

STUDIA MATHEMATICA, T. LI. (1974)

In non-locally bounded L_{φ} -spaces the norm is not almost transitive

by

WERNER FISCHER* and ULRICH SCHÖLER* (Bonn, GFR)

Abstract. In this note it is shown that the norm of those F-spaces $L_{\varphi}(\mathcal{X}, A, \mu)$, which are not locally bounded, is not almost transitive, in opposition to the norm of the locally bounded spaces $L_p[0,1]$. The proof follows from a representation of the linear isometries of these spaces.

Let $L_{\varphi}(X, A, \mu)$ be the space of μ -measurable, φ -integrable, real-valued functions, defined on a σ -finite, non-atomic, separable measure space, where $\varphi \colon [0, \infty) \to [0, \infty)$ is a continuos, strictly increasing, subadditive function with $\varphi(0) = 0$. As usual functions are identified if they differ only on a set of measure zero.

For an F-space X let G(X) denote the group of all linear isometries which map X onto itself. The norm $\|x\|$ of an F-space X is called *transitive* resp. almost transitive if for all positive r and each $x \in X$ with $\|x\| = r$

resp.
$$\frac{\{A\,(x)\colon\, A\,\epsilon\,G(X)\}\ = \{y\,\epsilon\,X\colon\, ||y||\, = r\}}{\{A\,(x)\colon\, A\,\epsilon\,G(X)\}\ = \{y\,\epsilon\,X\colon\, ||y||\, = r\},\quad \text{cf. [3]}.}$$

Pełczyński and Rolewicz [3] proved that in the spaces $L_p[0,1]$, 0 , the norm is almost transitive.

In this note we shall show

THEOREM. In non-locally bounded L_{φ} -spaces the norm is not almost transitive.

As $L_{\varphi}(X, A, \mu)$ is isometrically isomorphic to $L_{\varphi}(R, A_{\lambda}, \lambda)$ resp. $L_{\varphi}([0, 1], A_{\lambda}, \lambda)$, if $\mu(X) = \infty$ resp. $\mu(X) = 1$, where λ is the Lebesgue measure, it clearly suffices to prove the theorem for these special cases.

The proof of the theorem is based on the following lemmas.

^{*} The authors were supported by the Sonderforschungsbereich 72 of the Deutsche Forschungsgemeinschaft.

127

LEMMA 1. Let f and g be functions in $L_{\sigma}(X, A, \mu)$. Then

$$||f+g|| + ||f-g|| = 2(||f|| + ||g||)$$

if and only if fg = 0 μ -a.e. on X (i.e. if and only if $\mu(\operatorname{supp} f \cap \operatorname{supp} g) = 0$). Proof. Suppose that $\mu(\operatorname{supp} f \cap \operatorname{supp} g) = 0$. Then clearly

$$\|f+g\| = \int_X \varphi(|f+g|) \, d\mu = \|f\| + \|g\|$$
 and $\|f-g\| = \|f\| + \|g\|$.

As φ is subadditive, we have for real numbers a and b $\varphi(|a+b|)+\varphi(|a-b|) \leqslant 2(\varphi(|a|)+\varphi(|b|))$. Because φ is strictly increasing, equality holds if and only if either a=0 or b=0.

Suppose that

$$\int\limits_{\mathbb{X}} \left\{ 2 \left(\varphi(|f|) + \varphi(|g|) \right) - \varphi(|f+g|) - \varphi(|f-g|) \right\} d\mu \, = \, 0 \, .$$

Then $2(\varphi(|f|)+\varphi(|g|))-\varphi(|f+g|)-\varphi(|f-g|)=0$ μ -a.e. on X. This implies that for almost all $t \in X f(t)=0$ when $g(t)\neq 0$, and g(t)=0 when $f(t)\neq 0$, i.e.

$$\mu(\operatorname{supp} f \cap \operatorname{supp} g) = 0.$$

LEMMA 2. Let $L_{\varphi}(\boldsymbol{R}, \boldsymbol{A}_{\lambda}, \lambda)$ resp. $L_{\varphi}([0, 1], \boldsymbol{A}_{\lambda}, \lambda)$ be non-locally bounded and $T \in G(L_{\varphi})$.

Then for every $f \in L_{\infty}$

$$T(f)(t) = h(t)f(g(t)),$$

where g and h are λ -measurable functions such that

- (i) $g(\mathbf{R}) = \mathbf{R} \text{ resp. } g([0,1]) = [0,1],$
- (ii) |h(t)| = 1,
- (iii) $\lambda(g^{-1}(A)) = \lambda(A)$ for all $A \in A_{\lambda}$.

Proof. Using Lemma 1, we easily get a generalization of [1], Theorem 3.8.5, to all L_{φ} -spaces. Hence, for each $f \in L_{\varphi}$, T has the form

$$(1) T(f)(t) = h(t)f(g(t)),$$

where g and h are λ -measurable functions, g has property (i), and $g^{-1}(A) = \operatorname{supp} T_{\mathcal{X}_A}$ for each $A \in A_{\lambda}$. So we only have to verify properties (ii) and (iii).

Define

$$\psi \colon A_1 \rightarrow A_2$$

by

$$\psi(A)$$
: = supp $T\chi_A$

Then
$$\lambda(\psi(A) \cap \psi(B)) = 0$$
 if $A \cap B = \emptyset$ (cf. [1]).

As T is onto, we can choose $h(t)\neq 0$ for all t. Further on, for each $A\in A_\lambda$ there is an $f\in L_x$ with

$$T(f) = \chi_A$$
.

Now (1) implies $\chi_{\mathcal{A}}(t) = h(t)f(g(t))$ for all t. Let D := supp f.

$$t \in A \Leftrightarrow f(g(t)) \neq 0$$

$$\Leftrightarrow g(t) \in \operatorname{supp} f$$

$$\Leftrightarrow h(t) \cdot \chi_D(g(t)) \neq 0$$

$$\Leftrightarrow T(\chi_D)(t) \neq 0.$$

So for each $A \in A_{\lambda}$ there is a $D \in A_{\lambda}$ with

$$(2) \psi(D) = A,$$

Suppose now that property (iii) is not true. Then there is a $B \in A_{\lambda}$ with $\lambda(\psi(B)) \neq \lambda(B)$. Obviously we can assume $\lambda(\psi(B)) \leq 1$ and $\lambda(B) \leq 1$. Now (1) implies that, for all real $\alpha > 0$, $\|\alpha \cdot \chi_B\| = \|T(\alpha \chi_B)\| = \|h(t)\alpha \chi_{\psi(B)}\|$ or

(3)
$$\lambda(B) = \int_{\varphi(B)} \frac{\varphi(|ah(t)|)}{\varphi(\alpha)} d\lambda.$$

Let $E := \psi(B)$ and for each $i \in N$

$$E_i \colon = egin{cases} \{t \in E \colon i \leqslant |h(t)| < i+2\} & i ext{ odd,} \ \{t \in E \colon rac{1}{i+1} \leqslant |h(t)| < rac{1}{i-1} \} & i ext{ even.} \end{cases}$$

Clearly, $E = \bigcup_{i \in \mathbb{N}} E_i$ and $E_i \cap E_j = \emptyset$, $i \neq j$.

(2) implies that for each $i \in \mathbb{N}$ there is an $X_i \in A_\lambda$ with $\psi(X_i) = E_i$. By definition of ψ we have $\bigcup_{i \in \mathbb{N}} X_i = B$ and $\lambda(X_i \cap X_j) = 0, i \neq j$.

As we only consider classes of measurable sets, we can choose X_i in such a way that $X_i \cap X_j = \emptyset$, $i \neq j$. Now $\lambda(\psi(B)) \neq \lambda(B)$ implies that there is an $i \in N$ with $\lambda(\psi(X_i)) \neq \lambda(X_i)$. This leads to a contradiction.

We only consider the case: i odd, as the proof is nearly the same for even i.

(3) implies $\lambda(X_i) \geqslant \lambda(\psi(X_i))$. Suppose there is an $\varepsilon > 0$ such that $\lambda(X_i) = \lambda(\psi(X_i)) + \varepsilon$.

As L_{φ} is not locally bounded, for every positive real r there is a sequence $\{a_i\}_{i\in \mathbf{N}}$ of positive reals such that $\lim a_i = \infty$ or $\lim a_i = 0$, and $\lim \frac{\varphi(a_ir)}{\varphi(a_i)} = 1$

(cf. [2], [3]). So there exists an $n_0 \in N$ with $\frac{\varphi(a_{n_0}(i+2))}{\varphi(a_{n_0})} \leqslant 1 + \varepsilon/2$.

Then we have

$$\begin{split} \lambda \left(\psi \left(X_i \right) \right) + \varepsilon &= \lambda (X_i) = \int\limits_{\psi \left(X_i \right)} \frac{\varphi \left(\left| \alpha_{n_0} h \left(t \right) \right| \right)}{\varphi \left(\alpha_{n_0} \right)} \, d \, \lambda \\ &\leqslant \frac{\varphi \left(\alpha_{n_0} (i + 2) \right)}{\varphi \left(\alpha_{n_0} \right)} \, \lambda \left(\psi \left(X_i \right) \right) \leqslant \lambda \left(\psi \left(X_i \right) \right) + \varepsilon / 2 \end{split}$$

which is a contradiction.

So altogether we have $\lambda(\psi(A)) = \lambda(A)$ for all $A \in A_{\lambda}$ which implies (iii).

Let $M:=\{t\colon |h(t)|>1\}$. Without restriction we can suppose $\lambda(M)\leqslant 1$. We showed already that there is an $N\in A_{\lambda}$ with $\psi(N)=M$ and $\lambda(N)=\lambda(M)$. Then we have $\varphi(1)\cdot\lambda(N)=\|\chi_N\|=\|T(\chi_N)\|=\|h(t)\chi_M(t)\|$ $=\int\limits_M \varphi(|h(t)|)d\lambda>\varphi(1)\cdot\lambda(M)$, which implies $\lambda(M)=0$. Similarly we get $\lambda\{t\colon |h(t)|<1\}=0$, which completes the proof.

The proof of the theorem is a trivial consequence of Lemma 2.

References

- G. O. Okikiolu, Aspects of the Theory of Bounded Integral Operators in L_p-Spaces, Academie Press, London - New York 1971.
- [2] S. Rolewicz, Some remarks on the spaces N(L) and N(l), Studia Math. 18 (1959), pp. 1-9.
- [3] Metric Linear Spaces, Monografie Matematyczne, Tom 56, Warszawa 1972.

Diagonal mappings between sequence spaces

b

D. J. H. GARLING (Cambridge)

Abstract. Some general results are obtained about r-nuclear, r-integral and r-summing diagonal mappings from one sequence space to another. These are used to give a nearly complete characterization of such mappings from one l^p space to another, extending results of Schwartz and Tong.

1. Introduction. Schwartz ([4] Théorème (XXVI, 4; 1) and [5]) has given a complete account of 0-summing diagonal mappings from one l^p space to another. If α is a sequence, we denote by d_{α} the linear operator defined by coordinatewise multiplication by α . Recall that

$$a \in l^{p-1}$$
 if $\sum_{n=1}^{\infty} |a_n|^p (1 + \log |a_n^{-1}|) < \infty$. If $q < 2 < p$, we set $\varphi(p, q) = (p^{-1} + q^{-1} - \frac{1}{2})^{-1}$. Schwartz' result is then the following:

THEOREM 1. d_a is 0-summing from $l^{p'}$ into l^q if and only if the following conditions are satisfied:

- (i) if p = q < 2, $\alpha \in l^{p-}$;
- (ii) if $2 \leq q < p$, $\alpha \in l^p$;
- (iii) if q < 2 < p, $\alpha \in l^{\varphi(p,q)}$;
 - (iv) otherwise, $a \in l^{\min(p,q)}$.

The purpose of this paper is to extend this result to give a nearly complete account of r-summing, r-integral and r-nuclear diagonal nappings from $l^{p'}$ into l^q . For this, we shall need the three following theorems:

THEOREM 2. Suppose that $1 \leq p$, $q \leq 2$, that F is isomorphic to a closed subspace of $L^q(0, 1)$ and that E' is isomorphic to a closed subspace of $L^p(0, 1)$. Then the following are equivalent:

- (i) u is 0-summing;
- (ii) u is r-summing for some r < p;
- (iii) u' is 0-summing;
- (iv) u' is s-summing for some s < q.

THEOREM 3. Suppose that $1 \le p \le 2$, and that E' is isomorphic to a closed subspace of $L^p(0,1)$ and that H is a Hilbert space. If $u \in L(E,H)$,