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In non-locally bounded L -spaces
the norm is not almost tramsitive

hy
WERNER FISCHER* and ULRICH SCHOLER* (Bonn, GFR)

Abstract. In this note it is shown. that the norm of those F-spaces Ly (X, 4, u),
which are not locally bounded, is not almost transitive, in opposition to the norm
of the locally bounded spaces Ly[0, 1]. The proof follows from a representation of
the linear isometries of these spaces.

Let L,(X,A,u) be the space of u-measurable, g-integrable, real-
valued functions, defined on a o-finite, mon-atomic, separable measure
space, where ¢: [0, co)->[0, co) is a continuos, strictly inereasing, subad-
ditive function with ¢(0) = 0. As usual functions are identified if they
differ only on a set of measure zero. ‘

L,(X, A, ) is an F-space with F-norm |f||: =rlq9(|f|)d,u.

For an F-space X let G(X) denote the group of all linear isometries
which map X onto itself. The norm ||} of an F-space X is called transitive
resp. almost transitive it for all positive r and each #¢ X with [jz] = 7

{A(@): AeG(X)} ={ye X: |ly]l =1}

Tesp. -—
A@: 4eG@]} = {ye X: [yl =1}, cf. [3].

Pelczyﬁski and Rolewiez [8] proved that in the spaces I,[0,1],
0< p< oo, the norm is almost transitive. '
In thiz note we shall show

TuworeM. In non-locally bounded 1L -spaces the norm is not almost
tramsitive.

As L (X, 4,p) is isometrically isomorphic to Ly (R, d;, 1) resp.
L,([0,1], 4;,2), if u(X) = oo vesp. u{X) == 1, where 1 is the Lebesgue
measure, it clearly suffices to prove the theorem for these special cases.

The proof of the theorem is based on the following lemmas.

* The authors were supported by the Sonderforschungsbereich 72 of the
Deutigche Forschungsgemeinsehafs.
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LemMA 1. Let f and g be functions in L,(X, A, u). Then

17+ gl +1f —gll = 2(fll+llgl)

if and only if fg = 0 p-a.e. on X (i.e. if and only if u(suppf N suppg) = 0).
Proof. Suppose that u(supp f N suppg) = 0. Then clearly

If+gl =£<P(|f+yl)du =fll+lgll  and |If—gil = Al +lgll-

As @ is subadditive, we have for real numbers o and b ¢(|a+b|)+
+o(la—bl) < 2(p(|al) +o([b])). Because @ is strictly increasing, equality
holds if and only if either @ = 0 or b = 0.

Suppose that

}!{2(¢(|fl)—'r¢(lgl)) —o(f+g)—e(f—gh}du = 0.

Then  2(p(If)+o(lg)) —9(f+9) —¢(f—g)) =0 wae on X. This
implies that for almost all teX f(f) = 0 when g¢(f) 0, and g(¢) =0
when f(t) 3~ 0, i.e.

) u(suppf N suppg) = 0.
Levua 2. Let L,(R,A,;,1) resp. _Lw([O,l],A“Z) be mon-locally

bounded and T e G(L,).
Then for every fe L,

T(HE) = r@®f(g®),
where g and h are A-measurable functions such that
(i} g(R) = R resp. ¢([0,1]) = [0,1],
(ii) k@) =1,
(i) Mg (4)) = A{A) for all A A,.
Proof. Using Lemma 1, we easily get a generalization of [1],
Theorem 3.8.5, to all L,-spaces. Hence, for each feL,, T has the form

(1) T()(t) = h(H)f(g(1),

where g and kb are i-measurable functions, g has property (i), and g=*(4)
= suppTy, for each AeA,. So we only have to verify properties (ii)
and (iii).
Define
p: A;—A4,

by

p(d): = suppTy,-
Then A(p(4) Ny(B)) = 0 it ANB =@ (cf. [1]).
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As T is onto, we can choose h(t) % 0 for all ¢+, Further on, for each
AcA, there i3 an fe L, with

T(f) = ga-

Now (1) implies x4 (t) = h(t)f(g()) for all ¢. Let D:= supp f.
Then we have

te d = flg(0) #0
< g(t)e supp f
< h(t) xplg(2) # 0
< T (xp)(f) # 0.
Qo for each Ae.d, there is a De 4, with

@) p(D) = 4,

Suppose now that property (iii) is not true. Then there is a Be 4,
with A(y(B)) # A(B). Obviously we can assume 2(y(B)) <1 and A(B) < 1.
Now (1) implies that, for all real a > 0, |la- x5l = |IT (exp)ll = 1A (D), ox

p(lah(t)]) .

®) B = [ E

»(B)
Let B: = y(B) and for each ie N

{te B: i< |h(8)| < 12} i odd,

;0 =
i

1
‘te B: -ﬂl:l— < B ()] < ml 7 even.
Clearly, B = U E; and B,nE; =@, i # j.
ieN

(2) implies that for each ic N there is an X,;e 4, with y(X;) = B,.
By definition of v we have U X; = B and A(X;nX;) =0, % #j.
ieN

As we only consider classes of measurable sets, we can choose X;
in such a way that X;nX; =@, i #j. Now A(p(B)) » A(B) implies
that there iz an ¢e N with /1(1p(Xi)) < A(X,;). This leads to a contra-
diction.

‘We only congider the case: ¢ odd, as the proof iy nearly the same
for even 4.

(3) implies A(X;) > Ap(X))). Suppose there is an &> 0 such that
AX) = A(p(X) e

As I, is not locally bounded, for every positive real 7 there is a sequence

ag
{a};en of positive reals such that lime, = co orlime, == 0, andlim (ﬁ(—f-)—) == ]
4
. - ¢lan,(142))
(of. [2], [8]). So there exists an nge N with ——-—— <1 +¢/2.
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Then we have

(1o, k(1))
o play,)

@(an, (142))
@ (o)

M (X)) +e = MX,) = dz

< Ap(X) < (X)) + /2 .
which is a contradiction.

So altogether we have A(y(4)} = A(4) for all Ae A, which implies
(iii).

Let M:= {t: |h(t)] > 1}. Without restriction we can suppose
AM(M)<1. We ghowed already that there is an Ne 4, with ¢(N) = M
and A(N) = A(M). Then we have p(1)- 2(N) = [zl = 1T (xx)ll = I (@)xat)]
=1‘{ o(|h(8)}dA > ¢(1)-A(M), which implies A(M) = 0. Similarly we get

A{t: |n(#)] < 1} = 0, which eompletes the proof.
The proof of the theorem is a trivial consequence of Lemma 2
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Diagonal mappings between sequence spaces
by
D. J. H. GARLING (Cambridge)

Absteact. Some general results are obtained about r-nuclear, r-integral and
r-summing diagonal mappings from one sequence space to another. These are used.
to give a nearly complete characterization of such mappings from one IP space to
another, extending results of Schwartz and Tong.

1. Introduction. Schwartz ([4] Théoréme (XXVI, 4; 1) and [5])
has given a complete account of O-summing diagonal mappings from
one ¥ space to another. If « is a sequence, we denote by &, the linear
operator defined by coordinatewise multiplication by a. Recall that

ael?~ if Z o, ” (1 —1-10g|an < oo, If g<2<p, we set @(p,q)

= (p~t g ''''''' 3)*. Sehwartz’ result is then the following:
THROREM 1. d, 18 0-summaing from 17 imto 1¢ zf and only if the following
oo%dmons are satisfied:
Y p=g<2, acl”
(i) if 2<g< p, ael7,
(i) if g< 2 < p, acl?®9;
and
(iv) otherwise, ae™nEa,
The purpose of this paper is to extend this result to give a nearly
complete account of r-summing, r-integral and »-nuclear diagonal nappings
from ¥ into 1. Tor this, we shall need the three following theorems:

TirmorEM 2. Suppose that 1 < p, ¢ < 2, that I is isomorphic lo a closed
subspace of L#(0, 1) and that B’ is womamshm 1o a dlosed subspace of LP (0, 1),
Then the fotlowmg are equivalent:

(i) w 18 0-summing;

(ii) w is r-summing for some r << p;
(iii) w' 48 O-summing;
(iv) o' s s-summing for some s< ¢.

TaroREM 3. Suppose that 1 < p <2, and 17z,at ' is isomorphic to
a dlosed subspace of I2(0, 1) and that H is a Hilbert space. If we L(H, H),
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