

Then we have

$$\begin{split} \lambda \left(\psi \left(X_i \right) \right) + \varepsilon &= \lambda (X_i) = \int\limits_{\psi \left(X_i \right)} \frac{\varphi \left(\left| \alpha_{n_0} h \left(t \right) \right| \right)}{\varphi \left(\alpha_{n_0} \right)} \, d \, \lambda \\ &\leqslant \frac{\varphi \left(\alpha_{n_0} (i + 2) \right)}{\varphi \left(\alpha_{n_0} \right)} \, \lambda \left(\psi \left(X_i \right) \right) \leqslant \lambda \left(\psi \left(X_i \right) \right) + \varepsilon / 2 \end{split}$$

which is a contradiction.

So altogether we have $\lambda(\psi(A)) = \lambda(A)$ for all $A \in A_{\lambda}$ which implies (iii).

Let $M:=\{t\colon |h(t)|>1\}$. Without restriction we can suppose $\lambda(M)\leqslant 1$. We showed already that there is an $N\in A_{\lambda}$ with $\psi(N)=M$ and $\lambda(N)=\lambda(M)$. Then we have $\varphi(1)\cdot\lambda(N)=\|\chi_N\|=\|T(\chi_N)\|=\|h(t)\chi_M(t)\|$ $=\int\limits_M \varphi(|h(t)|)d\lambda>\varphi(1)\cdot\lambda(M)$, which implies $\lambda(M)=0$. Similarly we get $\lambda\{t\colon |h(t)|<1\}=0$, which completes the proof.

The proof of the theorem is a trivial consequence of Lemma 2.

References

- G. O. Okikiolu, Aspects of the Theory of Bounded Integral Operators in L_p-Spaces, Academie Press, London - New York 1971.
- [2] S. Rolewicz, Some remarks on the spaces N(L) and N(l), Studia Math. 18 (1959), pp. 1-9.
- [3] Metric Linear Spaces, Monografie Matematyczne, Tom 56, Warszawa 1972.

Diagonal mappings between sequence spaces

b

D. J. H. GARLING (Cambridge)

Abstract. Some general results are obtained about r-nuclear, r-integral and r-summing diagonal mappings from one sequence space to another. These are used to give a nearly complete characterization of such mappings from one l^p space to another, extending results of Schwartz and Tong.

1. Introduction. Schwartz ([4] Théorème (XXVI, 4; 1) and [5]) has given a complete account of 0-summing diagonal mappings from one l^p space to another. If α is a sequence, we denote by d_{α} the linear operator defined by coordinatewise multiplication by α . Recall that

$$a \in l^{p-1}$$
 if $\sum_{n=1}^{\infty} |a_n|^p (1 + \log |a_n^{-1}|) < \infty$. If $q < 2 < p$, we set $\varphi(p, q) = (p^{-1} + q^{-1} - \frac{1}{2})^{-1}$. Schwartz' result is then the following:

THEOREM 1. d_a is 0-summing from $l^{p'}$ into l^q if and only if the following conditions are satisfied:

- (i) if p = q < 2, $\alpha \in l^{p-}$;
- (ii) if $2 \leq q < p$, $\alpha \in l^p$;
- (iii) if q < 2 < p, $\alpha \in l^{\varphi(p,q)}$;
 - (iv) otherwise, $a \in l^{\min(p,q)}$.

The purpose of this paper is to extend this result to give a nearly complete account of r-summing, r-integral and r-nuclear diagonal nappings from $l^{p'}$ into l^q . For this, we shall need the three following theorems:

THEOREM 2. Suppose that $1 \leq p$, $q \leq 2$, that F is isomorphic to a closed subspace of $L^q(0, 1)$ and that E' is isomorphic to a closed subspace of $L^p(0, 1)$. Then the following are equivalent:

- (i) u is 0-summing;
- (ii) u is r-summing for some r < p;
- (iii) u' is 0-summing;
- (iv) u' is s-summing for some s < q.

THEOREM 3. Suppose that $1 \le p \le 2$, and that E' is isomorphic to a closed subspace of $L^p(0,1)$ and that H is a Hilbert space. If $u \in L(E,H)$,

the following are equivalent:

- (i) u is 0-summing;
- (ii) u is p-summing;
- (iii) u' is 0-summing;
- (iv) u' is s-summing for some s.

THEOREM 4. Suppose that $0 < r < \infty$, $p \ge 1$ and $q \ge 1$.

- (i) If $r \leqslant q$ and $a \in l^r$, then d_a is r-summing from $l^{p'}$ into l^q .
- (ii) If $p \leqslant r$ and d_a is r-summing from $l^{p'}$ into l^q , then $a \in l^r$.
- (iii) If $p \leqslant r \leqslant q$, d_a is r-summing from $l^{p'}$ into l^q if and only if $a \in l^r$.

The proofs of Theorems 2 and 3 will appear elsewhere [1]; we prove Theorem 4, which is much more elementary. As usual, let $e^{(j)}$ denote the sequence with 1 in the jth position, and with 0 elsewhere. Suppose that $r \leqslant q$ and that $\alpha \in l^r$. If $x^{(1)}, \ldots, x^{(n)} \in l^{p'}$,

$$\begin{split} \sum_{i=1}^{n} \|d_a x^{(i)}\|^r &= \sum_{i=1}^{n} \Big(\sum_{j=1}^{\infty} |a_j x_j^{(i)}|^q \Big)^{r/q} \\ &\leqslant \sum_{i=1}^{n} \sum_{j=1}^{\infty} |a_j x_j^{(i)}|^r \\ &= \sum_{j=1}^{\infty} |a_j|^r \sum_{i=1}^{n} |\langle x^{(i)}, e^{(j)} \rangle|^r \\ &\leqslant \Big(\sum_{j=1}^{\infty} |a_j|^r \Big) \sup_{\|x'\| \leqslant 1} \sum_{i=1}^{n} |x'(x^{(i)})|^r, \end{split}$$

so that d_a is r-summing. If $p \leqslant r$ and d_a is r-summing from $l^{p'}$ into l^q , and if $f \in l^p$,

$$\sum_{j=1}^{\infty} |\langle e^{(j)}, f \rangle|^r \leq \left(\sum_{j=1}^{\infty} |\langle e^{(j)}, f \rangle|^p \right)^{r/p} = ||f||^r$$

so that $\sum_{j=1}^{\infty} \|d_a e^{(j)}\|^r = \sum_{j=1}^{\infty} |a_j|^r < \infty$. Finally (iii) is a consequence of (i) and (ii).

2. Spaces of diagonal mappings. In the next section we shall give a nearly complete account of the r-summing, r-integral and r-nuclear diagonal mappings from one l^p space to another. The procedure will be first to characterise the r-summing operators, and then to use duality theorems to characterize the r-integral and r-nuclear mappings (for $1 < r < \infty$). This technique has been used by Tong [6] to characterize the 1-nuclear diagonal mappings. In this section we shall establish the

duality theorems required. In fact, it seems worth establishing these in a more general setting, as in [7].

Let ω denote the linear space of all sequences, and φ the space of all sequences with only finitely many non-zero terms. We recall that a BK-space E is a linear subspace E of ω , containing φ , and equipped with a Banach space norm under which all the coordinate functionals are continuous. E is solid if whenever $x \in E$ and $|y_i| \leq |x_i|$ for each i, then $y = (y_i) \in E$. If (E, || ||) is a solid BK-space, there is an equivalent norm | | | | | | on E such that if $|y_i| \leq |x_i|$ for each i, then $|||y||| \leq |||x|||$. If E is solid, we shall always suppose that it is equipped with such a norm. We define the mapping P_n by $(P_n(x))_i = x_i$ if $i \le n$. $(P_n(x))_i = 0$ if i > n. ABK-space E is an AK-space if $P_n(x) \rightarrow x$ for each x in E. If E is a sequence space, $E^x = \{y : \sum_{i=1}^{\infty} |x_i y_i| < \infty$, for each $x \in E\}$. E is a Köthe space if $E = E^{xx}$. If $(E, \| \|)$ is a solid BK-space, every element of E^x defines a continuous linear functional on E, with norm $||y|| = \sup\{\sum_i |x_iy_i|: ||x|| \le 1\}$. If in addition E is an AK-space, all continuous linear functionals are given by elements of E^x , so that we may identify E' and E^x . Thus a solid BK-space E is reflexive if and only if E is a Köthe space and E and E^x are both AK-spaces.

If E and F are BK-spaces, and if $A=(a_{ij})$ is a matrix such that $Ax=(\sum_{j=1}^{\infty}a_{ij}x_j)_{i=1}^{\infty} \epsilon F$ for each $x \epsilon E$, then A defines a continuous linear mapping from E into F (which we shall again denote by A). If, further, E is an AK-space, then every continuous linear mapping is given in this way. If a is a sequence, we shall write d_a for the diagonal matrix diag (a_1, a_2, \ldots) . If A is a matrix, we shall write D_A for the associated diagonal matrix diag (a_{11}, a_{22}, \ldots) . If $1 \le r < \infty$, we denote by $N_r(E, F)$, $H_r(E, F)$ and $H_r(E, F)$ respectively the r-nuclear, r-summing and r-integral mappings from E into E, and denote the corresponding norms by $P_r(E, F)$, $P_r(E, F)$ and $P_r(E, F)$ and $P_r(E, F)$. If $P_r(E, F)$ is an $P_r(E, F)$ is the closure of the operators of finite rank in $P_r(E, F)$, and $P_r(E, F) = P_r(E, F) |N_r(E, F)|$.

We denote by $\Delta N_r(E,F)$, $\Delta H_r(E,F)$ and $\Delta I_r(E,F)$ the subspaces of $N_r(E,F)$, $H_r(E,F)$ and $I_r(E,F)$ defined by diagonal matrices. Each is a closed subspace of its corresponding space, and is therefore a Banach space. We define $DN_r(E,F)=\{\alpha\colon d_\alpha\epsilon\; \Delta N_r(E,F)\}$, and define $n_r(\alpha)=v_r(d_\alpha)$; then $(DN_r(E,F),n_r)$ is a BK-space. The BK-spaces $(DH_r(E,F),p_r)$ and $(DI_r(E,F),i_r)$ are defined analogously. Note that if $a\epsilon\; DN_r(E,F)$ and if $|\beta_i|\leqslant |a_i|$ for all i, then we can write $\beta=\gamma\alpha$, where $|\gamma_i|\leqslant 1$, for all i. Thus if F is a solid BK-space, $d_\beta=d_\gamma d_\alpha$, and

 $v_r(d_{\beta}) \leqslant ||d_{\nu}|| v_r(d_a) \leqslant v_r(d_a)$, so that $DN_r(E,F)$ is a solid BK-space. The same is clearly true if E is a solid BK-space, and corresponding results hold for $DH_r(E,F)$ and $DI_r(E,F)$.

From now on we shall suppose that E and F are solid BK-spaces.

THEOREM 5. Suppose that E is an AK-space, and that either E^x or F is also an AK-space. Then if $d_a \in \Delta I_r(E,F)$, $d_a \in \Delta N_r(E,F)$ if and only if $d_{P_n}(a) \rightarrow d_a$ with respect to the norm i_r .

The condition is certainly sufficient, by the remarks above. Conversely, suppose that $d_a \in \Delta N_r(E,F)$. Then given $\varepsilon > 0$, there exists a mapping u of finite rank such that $i_r(d_a-u) < \varepsilon$. Let U be the corresponding matrix. By changing u a little, and using the conditions on E^x or F, we can suppose that U has either only finitely many non-zero rows or finitely many non-zero columns. Thus there exists n such that $u_{ij} = 0$ for $\min(i,j) > n$. Let $G_n = \{(g_i): g_i = \pm 1 \text{ for } i \leqslant n, g_i = 1 \text{ for } i > n\}$. Then

$$i_r(d_a-d_gud_g)=i_r(d_g(d_a-u)d_g)<\varepsilon$$
 for each g in G_n ,

so that $i_r(d_a-2^{-n}\sum_{g\in G_n}d_gud_g)<\varepsilon$. But $2^{-n}\sum_{g\in G_n}d_gud_g=\Delta_U$, so that if m>n

$$i_r(d_a-d_{P_m(a)})\leqslant i_r(d_a-d_{P_n(a)})\leqslant i_r(d_a-\Delta_u)<\varepsilon$$

(using the solid property of the norm i_r).

COROLLARY. Under the hypotheses of the theorem, $DN_r(E, F)$ is an AK-space, and so $(DN_r(E, F))' = (DN_r(E, F))^x$.

THEOREM 6. Suppose that E is an AK-space, and that either E^x or F is an AK-space. Then if $A \in N_r(E, F)$, $A_A \in N_r(E, F)$, and $v_r(A_A) \leq v_r(A)$.

Given $\varepsilon>0$, there exists a u as in Theorem 5 such that $r_r(A-u)<\varepsilon/2$. Suppose that u has only finitely many non-zero rows, and that $u_{ij}=0$ for i>n; then $P_mu=u$ for $m\geqslant n$. Thus $r_r(P_mA-u)=r_r(P_m(A-u))\leqslant \|P_m\|v_r(A-u)<\varepsilon/2$, so that $v_r(A-P_mA)<\varepsilon$ for $m\geqslant n$. Let $\alpha=(a_{11},a_{22},\ldots)$

$$v_r(d_{P(m)a}) = v_r \Big(2^{-m} \sum_{g \in G_m} g P_m A g \Big) \leqslant v_r(P_m A) \leqslant v_r(A) + \varepsilon$$

and

$$v_r(d_{P(m)a}-d_{P(p)a})=v_r\Big(2^{-m}\sum_{g\in G_m}g(P_m-P_p)Ag\Big)\leqslant v_r(P_mA-P_pA)\leqslant 2\varepsilon$$

for $m \geqslant p \geqslant n$, so that $(d_{P(m)a})$ is a Cauchy sequence in $N_r(E, F)$, which converges to d_a . Thus $d_a \in N_r(E, F)$, and $v_r(d_a) \leqslant v_r(A)$. A similar argument deals with the case where u has only finitely many non-zero columns.

THEOREM 7. Suppose that E is an AK-space and a Köthe space, and that either E^x or F is an AK-space. Then, if $1 < r < \infty$, $DH_r(F, E) = (DN_r(E, F))^x$.

$$|\operatorname{Tr}(d_a T)| \leqslant K \nu_{r'}(T),$$

for all continuous operators T of finite rank from E into F (cf. [3], Satz 52) and, as in Theorem 5, we can restrict attention to operators T given by a matrix with only finitely many non-zero rows or columns. If T is such a matrix, with diagonal $t = (t_{11}, t_{22}, \ldots)$,

$$|\mathrm{Tr}(d_aT)| = |\mathrm{Tr}(d_a \varDelta_T)| = \Big|\sum_{i=1}^\infty a_i t_{ii}\Big| \leqslant K n_{r'}(t),$$

since α defines a continuous linear functional on $DN_{r'}(E, F)$. But

$$n_{r'}(t) = \nu_{r'}(\Delta_T) \leqslant \nu_{r'}(T)$$
, by Theorem 6.

Thus $DN_{r'}(E, F)^x \subseteq D\Pi_r(F, E)$.

THEOREM 8. Suppose that E is an AK-space and a Köthe space, and that either E^x or F is an AK-space. Then if $1 < r < \infty$, $DI_r(F, E) = (DII_{r'}(E, F))^x$.

If $a \in DI_r(F, E)$ and $\beta \in DI_{r'}(E, F)$, then $d_a d_\beta \in I_1(E, F)$ ([3], Satz 48). Let $\gamma_i = |a_i \beta_i|$, and let $\gamma = (\gamma_i)$. Then

$$\sum_{i=1}^n \gamma_i = \operatorname{Tr} d_{P_{\boldsymbol{n}}(\boldsymbol{\gamma})} \leqslant \nu_1(d_{P_{\boldsymbol{n}}(\boldsymbol{\gamma})}) = i_1(d_{P_{\boldsymbol{n}}(\boldsymbol{\gamma})}) \leqslant i_1(d_ad_\beta).$$

Thus $\sum\limits_{i=1}^{\infty} |\alpha_i\beta_i| < \infty$, and $DI_r(F,E) \subseteq (DII_{r'}(E,F))^x$. In order to obtain the converse inclusion, we argue as in Theorem 7, using [3], Satz 53, and the observation that E is complemented in E'', so that a linear mapping T of a Banach space into E is r-integral if and only if i_xT is r-integral, where i_x is the inclusion of E into E''. (E is complemented in E'' because E = G', where G is the closure of φ in E^x .)

COROLLARY. Suppose that E and F are AK-spaces and K othe spaces. Then if $1 < r < \infty$, every r-integral mapping from E into F is r-nuclear if and only if $DN_r(E,F)$ is a K othe space.

3. Diagonal mappings between l^p -spaces. We now consider diagonal mappings between l^p -spaces.

THEOREM 9. The mapping d_a is r-summing $(0 \le r < \infty)$ from $l^{p'}$ into l^q if and only if the following conditions are satisfied:

(i) if
$$1 \leqslant p \leqslant 2$$
 and $p < 2$,
$$a \in l^p \quad \text{for } 0 \leqslant r \leqslant p,$$
$$a \in l^r \quad \text{for } p \leqslant r \leqslant q,$$
$$a \in l^q \quad \text{for } q \leqslant r;$$

(ii) if
$$1 \leqslant p = q < 2$$
,
 $\alpha \in l^{p-}$ for $0 \leqslant r < p$,
 $\alpha \in l^{p}$ for $p \leqslant r$;

(iii) if
$$p = q = 2$$
, $a \in l^2$ for all values of r ;

(iv) if
$$1 \le q , $\alpha \in l^q$ for all values of r;$$

(v) if
$$1 \leqslant q \leqslant 2$$
 and $2 ,$

$$a \in l^{\varphi(p,q)}$$
 for all values of r ;

(vi) if
$$2 < q \leqslant p < \infty$$
,
 $a \in l^p \text{ for } 0 \leqslant r \leqslant p$;

(vii) if
$$2 ,
 $a \in l^p \text{ for } 0 \le r \le p$,
 $a \in l^r \text{ for } p \le r \le q$;$$

and (viii) if $2 \le q \le p = \infty$, $\alpha \in l^{\infty}$ for all values of r.

The results of this theorem can be expressed diagrammatically; I am grateful to Professor Pietsch for suggesting this. In the diagrams, p is plotted horizontally, q vertically on an inverse scale (so that the bottom left-hand corner of the square corresponds to p=q=1, the top right-hand corner to $p=q=\infty$ and the centre of the square to p=q=2). In the diagrams on the left, the space of r-summing mappings is indicated; on the right, points (p,q) with the same space of r-summing mappings are joined by contour lines.

We begin with case (iii) (which is of course well-known). d_a is 2-summing if and only if $a \in l^2$, by Theorem 4. Then d_a is r-summing for all r if and only if $a \in l^2$, by Theorem 3.

Next we consider case (iv). First suppose that p=2. Then if $a \in l^q$, d_a is q-summing, by Theorem 4. If d_a is q-summing, d'_a is q-summing from l^q into l^2 by Theorem 3, and so $a \in l^q$, by Theorem 4. Further d_a is r-summing, for $0 \le r < \infty$, if and only if d_a is q-summing, again by Theorem 3. This deals with the case p=2. If p<2, and if $a \in l^q$, then d_a is 0-summing (by Theorem 1) and r-summing for all r. If d_a is r-summing, then a fortiori it is r-summing from l^2 into l^q , and so $a \in l^q$.

Case (v). If $a \in l^{\varphi(p,q)}$, then d_a is 0-summing (Theorem 1), and therefore r-summing for all values of r. If d_a is r-summing, and if d_β maps l^2 into $l^{p'}$, then $d_{a\beta}$ is r-summing from l^2 into l^q , so that $a\beta \in l^q$, by case (iv). Since this holds for all such β , $a \in l^{\varphi(p,q)}$.

Case (vi) is obtained by combining Theorem 1 with Theorem 4; this deals with case (vii) when $0 \leqslant r \leqslant p$, and the result for $p \leqslant r \leqslant q$ follows from Theorem 4.

Case 1: $r < \min(p, q)$

Case 2: $\min(p, q) \leqslant r \leqslant \max(p, q)$

Case 3: $\max(p, q) < r$

Case (viii) follows directly from the well-known fact that the inclusion mapping from l^1 to l^2 is 0-summing (which is included in Theorem 1) and the fact that if d_a is continuous, then $a \in l^{\infty}$.

Case (i). If $a \in l^p$, d_a is 0-summing by Theorem 1, and therefore r-summing, for $0 \leqslant r \leqslant p$. Also d_a is r-summing if and only if $a \in l^r$, for $p \leqslant r \leqslant q$, by Theorem 4. This deals with $0 \leqslant r \leqslant q$. If $a \in l^q$, d_a is r-summing for $r \geqslant q$, and if d_a is r-summing, d_a is a fortiori r-absolutely summing from l^2 into l^q , and so $a \in l^q$, by (iv).

Finally we consider case (ii). d_a is 0-summing if and only if $a \in l^p$, by Theorem 1, and this happens if and only if d_a is r-summing for 0 < r < p, by Theorem 2. d_a is p-summing if and only if $a \in l^p$, by Theorem 4, and this implies that d_a is r-summing, for $p \le r$. Finally if d_a is r-summing, for some r > p, $a \in l^p$, as in case (i).

Tong [17] has shown that d_a is 1-nuclear from $l^{p'}$ into l^q if and only if

- (i) $\alpha \in l^1$ if $1 \leqslant q \leqslant p' \leqslant \infty$;
- (ii) $a \in l^{j(p,q)}$, where $j(p,q) = (1/p + 1/q)^{-1}$, if $1 \le p' < q < \infty$;
- (iii) $a \in l^p$ if $1 \leq p' < q = \infty$;

and (iv) $a \in c_0$ if $p = q = \infty$.

In the next theorem, we obtain corresponding results for r-nuclear and r-integral diagonal mappings, when $1 < r < \infty$.

The space l^r is an Orlicz sequence space. It is not difficult to verify (cf. [2], § 7) that when $1 < r < \infty$, $(l^r)^x = l^{s+}$, where 1/r + 1/s = 1, and

$$l^{s+} = \left\{ a : \sum_{n=1}^{\infty} |a_n|^s (1 + \left| \log |a_n| \right|)^{1-s} < \infty \right\}.$$

Further, l^{r-} is reflexive if $1 < r < \infty$. Combining Theorem 7 and Theorem 9, we obtain

THEOREM 10. (i) The mapping d_a is r-integral $(1 < r < \infty)$ from $l^{p'}$ into l^q if and only if it is r-summing, except perhaps when $2 < \min(p, q) \le \max(p, q) < r$ and when $1 < r < \min(p, q) \le \max(p, q) < 2$.

- (ii) If $2 , <math>d_a$ is r-integral if and only if $a \in l^q$.
- (iii) If $2 , <math>d_a$ is r-integral if and only if $a \in l^{p+}$.
- (iv) If 2 < q < p < r, d_a is r-integral if and only if $a \in l^p$.
- (v) d_a is r-nuclear $(1 < r < \infty)$ if and only if it is r-integral, except when $2 \le q \le p = \infty$, when the condition is that $a \in c_0$, and perhaps when $1 < r < \min(p, q) \le \max(p, q) < 2$.

It is natural to conjecture that a diagonal mapping d_a from $l^{p'}$ into l^q is r-integral if and only if it is r-summing, for $1 < r < \infty$. If this were so, we would have a complete account of the diagonal r-summing mappings.

Note also that the inclusion mapping of l^1 into l^2 is r-integral, for $1 < r < \infty$. Is every continuous linear mapping from l^1 into l^2 r-integral, for $1 < r < \infty$? Is every compact linear mapping from l^1 into l^2 r-nuclear, for $1 < r < \infty$? If this were so, every r-summing mapping from l^2 into l^2 would be r-integral.

It is natural to ask what the corresponding results for L^p spaces are. If μ is a measure on Ω , we can write $\mu = \mu_1 + \mu_2$, where μ_1 is purely atomic and μ_2 is continuous; then $L^p(\Omega, \mu) \cong L^p(\Omega, \mu_1) \oplus L^p(\Omega, \mu_2)$. L^p is isometrically isomorphic to l^p or l^p_n , and we can use Theorem 9 to deal with this. Thus it is sufficient to consider the case where μ is a continuous measure. If $g \in L^0(\Omega, \mu)$, M_g denotes the operation of multiplication by g.

THEOREM 11. Suppose that μ is a continuous probability measure on Ω , that $g \in L^q(\Omega, \mu)$ (where $g \geqslant 1$) and that $g \neq 0$. Then

- (i) M_g is q-summing from $L^{\infty}(\Omega, \mu)$ into $L^q(\Omega, \mu)$;
- (ii) M_g is not r-summing from $L^\infty(\Omega,\mu)$ into $L^q(\Omega,\mu)$ for any r < q, and
- (iii) M_g is not r-summing from $L^s(\Omega, \mu)$ into $L^q(\Omega, \mu)$ for any finite r and s.

The proof of Theorem 4(i) carries over, with obvious modifications, to prove part (i). Replacing g by -g if necessary, we can find $\varepsilon > 0$ and a subset E of positive measure m such that $g(\omega) \ge \varepsilon$ on E. Let a_1, a_2, \ldots be a sequence of positive numbers such that $\sum_{i=1}^{\infty} a_i = m$, but otherwise to be determined, and let E_1, E_2, \ldots be a sequence of disjoint subsets of E such that $\mu(E_i) = a_i$. Let $S_s: l^s \to L^g(\Omega, \mu)$ be defined by

$$S_s(x) = \sum_{i=1}^\infty a_i^{-1/s} x_i x_{E_i} \quad ext{ for } 1 \leqslant s < \infty,$$
 $S_\infty(x) = \sum_{i=1}^\infty x_i X_{E_i}.$

 S_s is of course an isometric embedding. Let $T_q \colon L^q(\Omega, \mu) \rightarrow l^q$ be defined by

$$(T_q(f))_n = a^{-1/q'} \int\limits_{E_i} f(\omega) d\mu(\omega) \quad \text{ for } 1 \leqslant q < \infty.$$

 $||T_q|| = 1$, and $T_s S_s$ is the identity mapping on l^s .

Suppose first that M_0 were r-summing from $L^\infty(\Omega,\mu)$ into $L^q(\Omega,\mu)$ for some r < q. Then $T_q M_0 S_\infty$ would be r-summing from l^∞ into l^q . But $T_q M_0 S_\infty$ is a diagonal mapping, d_a say, with $a_n \ge \epsilon a_n^{1/q}$. Now if q > 1 we can choose the sequence (a_n) in such a way that $\alpha \notin l^{\max(r,1)}$ and if q = 1 in such a way that $\alpha \notin l^{1-}$. This contradicts Theorem 9(i) and (ii).

Next suppose that M_g were r-summing from $L^s(\Omega, \mu)$ into $L^q(\Omega, \mu)$, for some finite s and r. Then $T_qM_gS_s$ would be r-summing from l^s into l^q . Again $T_qM_gS_s$ is a diagonal mapping, d_β say, where $\beta_n \geqslant \epsilon a_n^{1/q-1/p}$. We can therefore choose the sequence (a_n) in such a way that $\beta \notin l^q$. Note also

that since M_{σ} is continuous, $s \geqslant q$. Inspection of Theorem 9(i)–(iv) shows that this provides a contradiction when $s \geqslant 2$ (so that $s' \leqslant 2$). But if M_{σ} were r-summing from $L^{s}(\Omega, \mu)$ into $L^{q}(\Omega, \mu)$ for some s < 2, M_{σ} would be r-summing from $L^{2}(\Omega, \mu)$ into $L^{q}(\Omega, \mu)$, since $L^{2}(\Omega, \mu) \subseteq L^{s}(\Omega, \mu)$, and we again obtain a contradiction.

References

- [1] D. J. H. Garling, Lattice bounding, Radonifying and summing mappings, to appear.
- [2] M. A. Krasnosel'skii and Ya. B. Rutickii, Convex functions and Orlicz spaces, Groningen 1961.
- [3] A. Persson and A. Pietsch, p-nukleare und p-integrale Abbildungen in Banachräumen, Studia Math. 33 (1969), pp. 19-62.
- [4] L. Schwartz, Applications radonifiantes, Séminaire de l'École Polytechnique, Paris 1969-1970.
- [5] Mesures cylindriques et applications radonifiantes dans les espaces de suites, Proceedings of the International Congress on Functional Analysis and related topics, Tokyo, April 1969.
- [6] A. E. Tong, Diagonal nuclear operators on lp-spaces, Trans. Amer. Math. Soc. 143 (1969), pp. 235-247.
- [7] Diagonal submatrices of matrix maps, Pacific J. Math. 32 (1970), pp. 551-559.

Received July 2, 1973 (698)

Sur l'analyse harmonique du groupe affine de la droite*

par

IDRISS KHALIL (Nancy et Rábat)

Abstract. Nous définissons et étudions la transformation de Plancherel pour le groupe G des transformations affines de la droite. Nous en déduisons une caractérisation des fonctions f de $L^1(G)$ telles que les opérateurs $\pi(f)$, où $\pi \in \hat{G}$, sont compacts. De plus, nous étudions l'algèbre de Fourier A(G) et l'algèbre de Fourier-Stieltjes B(G) de ce groupe, établissant notamment une "décomposition de Lebesgue" et prouvant que $A(G) = B(G) \cap \mathscr{C}_n(G)$.

Introduction. Soit G le groupe affine de la droite, c'est-à-dire des transformations $x \to ax + b$, de R dans R, où a > 0 et b sont réels. On connaît par Gelfand et Naimark la description complète de l'ensemble \hat{G} des (classes de) représentations unitaires irréductibles de G. Cet ensemble contient, à équivalence près, une famille indéxée par R de représentations de dimension 1, et deux représentations, π_+ et π_- , de dimension infinie, opérant dans le même espace hilbertien $L^2(R_+^*)$. En analysant de près \hat{G} , on voit que seules les deux représentations π_+ et π_- jouent un rôle essentiel, en tout cas dans les questions que nous avons abordées. Cela tient au fait bien connu que l'ensemble des deux points π_+ et π_- est dense, au sens de la topologie de J. M. G. Fell, dans \hat{G} .

Le troisième paragraphe de ce travail est consacré à établir une formule de Plancherel explicite sur ce groupe G. Elle précise notablement dans ce cas particulier, et par des méthodes différentes, le résultat de Kleppner et Lipsman [19]. Nous avons ici à vaincre le fait que G n'est pas unimodulaire, et aussi que, même pour des fonctions f suffisamment régulières, il peut arriver que les opérateurs $\pi_+(f)$ et $\pi_-(f)$ ne soient pas des opérateurs compacts, encore moins des opérateurs de Hilbert-Schmidt sur $L^2(\mathbf{R}_+^*)$. Cependant, en composant ces opérateurs par un opérateur convenablement choisi δ non borné de $L^2(\mathbf{R}_+^*)$ de domaine dense, on aboutit aux résultats que $\mathscr{P}_+(f) = \delta \pi_+(\Delta^{-1/2}f)$, où Δ est la fonction

^{*} Cet article constitue le chapitre 3 de la thèse de Doctorat ès Sciences, soutenue par l'auteur le 18 juin 1973 devant l'Université de Nancy.