # jl,. We have

ol(a)™ = omy a0t or  al(el)™ = obapte™, 4, bed,

hence @,¢[6,G]-4,_, which is a contradiction. If (7) is not satisfied,
then there iy ae A, which also belongs to the @y i Oy, == OByy1 By
=[G, Xy, @Y, and consequently Ty € [G, G]- Ay which is not true.
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From Proposition 1 we conclude that the set {Byyoeey By oo} = X
satisties Condition (C). Obviously [[G, &) =¢< o implies |0z < ¢ for
every ze@ and we can apply Theorem 2 to the set X. Of course, being
FC group, that is, a group with finite classes of conjugated elements, G
is amenable.

Remark. When the commutator subgroup G of the group G is finite
and the set § in the example above is infinite, we can perform the gelection
of the et X less carefully. That is take z, from G\G' with o} ¢ ¢’ and oy,
such that neither #y_, nor @y, belong to the set @ -By. None of the two
elements of the set X obtained in that way are congruent modulo G and it
is not hard to see that the subset {Z,...,Zy,...; of the abelian group
G/&, where Ty = oy@', is a Sidon set in Gla.

ExAMPLE 2. Let @ be a finite group and ge & such that

(8) 0gn0g~* =@.

We consider the direct product

~0

G,, where G, =@ forn =1,2,...

"

il
L

and its subset X = {&, @q, ...}, Where every sy is of the form (e, ..
.0y 4, €y ...y With g on the N +-1-th axis, hy on 9P —I-th axis, where p and
1 are such that N =27+l 0< 1< 2?, and ¢ elsewhere. ¢ 7 hye G is
arbitrary. We are going to check that the selection of X agree with Construc-
tion 1. Because of (8) we have Ow; NOx7" = @ and AyNXy Oy = a.
Olearly @y, ¢ By. I ac Aynayh, Omyy,, then it may differ from e only
on the one axis and, by the following lemma, o = e.

Lavwa. If d(@)™ = (e,...8,6,...) for 4,5l ny with s on the
n-th awis, n < N +1, then s = e.

Proof. Induction. For N = 1 it is obvious since #; = (hy, 9, ¢,...)
with hy 5= e. Suppose that lemma is true for N —1. For ¥ we have:

by, 6y ...

2t (@d)? = o F e (@) T = (e,... 8,6,...)
here i, je Iy, 5 b1y Jue Lo, 0 If s is on the N -+ 1-th axis we pub

9) 281 (@) = (e, ..., 81, 6,...) With s; on the 27 —I-th axis

. N . . d,
and by induction hypothesis we have s; = ¢, 50 mj{," is equal to @y on,

the 22 —I-th axis, hence ey = dy (hy 5 ¢) and s = e. If s is on the n-th axis
with n < N +1, then 43 is equal to #2¥ on the N -+1-th axis, 50 6y = dy
and we use the induction hypothesis to (9) with s; on n-th axis.

Since the direct product of finite groups is FC group thus amenable
and [0z| < |@)* for # < X, we may obtain a Sidon set ¥ from X by Theorem 2.
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Choosing a suitable sequence <h,>, we get “more or less commutative’
set Y. For example, if we put h, = & for all » and add the condition
[k, Og] # e, then the Set ¥ will have a property: for every y,e¢ X there are
infinitely many %’s from ¥ which do not commute with y,.
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