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Then we have

(1o, k(1))
o play,)

@(an, (142))
@ (o)

M (X)) +e = MX,) = dz

< Ap(X) < (X)) + /2 .
which is a contradiction.

So altogether we have A(y(4)} = A(4) for all Ae A, which implies
(iii).

Let M:= {t: |h(t)] > 1}. Without restriction we can suppose
AM(M)<1. We ghowed already that there is an Ne 4, with ¢(N) = M
and A(N) = A(M). Then we have p(1)- 2(N) = [zl = 1T (xx)ll = I (@)xat)]
=1‘{ o(|h(8)}dA > ¢(1)-A(M), which implies A(M) = 0. Similarly we get

A{t: |n(#)] < 1} = 0, which eompletes the proof.
The proof of the theorem is a trivial consequence of Lemma 2
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Diagonal mappings between sequence spaces
by
D. J. H. GARLING (Cambridge)

Absteact. Some general results are obtained about r-nuclear, r-integral and
r-summing diagonal mappings from one sequence space to another. These are used.
to give a nearly complete characterization of such mappings from one IP space to
another, extending results of Schwartz and Tong.

1. Introduction. Schwartz ([4] Théoréme (XXVI, 4; 1) and [5])
has given a complete account of O-summing diagonal mappings from
one ¥ space to another. If « is a sequence, we denote by &, the linear
operator defined by coordinatewise multiplication by a. Recall that

ael?~ if Z o, ” (1 —1-10g|an < oo, If g<2<p, we set @(p,q)

= (p~t g ''''''' 3)*. Sehwartz’ result is then the following:
THROREM 1. d, 18 0-summaing from 17 imto 1¢ zf and only if the following
oo%dmons are satisfied:
Y p=g<2, acl”
(i) if 2<g< p, ael7,
(i) if g< 2 < p, acl?®9;
and
(iv) otherwise, ae™nEa,
The purpose of this paper is to extend this result to give a nearly
complete account of r-summing, r-integral and »-nuclear diagonal nappings
from ¥ into 1. Tor this, we shall need the three following theorems:

TirmorEM 2. Suppose that 1 < p, ¢ < 2, that I is isomorphic lo a closed
subspace of L#(0, 1) and that B’ is womamshm 1o a dlosed subspace of LP (0, 1),
Then the fotlowmg are equivalent:

(i) w 18 0-summing;

(ii) w is r-summing for some r << p;
(iii) w' 48 O-summing;
(iv) o' s s-summing for some s< ¢.

TaroREM 3. Suppose that 1 < p <2, and 17z,at ' is isomorphic to
a dlosed subspace of I2(0, 1) and that H is a Hilbert space. If we L(H, H),
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the following are equivalent:
(i) w 48 O-summing;
(i) » is p-summing;
(iii) w' ds 0-summing;
(iv) w' is s-summing for some s.
THEOREM 4. Suppose that 0 <7 < oo, p>=1and g > 1.
1) If r< q and ac U, then d, is r-summing from 17 into 19,
(i) If p < v and d, is r-summing from 1* into W, then ael’.
(i) If p <7< g, d, 98 r-summing from 1" into 12 if and only if acl'.
The proofs of Theorems 2 and 3 will appear elsewhere [1]; we prove
Theorem 4, which is much more elementary. As usual, let ¢) denote

the sequence with 1 in the jth position, and with 0 elsewhere. Suppose
that 7 < ¢ and that ael”. If oV, ..., 2™ 17, .

n

j laa®)r = '( f la;a?19"

E=1 1=] =1
n [}
< 2 Dloyaflfr
=1 j=1 )
o n
= Mlayl” X' [<a®, ey
j=1 =1
o0 n
-y .
<X laj) sup X jar (@),
j=1 l’ll<1 § 57

80 that d, is r-summing. If p < and d, is r-summing from ¥’ into ¢
and if fe??, ,

gl 1<6®, 31 < (,-;1 1<, 1™ = A

so that ,2‘; |3, = Z:Ia,-]’< co. Finally (iii) is a consequence of (i)
- =
and (ii). '

2. Spaces of diagonal mappings. In the next section we shall give
allnearly complete account of the r-summing, r-integral and »-nuclear
dla.gpnal mappings from one I space to another. The procedure will '
be first to characterise the r-summing operators, and then to use duality
theorems to characterize the r-integral and r-nuclear mappings (for
1 <7< oc). This technique has been used by Tong [6] to characterize
the l-nuclear diagonal mappings. Tn this section we shall establish the
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duality theorems required. In fact, it seems worth establishing these in
a more general getting, as in [7]. ‘

Tet « denote the linear space of all sequences, and ¢ the space of
all sequences with only finitely many non-zero terms. We recall that
a BEK-space I is a linear subspace T of w, containing ¢, and equipped
with a Banach space norm under which all the coordinate functionals
are continuous. B is solid if whenever w< B and |y, < |#;| for each 4, then
y = (y)e B If (B, 1) is a solid B -space, there is an equivalent norm
[l || on B such that if |y, < |w] for each 4, then |||y||| < |||=l||. If B is
golid, we shall always suppose thab it is equipped with such a norm. We
define the mapping P, by (P,(@); = &; if i< (Py(@); =0 if i>mn.
ABK-space 11 is an AK-space it P, (x)-w for each » in . If 7 is & sequence

o0
space, B® = {y: > |wgyl < oo,for each we B} B is a Kothe spaceif B = E*,
fasl

It (B, || ||) is @ solid BEK-space, every element of E” defines a continuous

" Jinear functional on B, with norm [y|| = sup{ Y |zwl: || <1} If in
=1

addition B is an AJK-space, all continuous linear functionals are given by
elements of B?, so that we may identify B’ and E®. Thus & solid BK-space
T is reflexive if and only if B is a Kothe space and ¥ and E® ave both
AK-spaces.

It B and F are BK-spaces, and if 4 = (ay) is a matrix such that

Aw = (3 ayw))2 ¢ F for each we B, then A defines a continuous linear
em ],

mappi]ig from B into F (which we ghall again denote by 4). If, further,
B is an AJK-space, then every continuous linear mapping is given in this
way. If a is a sequence, we shall write d, for the diagonal matrix
diag (ay, ag, - ..). J£ A is a matrix, we shall write D, for the agsociated diagonal
matrix diag(ay, o, ---) L7 < oo, we denote by N, (¥, F), (B, I)
and I,(®, ") respectively the r-nuclear, r-summing and r-integral map-
pings from I into ¥, and denote the corresponding norms by ».(H#, I,
m (B, F) and 4, (¥, F). I 0 is an AK-space, I trivially has the metric
approximation property. Thus if 7 is reflexive ox if F is an AK-space
N, (W, F) is the closure of the operators of finite rank in I.(8, F), and
vy 1) = (3 ) g,y

We denote by AN(E,X), AIL(B,Fy and AL(E,T) the gub-
spaces of N,(H, B, II,(¥, F) and I,(H, I) defined by diagonal matrices,
Tach is a closed subspace of its corresponding space, and is therefore
a Banach space. We define DN, (B, I) = {a: d,e AN,(H, F)}, and define
np(a) == v,(d,); then (DN.(B,F), n,) is a BK-space. The BK-spaces
(DIT, (B, 1, p,) and (DL(H, I, ,) are defined analogously. Note that
if ac DN, (H, F) and i | < |a for all 4, then we can write f = ya,
where |y,| < 1, for all 4. Thus if F' is o solid BK-space, dp = d,d,, and
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v, (dg) < |||, (& ¥ (dg), SO that DN,.(B, F) is a solid BHE-space. The
same is clearly true it Z is a solid BK-gpace, and corresponding resulty
hold. for DI7,.(E, F) and DI, (E,F). '

From now on we shall gsuppose that E and F are solid BK-spaces.

THBOREM 5. Suppose that B is an AK-space, and that either E° or
T is also an AK-space. Thew if d,e AL (H, F), d,e AN, (B, ) if and only
if dp (a) y—>d, with respect to the norm 4,

The condition is certainly suﬂlclent, by the remarks above. Con-
_ versely, suppose that d,¢ AN, (E,F). Then given &> 0, there exists
a mapping w of finite rank such that ,.(d,—u) << ¢&. Let U be the corre-
sponding matrix. By changing » a little, and using the conditions on E*
or F, we can suppose that U has either only finitely many non-zero rows
or finitely many non-zero columns. Thus there exists # such that u; =0
for min(4,j) > n. Let &, = {(g;): ¢; = £1 for fb<n, g; =1 for i > n}.
Then.

iy (o~ dgudy) = i,(d;(d,—u)d) < e for each g in G,,
so that i,(d,~27" 3 dud,)<e But 27" 3 dud, = Ay, so that if
geGy,

geGp
m> N

i (do—dp, () < % (d,
(using the solid property of the norm 4,).
COROLLARY. . Under .the hypotheses of the theorem, DN,.(H, F) is an
AK-space, and so (DN,(B, F))' = (DN,(H, P))°.
THEOREM 6. Suppose tha,t B is an AK-space, and that either E® or
Fis an AK-space. Then if Ae N (B, F), Aye N (B, F), andv,(4,4) <».(4).

dPn(u)) (d —4 'u)

Given ¢ > 0, there exists a # as in Theorem 5 such that v, (4 —u) < ¢/2. .

Suppose that % has only finitely many non-zero rows, and that wu; =0
for ¢ > n; then P,u = u for m > n. Thus »,(P, 4 —u) = »,(P,, (4 —u))
< | Pull v (A — u) < /2, so that ». (4 —P,4A)< e for m>=n. Let a = (ay,
gy o)

(o) = (27" X 9P, 4g) <

geGy

2 (Ppd) <9.(4) e
and
(dp(m)a*—dp(p)u) = ”r(2 " V (P — )Ag) <
g:Gm
for m = p > n, so that (dppm.) is a Cauchy sequence in N,(E, F'), which
converges to d,. Thus d,e N, (#, F), and »,(d,) < »,(4). A similar argument
deals with the case where u has only finitely many non-zero columns.
THEOREM 7. Suppose that B is an AK-space and a Kithe space, and

that either B® or F i3 an AK-space. Then, if 1< r< oo, DII(F,E)
= (DN, (B, F)?.

by (P d —PpA) < 2¢

icm
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T8 e DIT, (T, T) and e DN, (B, ), then dydye N (T, 7) ((3] Satz 48),

g0 that tr(d dg) ~<)_7 a;f; exists and is finite. Thus DIL.(F, E) <
=1

(DN, (B, F)P. Gonvcrsely, suppose that ae (DN, (H, F)f*. It is easy

to verify that d, maps ¥ into B == H. In order to show thaA, d.e DII(F, E)
it is enough to show that there exists a constant K such that

Tr(2,T)| < K, (T),
for all continuous operators ' of finite rank from F into F (cf. [3], Satz b2)
and, ag in Theorem 5, we can restrict attention to operators T' given by
a matrix with only finitely many non-zero rows or columns. If 7' is such
a matrix, with diagonal ¢ = (f;;, tes, -.-),

[T2(d, D)) = [Tx(d, A = Sty

ge=l

< BEn,. (1),

gince « defines a continuous linear functional on DN, (¥, F). But

1y (1) = 2o (A) < #p(T),

Thus DN, (B, F)* < DIT,(F, B).

TrnoREM 8. Suppose that B is an AK-space and o Kithe space, and
that either B* or F is an AK-space. Then if L <r< oo, DI (T, H) =
(DL, (B, F)*. )

If ae DI, (I’ .'F and /Se DIT.(B, F), then d,dg< I,(E, ) ([3], Satz 48).
= (y;). Then

by Theorem. 6.

27"' = Tr dl;n(?‘) < V;(dPn(V))

il

= il(dPn(y)) <y (dad,ﬂ) .

Thus 3’ la;8, < oo, and DI(F, B) < (DIL.(B, F))*. In order to obtain
Gral

the converse inclusion, we argue as in Theorem 7, using [3], Satz 53, and
the observation that B is complemented in B, so that a linear mapping T’
of a Banach space into J is r-integral if and only if 45T is r-integral, where
i i8 the inclusion of 7 into B'. (K is complemented in B because B = &,
where G is the closure of ¢ in 1)

CoroLLARY. Suppose that B and I are AK-spaces and Kothe spaces.
Then if 1< r<< oo, every r-integral mapping from B dnto F is r- -nuclear
if and only if DN, (B, F) is a Kdthe space.

3. Diagonal mappings between [P-spaces. We now consider diagonal

mappings between I”-spaces.

THEOREM 9. The mapping d, is r-summing (0 < r < oo) from W into

19 if and only if the following conditions are satwfwd
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D F1I<p<2andp<2,
ael? for 0K r<p,
ael’  for p<r<y,
acl?  for g r;
(i) if 1<p =q<?,
ael’™ for 0K r<p,
ael?  for p<r;
(iii) if p = ¢ = 2, acl? for all values of r;
(iv) if 1< q<p<2, acl? for all values of r;
(V) if 1K q¢<2 and 2 < p < oo,
ael®®D  for all values of 7;

(vi) if 2<< g<Pp< oo,
’ aecl? for 0 < r<p;
(vil) if 2< P < < o0,
ael? for 0 <r<yp,
ael’ for p<r<gq;
and (vill) if 2<g<<p = oo, ael® for all values of 7.

The results of this theorem can be expressed diagrammatically;
I am grateful to Professor Pietsch for suggesting this. In the diagrams,
p is plotted horizontally, ¢ vertically on an inverse scale (so that the
bottom left-hand corner of the square corresponds to p =g = 1, the
top right-hand corner to p = ¢ = oo and the centre of the square to
p = ¢ = 2). In the diagrams on the left; the space of r-summing mappings
is indicated; on the right, points (p, q) with the same space of r-summing
mappings are joined by contour lines.

We begin with case (iii) (which is of course well-known). d,, is 2-summing
if and only if ael?, by Theorem 4. Then d, is r-summing for all 7 if and
only if ae 2, by Theorem 3.

Next we consider case (iv). First suppose that p = 2. Then if ae 9,
d, is ¢-summing, by Theorem 4. If d, is g-summing, d, is g-summing from
1 into 12 by Theorem 3, and 80 a« 1% by Theorem 4. Further d, is r-summing,
for 0 < r<C oo, if and only if d, is g-summing, again by Theorem 3. This
deals with the case p = 2. If p < 2, and if acl? then d, is O-summing
(by Theorem 1) and r-summing for all r. If d, is r-summing, then a fortiori
it is r-summing from 12 into ¥, and 8o ael?.

Case (v). If ¢e 179 then d, is 0-summing (Theorem 1), and therefore
r-summing for all values of ». If d, is r-summing, and if d, maps 12 into 17",
then d,; is r-summing from 12 into 1%, so that afe 1% by case (iv). Since this
holds for all such 8, ae 1979,

icm
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Cate (vi) is obtained by combining Theorem 1 with Theorem 4;

this deals with case (vil) when 0 <7< p, and the result for p <7< q
" follows from Theorem 4.

Case 1: r< min(p, q)

P

¢lp.q)

Case 2: min(p, ¢) < r < max(p, q)

Plp.q)

Case 3: max(p, ) <7

¢lo.a)

Cage (viii) follows directly from the well-known. fact that the inclusion
mapping from I to 12 is 0-summing (which is included in Theorem 1)
and the fact that if d, is continuous, then ae 1.

4 — Studia Mathematica LI.2
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. Case (i). If ael?, d, is 0-summing by Theorem 1, and therefore 7-sum-
ming, for 0 < » < p. Also d, is r-summing if and only if ac ", for p< r< g,
by Theorem 4. This deals with 0 << ¢. If ael? d, is r-summing for
r > ¢, and if d, is r-summing, d, is a fortiori r- absolutely summmg from 12
into ¥, and so ae 9, by (iv).

Tinally we consider case (ii). d, is O-summing if and only if ae?~,
by Theorem 1, and this happens if and only if d, is r-summing for 0 < r <
< p, by Theorem 2. d, is p-summing if and only if ae %, by Theorem. 4,
and this implies that d, is r-summing, for p < ». Finally if d, is 7-summing,
for some r > p, acl?, as in case (i).

Tong [17] has shown that d, is 1-nuclear from 1’ into 19 if and only if

) aeP it 1< gL <

(i) ae @9, where j(p, q) =

(i) ael? if 1< p' < g = oo
and (iv) ae ¢, if p =g = oo.

(1/p+1/q)‘1, it 1< p' < g<< 005

In the next theorem, we obtain corresponding results for r-nuclear
and r-integral diagonal mappings, when 1< » < oo.

The space I~ is an Orlicz sequence space. It is not difficult to verify
(cf. [2], § 7) that when 1< r< oo, (I"")* = I**, where 1/r-+1/s =1, and

00
it = fa: 3la* (L +logla,|)'~* < oo}
=1
Further, I"~ is reflexive if 1< 7 < oo. Combining Theorem: 7 and The-
orem 9, we obtain

TueoreM 10. (i) The mapping &, is r-integral (1 < r << oo) from ¥
into 17 if and only if it is r-summing, except perhaps when 2 < min(p, q)
< max(p, ¢) < r and when 1<y < min(p, q) < max(p, q) < 2.

(ii) If 2<p< q<r, d, is r-integral if and only if aell

(i) If 2<p =q< 7, d, is r-integral if and only if acl?*,

iv) If 2< q< p <7, d, is r-integral if and only if ael”.

(v) dy is r-nuclear (1<r << o) if and only if @ s r-integral, ewoept
when 2 < ¢ <p = co, when the condition is that ae ¢y, and perhaps when
1<r< min(p, g) < max(p, q) < 2.

' It is natural to conjecture that a diagonal mapping d, from I# into
1% iy r-integral if and only if it is -summing, for 1 < < oo. If this were
$0, we would have a complete account of the diagonal r-summing mappings.

Note also that the inclusion mapping of I* into 12 is r-integral, for
1< r<< oo, Is every continuous linear mapping from I* into I? #-integral,
for 1< v < oo? Is every compact linear mapping from I* into 2 r-nuclear,
for 1 < r<C co? If this were so, every r-summing mapping from i# into It
would be r-integral.
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It is natural to ask what the corresponding results for L” spaces
are. If 4 is a measure on Q, we can write u = u;+ u,, where u, is purely
atomic and p, is continuous; then I” (R, u) == LP(Q, u,) DL?(Q, ).
L* is isometrically isomorphic to I* or ¥, and we can use Theorem 9 to
deal with this. Thus it is sufficient to consider the case where x is & con-
tinuous measure. If ge L°(Q, u), M, denotes the operation of multiplica-
tion by g¢.

TuworeM 11. Suppose that w is a continuous probability measure
on 2, that ge L9(Q, u) (where g = 1) and that g 5 0. Then

Yy M, is g-summing from L®(2, u) dnto LY R, u);

(if) M, is not r-summing from L>(Q, u) into L2, u) for any r < q,
and

(i) M, is not r-summing from L°(, u) into LY(Q, w) for any finite
7 and s.

The proof of Theorem 4(i) carries over, with obvious modifications,
to prove part (i). Replacing ¢ by —g if necessary, we can find ¢ > 0 and
a subset B of positive measure m such that g(w) > ¢ on H. Let a,, dy, ... .
be a sequence of positive numbers such that 3 a; = m, but otherwise

fm]
to be determined, and let #,, H,, ... be a sequence of digjoint subsets
of B such that u(B;) = a;. Let §,;: I*>L*(R, u) be defined by

0

Sp(@) = D

i=1

== jw,:XEi.

=1

a7 Pawy,  for 1< s< oo,

8, is of course an isometric embedding. Let T;: L¥(Q2, u)-1* be defined by

WAﬁMma“ijwwmw) for 1< g< oo
1Ty = 1, and T,8, is the 1c10n‘r1ty mapping on 1%,

Suppose first that M, were r-summing from L°(RQ, u) into LU(Q, p)
for some r < ¢. Then T, M 8, would be r-summing from 1% into 1% Bub
r.M,8,, is a diagonal mapping, d, say, with a, > actn/‘z Now if ¢ > 1 we
can choose the sequence (a,) in such a way that a ¢ "D and if ¢ = 1
in such a way that a ¢ '~. This contradicts Theorem 9 (i) and (ii).

Next suppose that M, were r-summing from Z*(2, u) into Z¢(R2, u),
for some finite s and ». Then T,M,8; would be r-summing Imm * into 1%
Again T' .M 8, is a diagonal mapping, dj say, where g, > sa,’ Ja3e e can
thezefore chooqe the sequence (a,) in such a way that g ¢l" Note also
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that since M, is continuoils, 8 > ¢q. Inspection of Theorem 9 (i)-(iv) shows
that this provides a contradiction when s > 2 (so that s’ < 2). But if M,
were r-summing from L°(Q, u) into L%, u) for some s < 2, M, would
be r-summing from IL2(Q, ) into L(Q, u), since L2(Q, u) = L°(2, u),
and we again obtain a contradiction.
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Sur Panalyse harmonique du groupe affine
de la droite *

par

IDRISS KHALIL (Nancy et Rabat)

Abstract. Nous définisgons et étudions la transformation de Plancherel pour
le groupe @ des transformations affines de la droite. Nous en déduisons une caractéri-

sation des fonctions f de L (@) telles que les opérateurs m(f), ol me é, sont compacts.
De plus, nous étudions l'algdbre de Fourier A (G) et l'algdbre de Fourier—Stieltjes
B(&) de ce groupe, établissant notamment une ,,décomposition de Lebesgue” et
prouvant que A (G¢) = B(&)N%,(G).

Introduction. Soit & le groupe affine de la droite, c’est-a-dire des
transformations @ —~az-++b, de R dans R, ot ¢ > 0 et b gont réels. On .
connaft par Gelfand et Naimark la description compléte de 1’ensemble @
des (classes de) représentations unitaires irréductibles de &. Cet ensemble
contient, & équivalence prés, une famille indéxée par B de représentations
de dimension 1, et deux représentations, », et wx_, de dimension infinie,
opérant dans le méme espace hilbertien I* (R ). BEn analysant de prés @,
on voit gue seules les deux représentations s .. et z_ jouent un réle essentiel,
en tout cas dans les questions que nous avons abordées. Cela tient au
fait bien connu que l'ensemble des deux points =, et m_ est dense, au
sens de la topologie de J. M. G. Fell, dans . '

Le troisiéme paragraphe de ce travail est consacré & établir une
formule de Plancherel explicite sur ce groupe @. Blle précise notablement
dans ce cag particulier, et par des méthodes différentes, le résultat de
Kleppner et Lipsman [19]. Nous avons ici & vaincre le fait que G n’est
pas unimodulaire, et aussi que, méme pour des fonetions f suffisamment
réguliéres, il peut arriver que les opérateurs =, (f) et m_ (f) ne soient pas
des opérateurs compacts, encore moing des opérateurs de Hilbert-Schmidt
sur I*(RY). Cependant, en composant ces opérateurs par un opérateur
convenablement choigi 6 non borné de I*(RY) de domaine dense, on
aboutit aux résultats que 2, (f) = om, (47Y2f), ol 4 est la fonction

* Cet article constitue le chapitre 3 de la thdse de Doctorat ds Sciences, soutenue
par Pauteur le 18 juin 1973 devant 'Univorsité de Naney.
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